Math 1210 Test 1. Spring 2016

1. Evaluate the following expressions. Simplify compound fractions. You do not have to rationalize denominators. If the value is undefined, say so.

$$
\begin{aligned}
\tan (\pi / 3) & = \\
\sin (5 \pi / 4) & = \\
\cos (\pi) & = \\
\sec (2 \pi / 3) & = \\
\tan (7 \pi / 6) & = \\
\csc (\pi / 6) & = \\
\cos (3 \pi / 4) & = \\
\sin (3 \pi / 2) & = \\
\cot (5 \pi / 4) & = \\
\sec (5 \pi / 6) & = \\
\sin (0) & =
\end{aligned}
$$

2. Find the length L of the arc and the area A of the sector shown in the illustration.

3. Convert the angle measures from degrees to radians (simplify your answers):
(a) 75°
(b) 210°
4. Convert the angle measures from radians to degrees:
(a) $5 \pi / 3$
(b) $\pi / 2$
5. Give the values of the six trigonometric functions for the angle θ shown in the illustration. Simplify compound fractions. You do not have to rationalize denominators.

6. If $\sin \theta=1 / 4$ and $\cos \theta<0$, what are the values of the other five trigonometric functions for θ ?
7. Evaluate the following expressions.

$$
\begin{aligned}
& \sin ^{2}\left(40^{\circ}\right)+\cos ^{2}\left(40^{\circ}\right)= \\
& \sec \left(15^{\circ}\right) \cdot \cos \left(15^{\circ}\right)= \\
& \cos (-\pi / 3)= \\
& 2 \sin (\pi / 6)= \\
& \sin (2 \cdot \pi / 6)= \\
& \cos \left(\frac{\pi}{6}+\frac{\pi}{2}\right)= \\
& \cos \left(\frac{\pi}{6}\right)+\cos \left(\frac{\pi}{2}\right)= \\
& \csc (11 \pi / 4)=
\end{aligned}
$$

For this portion of the test, you may use a calculator.
8. (a) Convert 14.7523° to degree-minutesseconds (DMS) notation.
(b) Convert $123^{\circ} 37^{\prime} 16^{\prime \prime}$ to a decimal degree. Use four decimal places of accuracy.
9. When the sun is 20° above the horizon, a tree casts an 80 foot long shadow. How tall is the tree?
10. When viewed from a distance of 200 feet, the angle of elevation to the bottom of a billboard is 11°, and to the top of the billboard is 15°. How tall is the billboard (not including the support poles it is built upon)?

SOLUTIONS

1.

$$
\begin{aligned}
\tan (\pi / 3) & =\sqrt{3} \\
\sin (5 \pi / 4) & =-\sqrt{2} / 2 \\
\cos (\pi) & =-1 \\
\sec (2 \pi / 3) & =-2 \\
\tan (7 \pi / 6) & =1 / \sqrt{3} \\
\csc (\pi / 6) & =2 \\
\cos (3 \pi / 4) & =-\sqrt{2} / 2 \\
\sin (3 \pi / 2) & =-1 \\
\cot (5 \pi / 4) & =1 \\
\sec (5 \pi / 6) & =-2 / \sqrt{3} \\
\sin (0) & =0
\end{aligned}
$$

2. Convert to radians

$$
\begin{gathered}
\theta=50^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{5 \pi}{18} . \\
L=r \theta=7 \cdot \frac{5 \pi}{18}=\frac{35 \pi}{18} \mathrm{~cm} . \\
A=\frac{1}{2} r^{2} \theta=\frac{1}{2} \cdot 7^{2} \cdot \frac{5 \pi}{18}=\frac{245 \pi}{36} \mathrm{~cm}^{2} .
\end{gathered}
$$

3.

$$
\begin{aligned}
75^{\circ} & =\frac{75 \pi}{180}=\frac{5 \pi}{12} \\
210^{\circ} & =\frac{210 \pi}{180}=\frac{7 \pi}{6}
\end{aligned}
$$

4.

$$
\begin{aligned}
\frac{5 \pi}{3} \cdot \frac{180^{\circ}}{\pi} & =300^{\circ} \\
\frac{\pi}{2} \cdot \frac{180^{\circ}}{\pi} & =90^{\circ}
\end{aligned}
$$

5. The length of the hypotenuse is $\sqrt{2^{2}+3^{2}}=$
$\sqrt{13}$. So

$$
\begin{aligned}
\sin \theta & =2 / \sqrt{13} \\
\cos \theta & =2 / \sqrt{13} \\
\tan \theta & =2 / 3 \\
\csc \theta & =\sqrt{13} / 2 \\
\sec \theta & =\sqrt{13} / 3 \\
\cot \theta & =3 / 2
\end{aligned}
$$

6. Use the Pythagorean identity:

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
1 / 16+\cos ^{2} \theta=1 \\
\cos ^{2} \theta=15 / 16 \\
\cos \theta=-\sqrt{15} / 4
\end{gathered}
$$

Then

$$
\begin{aligned}
& \csc \theta=1 / \sin \theta=4 \\
& \sec \theta=1 / \cos \theta=-4 \sqrt{15} \\
& \tan \theta=\sin \theta / \cos \theta=-1 / \sqrt{15} \\
& \cot \theta=1 / \tan \theta=-\sqrt{5}
\end{aligned}
$$

7.

$$
\begin{aligned}
& \sin ^{2}\left(40^{\circ}\right)+\cos ^{2}\left(40^{\circ}\right)=1 \\
& \sec \left(15^{\circ}\right) \cdot \cos \left(15^{\circ}\right)=\left(1 / \cos 15^{\circ}\right) \cdot \cos 15^{\circ}=1 \\
& \cos (-\pi / 3)=\cos (\pi / 3)=1 / 2 \\
& 2 \sin (\pi / 6)=2 \cdot(1 / 2)=1 \\
& \sin (2 \cdot \pi / 6)=\sin (\pi / 3)=\sqrt{3} / 2 \\
& \cos \left(\frac{\pi}{6}+\frac{\pi}{2}\right)=\cos (2 \pi / 3)=-1 / 2 \\
& \cos \left(\frac{\pi}{6}\right)+\cos \left(\frac{\pi}{2}\right)=\sqrt{3} / 2+0=\sqrt{3} / 2 \\
& \csc (11 \pi / 4)=\csc (3 \pi / 4)=\sqrt{2}
\end{aligned}
$$

8. (a) $14^{\circ} 45^{\prime} 8^{\prime \prime}$ (b) 123.6211°
9. If x is the height of the tree, then

$$
\tan 20^{\circ}=\frac{x}{80} \Longrightarrow x=80 \tan \left(20^{\circ}\right)=29.1 \mathrm{ft}
$$

10. x : the distance from the ground to the top of the billboard

$$
\tan 15^{\circ}=\frac{x}{200} \Longrightarrow x=200 \tan 15=53.6
$$

y : the distance from the ground to the bottom of the billboard

$$
\tan 11^{\circ}=\frac{y}{200} \Longrightarrow y=200 \tan 11=38.9
$$

The height of the billboard is $y-x=14.7 \mathrm{ft}$.

