Binary Search Trees

• Data in each node
 – Larger than the data in its left child
 – Smaller than the data in its right child

FIGURE 11-6 Arbitrary binary tree

FIGURE 11-7 Binary search tree
Binary Search Trees (cont’d.)

- **class bSearchTreeType**
 - Illustrates basic operations to implement a binary search tree
 - See code on page 618
- **Function** search
- **Function** insert
- **Function** delete
Binary Search Tree: Analysis

- Worst case
 - T: linear
 - Successful case
 - Algorithm makes $(n + 1) / 2$ key comparisons (average)
 - Unsuccessful case: makes n comparisons

FIGURE 11-10 Linear binary trees
Binary Search Tree: Analysis (cont’d.)

• Average-case behavior
 – Successful case
 • Search would end at a node
 • \(n \) items exist, providing \(n! \) possible orderings of the keys
 – Number of comparisons required to determine whether \(x \) is in \(T \)
 • One more than the number of comparisons required to insert \(x \) in \(T \)
 – Number of comparisons required to insert \(x \) in \(T \)
 • Same as number of comparisons made in the unsuccessful search reflecting that \(x \) is not in \(T \)
Binary Search Tree: Analysis (cont’d.)

\[S(n) = 1 + \frac{U(0) + U(1) + \ldots + U(n-1)}{n} \]
\[\text{Equation 11-1} \]

It is also known that

\[S(n) = \left(1 + \frac{1}{n}\right) U(n) - 3 \]
\[\text{Equation 11-2} \]

Solving Equations (11-1) and (11-2), it can be shown that \(U(n) \approx 2.77\log_2 n \) and \(S(n) \approx 1.39\log_2 n \).
Binary Search Tree: Analysis (cont’d.)

• Theorem: let T be a binary search tree with n nodes, where $n > 0$
 – The average number of nodes visited in a search of T is approximately $1.39 \log_2 n = O(\log_2 n)$
 – The number of key comparisons is approximately $2.77 \log_2 n = O(\log_2 n)$
AVL (Height-Balanced) Trees

• AVL tree (height-balanced tree)
 - Resulting binary search is nearly balanced

• Perfectly balanced binary tree
 - Heights of left and right subtrees of the root: equal
 - Left and right subtrees of the root are perfectly balanced binary trees

FIGURE 11-12 Perfectly balanced binary tree
AVL (Height-Balanced) Trees (cont’d.)

• An AVL tree (or height-balanced tree) is a binary search tree such that
 – The heights of the left and right subtrees of the root differ by at most one
 – The left and right subtrees of the root are AVL trees

FIGURE 11-13 AVL and non-AVL trees
Proposition: Let T be an AVL tree and x be a node in T. Then $|x_h - x_l| \leq 1$, where $|x_h - x_l|$ denotes the absolute value of $x_h - x_l$.

Let x be a node in the AVL tree T.

1. If $x_l > x_h$, we say that x is **left high**. In this case, $x_l = x_h + 1$.
2. If $x_l = x_h$, we say that x is **equal high**.
3. If $x_h > x_l$, we say that x is **right high**. In this case, $x_h = x_l + 1$.

Definition: The **balance factor** of x, written $bf(x)$, is defined by $bf(x) = x_h - x_l$.

Let x be a node in the AVL tree T. Then,

1. If x is left high, $bf(x) = -1$.
2. If x is equal high, $bf(x) = 0$.
3. If x is right high, $bf(x) = 1$.

Definition: Let x be a node in a binary tree. We say that the node x **violates the balance criteria** if $|x_h - x_l| > 1$, that is, the heights of the left and right subtrees of x differ by more than 1.
Binary Search Trees (cont’d.)

• A binary search tree, T, is either empty or the following is true:
 – T has a special node called the root node
 – T has two sets of nodes, L_T and R_T, called the left subtree and right subtree of T, respectively
 – The key in the root node is larger than every key in the left subtree and smaller than every key in the right subtree
 – L_T and R_T are binary search trees
AVL (Height-Balanced) Trees (cont’d.)

- Definition of a node in the AVL tree

```cpp
template<class elemType>
struct AVLNNode
{
    elemType info;
    int bfactor;  //balance factor
    AVLNode<elemType> *llink;
    AVLNode<elemType> *rlink;
};
```
AVL (Height-Balanced) Trees (cont’d.)

