AVL (Height-Balanced) Trees

• AVL tree (height-balanced tree)
 – Resulting binary search is nearly balanced
• Perfectly balanced binary tree
 – Heights of left and right subtrees of the root: equal
 – Left and right subtrees of the root are perfectly balanced binary trees

FIGURE 11-12 Perfectly balanced binary tree
AVL (Height-Balanced) Trees (cont’d.)

• An AVL tree (or height-balanced tree) is a binary search tree such that
 – The heights of the left and right subtrees of the root differ by at most one
 – The left and right subtrees of the root are AVL trees

FIGURE 11-13 AVL and non-AVL trees
Proposition: Let T be an AVL tree and x be a node in T. Then $|x_h - x_l| \leq 1$, where $|x_h - x_l|$ denotes the absolute value of $x_h - x_l$.

Let x be a node in the AVL tree T.

1. If $x_l > x_h$, we say that x is left high. In this case, $x_l = x_h + 1$.
2. If $x_l = x_h$, we say that x is equal high.
3. If $x_h > x_l$, we say that x is right high. In this case, $x_h = x_l + 1$.

Definition: The balance factor of x, written $bf(x)$, is defined by $bf(x) = x_h - x_l$.

Let x be a node in the AVL tree T. Then,

1. If x is left high, $bf(x) = -1$.
2. If x is equal high, $bf(x) = 0$.
3. If x is right high, $bf(x) = 1$.

Definition: Let x be a node in a binary tree. We say that the node x violates the balance criteria if $|x_h - x_l| > 1$, that is, the heights of the left and right subtrees of x differ by more than 1.
Binary Search Trees (cont’d.)

- A binary search tree, T, is either empty or the following is true:
 - T has a special node called the root node
 - T has two sets of nodes, L_T and R_T, called the left subtree and right subtree of T, respectively
 - The key in the root node is larger than every key in the left subtree and smaller than every key in the right subtree
 - L_T and R_T are binary search trees
AVL (Height-Balanced) Trees (cont’d.)

- Definition of a node in the AVL tree

```cpp
template<class elemType>
struct AVLNNode
{
    elemType info;
    int bfactor;  //balance factor
    AVLNode<elemType> *llink;
    AVLNode<elemType> *rlink;
};
```
AVL (Height-Balanced) Trees (cont’d.)

• AVL binary search tree search algorithm
 – Same as for a binary search tree
 – Other operations on AVL trees
 • Implemented exactly the same way as binary trees
 – Item insertion and deletion operations on AVL trees
 • Somewhat different from binary search trees operations
Insertion

• First search the tree and find the place where the new item is to be inserted
 – Can search using algorithm similar to search algorithm designed for binary search trees
 – If the item is already in tree
 • Search ends at a nonempty subtree
 • Duplicates are not allowed
 – If item is not in AVL tree
 • Search ends at an empty subtree; insert the item there
• After inserting new item in the tree
 – Resulting tree might not be an AVL tree
Insertion (cont’d.)

FIGURE 11-14 AVL tree before and after inserting 90

FIGURE 11-15 AVL tree before and after inserting 75
Insertion (cont’d.)

FIGURE 11-16 AVL tree before and after inserting 95

FIGURE 11-17 AVL tree before and after inserting 88
AVL Tree Rotations

- Rotating tree: reconstruction procedure
- Left rotation and right rotation
- Suppose that the rotation occurs at node x
 - Left rotation: certain nodes from the right subtree of x move to its left subtree; the root of the right subtree of x becomes the new root of the reconstructed subtree
 - Right rotation at x: certain nodes from the left subtree of x move to its right subtree; the root of the left subtree of x becomes the new root of the reconstructed subtree
FIGURE 11-18 Right rotation at b

FIGURE 11-19 Left rotation at a
FIGURE 11-20 Double rotation: First rotate left at a and then right at c

FIGURE 11-21 Left rotation at a followed by a right rotation at c
AVL Tree Rotations (cont’d.)

