## Math 1210 Test 2. Spring 2016

1. Evaluate the following expressions. Simplify compound fractions. You do not have to rationalize denominators. If the value is undefined, say so.

$$
\begin{aligned}
\sin (\pi / 3) & = \\
\cos (5 \pi / 4) & = \\
\sec (7 \pi / 6) & = \\
\tan (\pi) & = \\
\cot (\pi / 6) & = \\
\csc (3 \pi / 4) & =
\end{aligned}
$$

2. Evaluate the following expressions.

$$
\begin{aligned}
& \cos \left(\frac{\pi}{6}+\frac{\pi}{3}\right)= \\
& \cos \left(\frac{\pi}{6}\right)+\cos \left(\frac{\pi}{3}\right)= \\
& \sin \left(2 \cdot \frac{\pi}{6}\right)= \\
& 2 \sin \left(\frac{\pi}{6}\right)=
\end{aligned}
$$

3. Graph the following functions. Be sure to draw at least one complete period, and to label points.
(a) $f(x)=2+2 \cos x$
(b) $g(x)=-3 \sin x$
(c) $f(x)=-2 \sec x$
(d) $g(x)=\tan (x / 2)$
4. Identify the amplitude, period, and phase shift of the following functions. Then use the information to graph them.
(a) $f(x)=3 \cos (2 x)$
(b) $\quad f(x)=2 \sin \left(\frac{\pi}{2} x-\frac{\pi}{4}\right)$
5. Find the exact value of the composition. If there is no value, say "not defined".
(a) $\sin \left(\sin ^{-1}(3)\right)$
(b) $\quad \cos \left(\cos ^{-1}(1 / 2)\right)$
(c) $\tan \left(\tan ^{-1}(2 \pi)\right)$
(d) $\cos ^{-1}(\cos (2 \pi / 3))$
(e) $\sin ^{-1}(\sin (\pi / 4))$
(f) $\tan ^{-1}(\tan (3 \pi / 4))$
6. Find the exact value of the composition.
(a) $\sin \left(\cos ^{-1}(\sqrt{3} / 2)\right)$
(b) $\cos \left(\sin ^{-1}(1)\right)$
(c) $\sin \left(\tan ^{-1}(-\sqrt{3})\right)$
(d) $\sin \left(\cos ^{-1}(1 / 3)\right)$
(e) $\sec \left(\tan ^{-1}(2)\right)$
7. Write the trigonometric expression as an algebraic expression in $u$.
(a) $\sin \left(\tan ^{-1}(u)\right)$
(b) $\sec \left(\sin ^{-1}(u)\right)$

## SOLUTIONS

1. 

$$
\begin{aligned}
\sin (\pi / 3) & =\sqrt{3} / 2 \\
\cos (5 \pi / 4) & =-\sqrt{2} / 2 \\
\sec (7 \pi / 6) & =-2 / \sqrt{3} \\
\tan (\pi) & =0 \\
\cot (\pi / 6) & =\sqrt{3} \\
\csc (3 \pi / 4) & =\sqrt{2}
\end{aligned}
$$

2. 

$\cos \left(\frac{\pi}{6}+\frac{\pi}{3}\right)=\cos (\pi / 2)=0$
$\cos \left(\frac{\pi}{6}\right)+\cos \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}+\frac{1}{2}=\frac{1+\sqrt{3}}{2}$
$\sin \left(2 \cdot \frac{\pi}{6}\right)=\sin (\pi / 3)=\sqrt{3} / 2$
$2 \sin \left(\frac{\pi}{6}\right)=2(1 / 2)=1$
3.

(a)

(b)

(c)

(d)
4. (a) Amplitude: 3, Period: $\pi$, Phase shift: 0

(a)
(b) Amplitude: 2, Period: 4, Phase shift: $1 / 2$

(b)
5. (a) $\sin \left(\sin ^{-1}(3)\right)=$ not defined
(b) $\quad \cos \left(\cos ^{-1}(1 / 2)\right)=1 / 2$
(c) $\tan \left(\tan ^{-1}(2 \pi)\right)=2 \pi$
(d) $\cos ^{-1}(\cos (2 \pi / 3))=2 \pi / 3$
(e) $\sin ^{-1}(\sin (\pi / 4))=\pi / 4$
(f) $\tan ^{-1}(\tan (3 \pi / 4))=-\pi / 4$
6. (a) $\sin \left(\cos ^{-1}(\sqrt{3} / 2)\right)=\sin (\pi / 6)=1 / 2$
(b) $\quad \cos \left(\sin ^{-1}(1)\right)=\cos (\pi / 2)=0$
(c) $\sin \left(\tan ^{-1}(-\sqrt{3})\right)=\sin (-\pi / 3)=-\sqrt{3} / 2$
(d) Draw a right triangle with adjacent side 1 and hypotenuse 3 . The opposite side is $\sqrt{8}$ so

$$
\sin \left(\cos ^{-1}(1 / 3)\right)=\sqrt{8} / 3
$$

(e) Draw a right triangle with opposite side 2 and adjacent side 1 . The hypotenuse is $\sqrt{5}$ so

$$
\sec \left(\tan ^{-1}(2)\right)=\sqrt{5}
$$

7. (a) Draw a right triangle with opposite side $u$, adjacent side 1 . The hypotenuse is $\sqrt{1+u^{2}}$, so

$$
\sin \left(\tan ^{-1}(u)\right)=\frac{u}{\sqrt{1+u^{2}}}
$$

(b) Draw a right triangle with opposite side $u$ and hypotenuse 1 . The adjacent side is $\sqrt{1-u^{2}}$, so

$$
\sec \left(\sin ^{-1}(u)\right)=\frac{1}{\sqrt{1-u^{2}}}
$$