- AVL binary search tree search algorithm
 - Same as for a binary search tree
 - Other operations on AVL trees
 - Implemented exactly the same way as binary trees
 - Item insertion and deletion operations on AVL trees
 - Somewhat different from binary search trees operations
Insertion

• First search the tree and find the place where the new item is to be inserted
 – Can search using algorithm similar to search algorithm designed for binary search trees
 – If the item is already in tree
 • Search ends at a nonempty subtree
 • Duplicates are not allowed
 – If item is not in AVL tree
 • Search ends at an empty subtree; insert the item there
• After inserting new item in the tree
 – Resulting tree might not be an AVL tree
Insertion (cont’d.)

FIGURE 11-14 AVL tree before and after inserting 90

FIGURE 11-15 AVL tree before and after inserting 75
Insertion (cont’d.)

FIGURE 11-16 AVL tree before and after inserting 95

FIGURE 11-17 AVL tree before and after inserting 88
AVL Tree Rotations

• Rotating tree: reconstruction procedure
• Left rotation and right rotation
• Suppose that the rotation occurs at node x
 – Left rotation: certain nodes from the right subtree of x move to its left subtree; the root of the right subtree of x becomes the new root of the reconstructed subtree
 – Right rotation at x: certain nodes from the left subtree of x move to its right subtree; the root of the left subtree of x becomes the new root of the reconstructed subtree
FIGURE 11-18 Right rotation at b

FIGURE 11-19 Left rotation at a
FIGURE 11-20 Double rotation: First rotate left at a and then right at c

FIGURE 11-21 Left rotation at a followed by a right rotation at c
AVL Tree Rotations (cont’d.)

FIGURE 11-22 Double rotation: First rotate right at c, then rotate left at a
template <class elemT>
void rotateToLeft(AVLNode<elemT> * &root) {
 AVLNode<elemT> *p; // pointer to the root of
 // the right subtree of root
 if (root == NULL)
 cerr << "Error in the tree" << endl;
 else if (root->rlink == NULL)
 cerr << "Error in the tree:"
 << " No right subtree to rotate." << endl;
 else
 {
 p = root->rlink;
 root->rlink = p->llink; // the left subtree of p becomes
 // the right subtree of root
 p->llink = root;
 root = p; // make p the new root node
 }
} // rotateLeft

template <class elemT>
void rotateToRight(AVLNode<elemT> * &root) {
 AVLNode<elemT> *p; // pointer to the root of
 // the left subtree of root
 if (root == NULL)
 cerr << "Error in the tree" << endl;
 else if (root->llink == NULL)
 cerr << "Error in the tree:"
 << " No left subtree to rotate." << endl;
 else
 {
 p = root->llink;
 root->llink = p->rlink; // the right subtree of p becomes
 // the left subtree of root
 p->rlink = root;
 root = p; // make p the new root node
 }
} // end rotateRight
template <class elemT>
void balanceFromLeft(AVLNode<elemT>* &root)
{
 AVLNode<elemT> *p;
 AVLNode<elemT> *w;

 p = root->llink; // p points to the left subtree of root

 switch (p->bfactor)
 {
 case -1:
 root->bfactor = 0;
 p->bfactor = 0;
 rotateToRight(root);
 break;

 case 0:
 cerr << "Error: Cannot balance from the left." << endl;
 break;

 case 1:
 w = p->rlink;
 switch (w->bfactor) // adjust the balance factors
 {
 case -1:
 root->bfactor = 1;
 p->bfactor = 0;
 break;

 case 0:
 root->bfactor = 0;
 p->bfactor = 0;
 break;

 case 1:
 root->bfactor = 0;
 p->bfactor = -1;
 } // end switch

 w->bfactor = 0;
 rotateToLeft(p);
 root->llink = p;
 rotateToRight(root);
 } // end switch;
} // end balanceFromLeft
template <class elemT>
void balanceFromRight(AVLNode<elemT>* &root)
{
 AVLNode<elemT> *p;
 AVLNode<elemT> *w;
 p = root->rlink; // p points to the left subtree of root

 switch (p->bfactor)
 {
 case -1:
 w = p->llink;
 switch (w->bfactor) // adjust the balance factors
 {
 case -1:
 root->bfactor = 0;
 p->bfactor = 1;
 break;
 case 0:
 root->bfactor = 0;
 p->bfactor = 0;
 break;
 case 1:
 root->bfactor = -1;
 p->bfactor = 0;
 } // end switch

 w->bfactor = 0;
 rotateToRight(p);
 root->rlink = p;
 rotateToLeft(root);
 break;

 case 0:
 cerr << "Error: Cannot balance from the left." << endl;
 break;

 case 1:
 root->bfactor = 0;
 p->bfactor = 0;
 rotateToLeft(root);
 } // end switch
} // end balanceFromRight
FIGURE 11-23 Item insertion into an initially empty AVL tree