FIGURE 11-22 Double rotation: First rotate right at c, then rotate left at a
template <class elemT>
void rotateToLeft(AVLNode<elemT>* &root)
{
 AVLNode<elemT> *p; //pointer to the root of the
 //right subtree of root
 if (root == NULL)
 cerr << "Error in the tree" << endl;
 else if (root->rlink == NULL)
 cerr << "Error in the tree:"
 << " No right subtree to rotate."
 << endl;
 else
 {
 p = root->rlink;
 root->rlink = p->llink; //the left subtree of p becomes
 //the right subtree of root
 p->llink = root;
 root = p; //make p the new root node
 }
} //rotateLeft

template <class elemT>
void rotateToRight(AVLNode<elemT>* &root)
{
 AVLNode<elemT> *p; //pointer to the root of
 //the left subtree of root
 if (root == NULL)
 cerr << "Error in the tree" << endl;
 else if (root->llink == NULL)
 cerr << "Error in the tree:"
 << " No left subtree to rotate."
 << endl;
 else
 {
 p = root->llink;
 root->llink = p->rlink; //the right subtree of p becomes
 //the left subtree of root
 p->rlink = root;
 root = p; //make p the new root node
 }
} //end rotateRight
template <class elemT>
void balanceFromLeft(AVLNode<elemT>* &root)
{
 AVLNode<elemT> *p;
 AVLNode<elemT> *w;

 p = root->llink; // p points to the left subtree of root

 switch (p->bfactor)
 {
 case -1:
 root->bfactor = 0;
 p->bfactor = 0;
 rotateToRight(root);
 break;

 case 0:
 cerr << "Error: Cannot balance from the left." << endl;
 break;

 case 1:
 w = p->rlink;
 switch (w->bfactor) // adjust the balance factors
 {
 case -1:
 root->bfactor = 1;
 p->bfactor = 0;
 break;

 case 0:
 root->bfactor = 0;
 p->bfactor = 0;
 break;

 case 1:
 root->bfactor = 0;
 p->bfactor = -1;
 } // end switch
 w->bfactor = 0;
 rotateToLeft(p);
 root->llink = p;
 rotateToRight(root);
 } // end switch;
} // end balanceFromLeft
template <class elemT>
void balanceFromRight(AVLNode<elemT>* &root)
{
 AVLNode<elemT> *p;
 AVLNode<elemT> *w;

 p = root->rlink; // p points to the left subtree of root

 switch (p->bfactor)
 {
 case -1:
 w = p->llink;
 switch (w->bfactor) // adjust the balance factors
 {
 case -1:
 root->bfactor = 0;
 p->bfactor = 1;
 break;

 case 0:
 root->bfactor = 0;
 p->bfactor = 0;
 break;

 case 1:
 root->bfactor = -1;
 p->bfactor = 0;
 } // end switch

 w->bfactor = 0;
 rotateToRight(p);
 root->rlink = p;
 rotateToLeft(root);
 break;

 case 0:
 cerr << "Error: Cannot balance from the left." << endl;
 break;

 case 1:
 root->bfactor = 0;
 p->bfactor = 0;
 rotateToLeft(root);
 } // end switch
} // end balanceFromRight
FIGURE 11-23 Item insertion into an initially empty AVL tree
Data Structures Using C++ 2E

Chapter 12
Graphs
Introduction (cont’d.)

FIGURE 12-1 The Königsberg bridge problem

FIGURE 12-2 Graph representation of the Königsberg bridge problem
Graph Definitions and Notations

• Borrow definitions, terminology from set theory
• Subset
 – Set Y is a subset of X: $Y \subseteq X$
 • If every element of Y is also an element of X
• Intersection of sets A and B: $A \cap B$
 – Set of all elements that are in A and B
• Union of sets A and B: $A \cup B$
 – Set of all elements in A or in B
• Cartesian product: $A \times B$
 – Set of all ordered pairs of elements of A and B
Graph Definitions and Notations (cont’d.)

- **Graph G pair**
 - \(G = (V, E) \), where \(V \) is a finite nonempty set
 - Called the set of vertices of \(G \), and \(E \subseteq V \times V \)
 - Elements of \(E \)
 - Pairs of elements of \(V \)

- **\(E \): set of edges of \(G \)**
 - \(G \) called trivial if it has only one vertex

- **Directed graph (digraph)**
 - Elements in set of edges of graph \(G \): ordered

- **Undirected graph**: not ordered
FIGURE 12-3 Various undirected graphs

![Undirected Graphs](image)

FIGURE 12-4 Various directed graphs

![Directed Graphs](image)

\[
V(G_1) = \{1, 2, 3, 4, 5\} \\
E(G_1) = \{(1, 2), (1, 4), (2, 5), (3, 1), (3, 4), (4, 5)\}
\]

\[
V(G_2) = \{0, 1, 2, 3, 4\} \\
E(G_2) = \{(0, 1), (0, 3), (1, 2), (1, 4), (2, 1), (2, 4), (4, 3)\}
\]

\[
V(G_3) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \\
E(G_3) = \{(0, 1), (0, 5), (1, 2), (1, 3), (1, 5), (2, 4), (4, 3), (5, 6), (6, 8), (7, 3), (7, 8), (8, 10), (9, 4), (9, 7), (9, 10)\}
\]
Graph Definitions and Notations (cont’d.)

• Graph H called subgraph of G
 – If $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$
 – Every vertex of H: vertex of G
 – Every edge in H: edge in G

• Graph shown pictorially
 – Vertices drawn as circles
 • Label inside circle represents vertex

• Undirected graph: edges drawn using lines

• Directed graph: edges drawn using arrows
Graph Definitions and Notations (cont’d.)

• Let u and v be two vertices in G
 – u and v adjacent
 • If edge from one to the other exists: $(u, v) \in E$

• Loop
 – Edge incident on a single vertex

• e_1 and e_2 called parallel edges
 – If two edges e_1 and e_2 associate with same pair of vertices \{u, v\}

• Simple graph
 – No loops, no parallel edges
Graph Definitions and Notations (cont’d.)

• Let \(e = (u, v) \) be an edge in \(G \)
 – Edge \(e \) is incident on the vertices \(u \) and \(v \)
 – Degree of \(u \) written \(\text{deg}(u) \) or \(d(u) \)
 • Number of edges incident with \(u \)

• Each loop on vertex \(u \)
 – Contributes two to the degree of \(u \)

• \(u \) is called an even (odd) degree vertex
 – If the degree of \(u \) is even (odd)
Graph Definitions and Notations (cont’d.)

• Path from \(u \) to \(v \)
 – If sequence of vertices \(u_1, u_2, \ldots, u_n \) exists
 • Such that \(u = u_1, \ u_n = v \) and \((u_i, u_{i+1})\) is an edge for all \(i = 1, 2, \ldots, n - 1 \)

• Vertices \(u \) and \(v \) called connected
 – If path from \(u \) to \(v \) exists

• Simple path
 – All vertices distinct (except possibly first, last)

• Cycle in \(G \)
 – Simple path in which first and last vertices are the same
Graph Definitions and Notations (cont’d.)

- **G** is connected
 - If path from any vertex to any other vertex exists

- **Component of G**
 - Maximal subset of connected vertices

- Let **G** be a directed graph and let **u** and **v** be two vertices in **G**
 - If edge from **u** to **v** exists: \((u, v) \in E\)
 - **u** is adjacent to **v**
 - **v** is adjacent from **u**
Graph Definitions and Notations (cont’d.)

• Definitions of paths and cycles in G
 – Similar to those for undirected graphs

• G is strongly connected
 – If any two vertices in G are connected
Graph Representation

• Graphs represented in computer memory
 – Two common ways
 • Adjacency matrices
 • Adjacency lists
Adjacency Matrices

• Let G be a graph with n vertices where $n > 0$
• Let $V(G) = \{v_1, v_2, \ldots, v_n\}$
 – Adjacency matrix

$$A_G(i,j) = \begin{cases}
1 & \text{if } (v_i, v_j) \in E(G) \\
0 & \text{otherwise}
\end{cases}$$

$$A_{G_1} = \begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}, \\
A_{G_2} = \begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}.$$
Adjacency Lists

• Given:
 – Graph G with n vertices, where $n > 0$
 – $V(G) = \{v_1, v_2, ..., v_n\}$

• For each vertex v: linked list exists
 – Linked list node contains vertex u: $(v, u) \in E(G)$

• Use array A, of size n, such that $A[i]$
 – Reference variable pointing to first linked list node containing vertices to which v_i adjacent

• Each node has two components: vertex, link
 – Component vertex
 • Contains index of vertex adjacent to vertex i
Adjacency Lists (cont’d.)

- Example 12-4

FIGURE 12-5 Adjacency list of graph G2 of Figure 12-4

FIGURE 12-6 Adjacency list of graph G3 of Figure 12-4
Operations on Graphs

• Commonly performed operations
 – Create graph
 • Store graph in computer memory using a particular graph representation
 – Clear graph
 • Makes graph empty
 – Determine if graph is empty
 – Traverse graph
 – Print graph
Operations on Graphs (cont’d.)

• Graph representation in computer memory
 – Depends on specific application
• Use linked list representation of graphs
 – For each vertex v
 • Vertices adjacent to v (directed graph: called immediate successors)
 • Stored in the linked list associated with v
• Managing data in a linked list
 – Use class unorderedLinkedList
• Labeling graph vertices
 – Depends on specific application
Graphs as ADTs

• See code on pages 692-693
 – Defines a graph as an ADT
 – Class specifying basic operations to implement a graph

• Definitions of the functions of the class graphType

```cpp
bool graphType::isEmpty() const
{
    return (gSize == 0);
}
```
Graphs as ADTs (cont’d.)

• **Function** `createGraph`
 – Implementation
 • Depends on how data input into the program
 – See code on page 694

• **Function** `clearGraph`
 – Empties the graph
 • Deallocates storage occupied by each linked list
 • Sets number of vertices to zero
 – See code on page 695
Graph Traversals

• Processing a graph
 – Requires ability to traverse the graph

• Traversing a graph
 – Similar to traversing a binary tree
 • A bit more complicated

• Two most common graph traversal algorithms
 – Depth first traversal
 – Breadth first traversal
Depth First Traversal

• Similar to binary tree preorder traversal
• General algorithm

```plaintext
for each vertex, v, in the graph
  if v is not visited
    start the depth first traversal at v
```

FIGURE 12-7 Directed graph G_3
Depth First Traversal (cont’d.)

• General algorithm for depth first traversal at a given node \(v \)
 – Recursive algorithm

1. mark node \(v \) as visited
2. visit the node
3. for each vertex \(u \) adjacent to \(v \)
 if \(u \) is not visited
 start the depth first traversal at \(u \)
Depth First Traversal (cont’d.)

- Function `dft` implements algorithm

```cpp
void graphType::dft(int v, bool visited[])
{
    visited[v] = true;
    cout << " " << v << " "; //visit the vertex

    linkedListIterator<int> graphIt;

    //for each vertex adjacent to v
    for (graphIt = graph[v].begin(); graphIt != graph[v].end(); ++graphIt)
    {
        int w = *graphIt;
        if (!visited[w])
            dft(w, visited);
    } //end while
} //end dft
```
Depth First Traversal (cont’d.)

• **Function** `depthFirstTraversal`
 – Implements depth first traversal of the graph

```cpp
void graphType::depthFirstTraversal()
{
    bool *visited; // pointer to create the array to keep
                    // track of the visited vertices
    visited = new bool[gSize];

    for (int index = 0; index < gSize; index++)
        visited[index] = false;

    // For each vertex that is not visited, do a depth
    // first traversal
    for (int index = 0; index < gSize; index++)
        if (!visited[index])
            dft(index, visited);

    delete [] visited;
} // end depthFirstTraversal
```
Depth First Traversal (cont’d.)

- **Function** `depthFirstTraversal`
 - Performs a depth first traversal of entire graph
- **Function** `dftAtVertex`
 - Performs a depth first traversal at a given vertex

```cpp
void graphType::dftAtVertex(int vertex)
{
    bool *visited;

    visited = new bool[gSize];

    for (int index = 0; index < gSize; index++)
        visited[index] = false;

    dft(vertex, visited);

    delete [] visited;
} // end dftAtVertex
```
Breadth First Traversal

• Similar to traversing binary tree level-by-level
 – Nodes at each level
 • Visited from left to right
 – All nodes at any level i
 • Visited before visiting nodes at level $i+1$
Breadth First Traversal (cont’d.)

• General search algorithm
 – Breadth first search algorithm with a queue

 1. for each vertex \(v \) in the graph
 if \(v \) is not visited
 add \(v \) to the queue //start the breadth first search at \(v \)
 2. Mark \(v \) as visited
 3. while the queue is not empty
 3.1. Remove vertex \(u \) from the queue
 3.2. Retrieve the vertices adjacent to \(u \)
 3.3. for each vertex \(w \) that is adjacent to \(u \)
 if \(w \) is not visited
 3.3.1. Add \(w \) to the queue
 3.3.2. Mark \(w \) as visited
void graphType::breadthFirstTraversal()
{
 linkedQueueType<int> queue;

 bool *visited;
 visited = new bool[gSize];

 for (int ind = 0; ind < gSize; ind++)
 visited[ind] = false; //initialize the array
 //visited to false

 linkedListIterator<int> graphIt;

 for (int index = 0; index < gSize; index++)
 if (!visited[index])
 {
 queue.addQueue(index);
 visited[index] = true;
 cout << " " << index << " ";

 while (!queue.isEmptyQueue())
 {
 int u = queue.front();
 queue.deleteQueue();

 for (graphIt = graph[u].begin();
 graphIt != graph[u].end(); ++graphIt)
 {
 int w = *graphIt;
 if (!visited[w])
 {
 queue.addQueue(w);
 visited[w] = true;
 cout << " " << w << " ";
 }
 }
 } //end while
 }
 delete [] visited;
} //end breadthFirstTraversal
Shortest Path Algorithm

• Weight of the graph
 – Nonnegative real number assigned to the edges connecting to vertices

• Weighted graphs
 – When a graph uses the weight to represent the distance between two places

• Weight of the path P
 – Given G as a weighted graph with vertices u and v in G and P as a path in G from u to v
 • Sum of the weights of all the edges on the path

• Shortest path: path with the smallest weight
Shortest Path Algorithm (cont’d.)

• Shortest path algorithm space (greedy algorithm)
• See code on page 700

- \texttt{class weightedGraphType}
 • Extend definition of \texttt{class graphType}
 • Adds function \texttt{createWeightedGraph} to create graph and weight matrix associated with the graph

Let G be a graph with n vertices, where $n \geq 0$. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$. Let W be a two-dimensional $n \times n$ matrix such that

$$W(i,j) = \begin{cases} w_{ij} & \text{if } (v_i, v_j) \text{ is an edge in } G \text{ and } w_{ij} \text{ is the weight of the edge } (v_i, v_j) \\ \infty & \text{if there is no edge from } v_i \text{ to } v_j \end{cases}$$
Shortest Path

• General algorithm
 – Initialize array \textit{smallestWeight}
 \begin{align*}
 \text{smallestWeight}[u] &= \text{weights}[\text{vertex}, u] \\
 \text{Set} \quad \text{smallestWeight}[\text{vertex}] &= \text{zero} \\
 \text{Find vertex } v \text{ closest to vertex where shortest path is not determined} \\
 \text{Mark } v \text{ as the (next) vertex for which the smallest weight is found}
 \end{align*}
Shortest Path (cont’d.)

• General algorithm (cont’d.)
 – For each vertex \(w \) in \(G \), such that the shortest path from vertex to \(w \) has not been determined and an edge \((v, w)\) exists
 • If weight of the path to \(w \) via \(v \) smaller than its current weight
 • Update weight of \(w \) to the weight of \(v \) + weight of edge \((v, w)\)
Shortest Path (cont’d.)

FIGURE 12-8 Weighted graph G

FIGURE 12-9 Graph after Steps 1 and 2 execute
Shortest Path (cont’d.)

FIGURE 12-10 Graph after the first iteration of Steps 3 to 5

FIGURE 12-11 Graph after the second iteration of Steps 3 to 5
Shortest Path (cont’d.)

FIGURE 12-12 Graph after the third iteration of Steps 3 to 5

FIGURE 12-13 Graph after the fourth iteration of Steps 3 through 5
Shortest Path (cont’d.)

• See code on pages 704-705
 – C++ function `shortestPath` implements previous algorithm
 • Records only the weight of the shortest path from the source to a vertex

• Review the definitions of the function `printShortestDistance` and the constructor and destructor on pages 705-706
Minimum Spanning Tree

• Airline connections of a company
 – Between seven cities

![Diagram of Minimum Spanning Tree](image)

FIGURE 12-14 Airline connections between cities and the cost factor of maintaining the connections
Minimum Spanning Tree (cont’d.)

• Due to financial hardship
 – Company must shut down maximum number of connections
 • Still be able to fly (maybe not directly) from one city to another

FIGURE 12-15 Possible solutions to the graph of Figure 12-14
Minimum Spanning Tree (cont’d.)

• Free tree T
 – Simple graph
 – If u and v are two vertices in T
 • Unique path from u to v exists

• Rooted tree
 – Tree with particular vertex designated as a root
Minimum Spanning Tree (cont’d.)

• Weighted tree T
 – Weight assigned to edges in T
 – Weight denoted by $W(T)$: sum of weights of all the edges in T

• Spanning tree T of graph G
 – T is a subgraph of G such that $V(T) = V(G)$
Minimum Spanning Tree (cont’d.)

• Theorem 12-1
 – A graph G has a spanning tree if and only if G is connected
 – From this theorem, it follows that to determine a spanning tree of a graph
 • Graph must be connected
• Minimum (minimal) spanning tree of G
 – Spanning tree with the minimum weight
Minimum Spanning Tree (cont’d.)

• Two well-known algorithms for finding a minimum spanning tree of a graph
 – Prim’s algorithm
 • Builds the tree iteratively by adding edges until a minimum spanning tree obtained
 – Kruskal’s algorithm
Minimum Spanning Tree (cont’d.)

• General form of Prim’s algorithm

1. Set $V(T) = \{\text{source}\}$
2. Set $E(T) = \text{empty}$
3. for $i = 1$ to n
 3.1. $\text{minWeight} = \text{infinity}$;
 3.2. for $j = 1$ to n
 if v_j is in $V(T)$
 for $k = 1$ to n
 if v_k is not in T and $\text{weight}[v_j, v_k] < \text{minWeight}$

 \[
 \begin{align*}
 \text{endVertex} &= v_k; \\
 \text{edge} &= (v_j, v_k); \\
 \text{minWeight} &= \text{weight}[v_j, v_k]; \\
 \end{align*}
 \]
 end
 end
 end
3.3. $V(T) = V(T) \cup \{\text{endVertex}\}$;
3.4. $E(T) = E(T) \cup \{\text{edge}\}$;

FIGURE 12-16 Weighted graph G
Minimum Spanning Tree (cont’d.)

• See code on page 710
 - class msTreeType defines spanning tree as an ADT

• See code on page 712
 - C++ function minimumSpanning implementing Prim’s algorithm
 - Prim’s algorithm given in this section: $O(n^3)$
 • Possible to design Prim’s algorithm order $O(n^2)$

• See function printTreeAndWeight code
• See constructor and destructor code
FIGURE 12-17 Graph G, $V(T)$, $E(T)$, and N after Steps 1 and 2 execute
Topological Order

• Topological ordering of $V(G)$
 – Linear ordering $v_{i1}, v_{i2}, \ldots, v_{in}$ of the vertices such that
 • If v_{ij} is a predecessor of v_{ik}, $j \neq k$, $1 \leq j \leq n$, $1 \leq k \leq n$
 • Then v_{ij} precedes v_{ik}, that is, $j < k$ in this linear ordering

• Algorithm topological order
 – Outputs directed graph vertices in topological order
 – Assume graph has no cycles
 • There exists a vertex v in G such that v has no successor
 • There exists a vertex u in G such that u has no predecessor
Topological Order (cont’d.)

• Topological sort algorithm
 – Implemented with the depth first traversal or the breadth first traversal

• Extend `class graphType` definition (using inheritance)
 – Implement breadth first topological ordering algorithm
 • Called `class topologicalOrderType`
 – See code on pages 714-715
 • Illustrating class including functions to implement the topological ordering algorithm
Breadth First Topological Ordering

• General algorithm

1. Create the array predCount and initialize it so that $\text{predCount}[i]$ is the number of predecessors of the vertex v_i.
2. Initialize the queue, say queue, to all those vertices v_k so that $\text{predCount}[k]$ is 0. (Clearly, queue is not empty because the graph has no cycles.)
3. while the queue is not empty
 3.1. Remove the front element, u, of the queue.
 3.2. Put u in the next available position, say $\text{topologicalOrder[topIndex]}$, and increment topIndex.
 3.3. For all the immediate successors w of u,
 3.3.1. Decrement the predecessor count of w by 1.
 3.3.2. if the predecessor count of w is 0, add w to queue.
Breadth First Topological Ordering (cont’d.)

- Breadth First Topological order
 - 0 9 1 7 2 5 4 6 3 8 10

FIGURE 12-18 Arrays `predCount`, `topologicalOrder`, and `queue` after Steps 1 and 2 execute

FIGURE 12-19 Arrays `predCount`, `topologicalOrder`, and `queue` after the first iteration of Step 3
FIGURE 12-20 Arrays predCount, topologicalOrder, and queue after the second iteration of Step 3

FIGURE 12-21 Arrays predCount, topologicalOrder, and queue after the third iteration of Step 3
Breadth First Topological Ordering (cont’d.)

- See code on pages 718-719
 - Function implementing breadth first topological ordering algorithm

![FIGURE 12-22 Arrays predCount, topologicalOrder, and queue after Step 3 executes](image)
Euler Circuits

• Euler’s solution to Königsberg bridge problem
 – Reduces problem to finding circuit in the graph

• Circuit
 – Path of nonzero length
 • From a vertex u to u with no repeated edges

• Euler circuit
 – Circuit in a graph including all the edges of the graph

• Eulerian graph G
 – If either G is a trivial graph or G has an Euler circuit
Euler Circuits (cont’d.)

• Graph of Figure 12-24: Euler circuit

FIGURE 12-23 A graph with all vertices of odd degree

FIGURE 12-24 A graph with all vertices of even degree
Euler Circuits (cont’d.)

• Theorem 12-2
 – If a connected graph G is Eulerian, then every vertex of G has even degree

• Theorem 12-3
 – Let G be a connected graph such that every vertex of G is of even degree; then, G has an Euler circuit

FIGURE 12-25 Graph of the Königsberg bridge problem with two additional bridges
Euler Circuits (cont’d.)

• Fleury’s Algorithm

Step 1. Choose a vertex v as the starting vertex for the circuit and choose an edge e with v as one of the end vertices.

Step 2. If the other end vertex u of the edge e is also v, go to Step 3. Otherwise, choose an edge e_1 different from e with u as one of the end vertices. If the other vertex u_1 of e_1 is v, go to Step 3; otherwise, choose an edge e_2 different from e and e_1 with u_1 as one of the end vertices and repeat Step 2.

Step 3. If the circuit T_1 obtained in Step 2 contains all the edges, then stop. Otherwise, choose an edge e_j different from the edges of T_1 such that one of the end vertices of e_j, say, w is a member of the circuit T_1.

Step 4. Construct a circuit T_2 with starting vertex w, as in Steps 1 and 2, such that all the edges of T_2 are different from the edges in the circuit T_1.

Step 5. Construct the circuit T_3 by inserting the circuit T_2 at w of the circuit T_1. Now go to Step 3 and repeat Step 3 with the circuit T_3.
Euler Circuits (cont’d.)

• Fleury’s Algorithm (cont’d.)

FIGURE 12-26 A graph with all vertices of even degree
Summary

• Many types of graphs
 – Directed, undirected, subgraph, weighted
• Graph theory borrows set theory notation
• Graph representation in memory
 – Adjacency matrices, adjacency lists
• Graph traversal
 – Depth first, breadth first
• Shortest path algorithm
• Prim’s algorithm
• Euler circuit