Math 1210 Test 1. Spring 2015

1. Evaluate the following trigonometric expressions. Give exact answers and simplify them.

$$
\begin{aligned}
\sin (\pi / 3) & = \\
\cos (3 \pi / 4) & = \\
\tan (\pi) & = \\
\sec (2 \pi / 3) & = \\
\csc (5 \pi / 4) & = \\
\cot (5 \pi / 3) & = \\
\sin (11 \pi / 6) & = \\
\sec (\pi) & = \\
\tan (\pi / 3) & = \\
\sin (3 \pi / 2) & =
\end{aligned}
$$

2. Find the exact values of the six trigonometric functions of the angle θ shown in the triangle below. Simplify your answers and rationalize any denominators.

3. Suppose that $\cos \theta=3 / 4$ and $\tan \theta=$ $-\sqrt{7} / 3$. Find the exact values of the other four trigonometric functions.
4. (a) If $\tan \theta=1 / 3$, then

$$
\tan \theta+\tan (\theta+\pi)+\tan (\theta+2 \pi)=
$$

(b) If $\sec \theta=4$, then

$$
\cos (\theta-2 \pi)+\cos \theta+\cos (\theta+2 \pi)=
$$

(c) If $\cos \theta=0.7$, then

$$
\cos \theta+\cos (-\theta)=
$$

5. Use properties of trigonometric functions to evaluate the following expressions.

$$
\begin{aligned}
\sin (11 \pi / 3) & = \\
\cos (-2 \pi / 3) & = \\
\tan (\pi / 5)+\tan (-\pi / 5) & = \\
\csc \left(21^{\circ}\right) \cdot \sin \left(21^{\circ}\right) & = \\
\cot ^{2}(7)-\csc ^{2}(7) & = \\
\cos \left(2 \cdot 45^{\circ}\right) & = \\
2 \cdot \cos \left(45^{\circ}\right) & = \\
\sin (\pi / 3+\pi / 6) & = \\
\sin (\pi / 3)+\sin (\pi / 6) & =
\end{aligned}
$$

6. Convert 1.5 radians to degrees. Round your answer to the nearest degree.
7. (a) What is the length L of the arc shown in the illustration below? (b) What is the area A of the sector?

8. When the angle of elevation of sun is 55°, a tree casts a 35 foot long shadow. How tall is the tree?
9. When you look out the window of your third floor office, you can see a tree. The angle of depression to the bottom of the tree is 25°. The angle of elevation to the top of the tree is 35°. If the tree is sixty feet from the building, how tall is it?

10.

$$
\begin{aligned}
\sin (\pi / 3) & =\sqrt{3} / 2 \\
\cos (3 \pi / 4) & =-\sqrt{2} / 2 \\
\tan (\pi) & =0 \\
\sec (2 \pi / 3) & =-2 \\
\csc (5 \pi / 4) & =-\sqrt{2} \\
\cot (5 \pi / 3) & =-\sqrt{3} / 3 \\
\sin (11 \pi / 6) & =-1 / 2 \\
\sec (\pi) & =-1 \\
\tan (\pi / 3) & =\sqrt{3} \\
\sin (3 \pi / 2) & =-1
\end{aligned}
$$

2. Let a be the length of the third side of the triangle. Then

$$
\begin{gathered}
a^{2}+5^{2}=8^{2} \\
a^{2}+25=64 \\
a^{2}=39 \\
a=\sqrt{39}
\end{gathered}
$$

so

$$
\begin{aligned}
& \sin \theta=5 / 8 \\
& \cos \theta=\sqrt{39} / 8 \\
& \tan \theta=5 \sqrt{39} / 39 \\
& \csc \theta=8 / 5 \\
& \sec \theta=8 \sqrt{39} / 39 \\
& \cot \theta=\sqrt{39} / 5
\end{aligned}
$$

3. First, we know that $\sin \theta / \cos \theta=\tan \theta$, so

$$
\frac{\sin \theta}{3 / 4}=-\frac{\sqrt{7}}{3} \Longrightarrow \sin \theta=-\frac{\sqrt{7}}{4} .
$$

Then we can calculate

$$
\begin{gathered}
\csc \theta=\frac{1}{\sin \theta}=-\frac{4}{\sqrt{7}}=-\frac{4 \sqrt{7}}{7}, \\
\sec \theta=\frac{1}{\cos \theta}=\frac{4}{3}
\end{gathered}
$$

and finally

$$
\cot \theta=\frac{1}{\tan \theta}=-\frac{3}{\sqrt{7}}=-\frac{3 \sqrt{7}}{7}
$$

4. (a) The tangent function is π periodic, so $\tan \theta+\tan (\theta+\pi)+\tan (\theta+2 \pi)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$.
(b) If $\sec \theta=4$, then $\cos \theta=1 / 4$. Since the cosine function is 2π periodic,
$\cos (\theta-2 \pi)+\cos \theta+\cos (\theta+2 \pi)=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}$.
(c) Cosine is an even function, so if $\cos \theta=0.7$, then

$$
\cos \theta+\cos (-\theta)=0.7+0.7=1.4
$$

5.

$$
\left.\left.\begin{array}{l}
\sin (11 \pi / 3)=\sin (5 \pi / 3)=-\sqrt{3} / 2 \\
\cos (-2 \pi / 3)=\cos (2 \pi / 3)=-1 / 2 \\
\tan (\pi / 5)+\tan (-\pi / 5)=\tan (\pi / 5)-\tan (\pi / 5) \\
=0
\end{array}\right] \begin{array}{rl}
\csc \left(21^{\circ}\right) \cdot \sin \left(21^{\circ}\right)=\frac{1}{\sin \left(21^{\circ}\right)} \cdot \sin \left(21^{\circ}\right)=1
\end{array} \begin{array}{r}
\cot ^{2}(7)-\csc ^{2}(7)=\cot ^{2}(7)-\left(1+\cot ^{2}(7)\right)=1
\end{array} \begin{array}{r}
\cos \left(2 \cdot 45^{\circ}\right)=\cos \left(90^{\circ}\right)=0
\end{array}\right] \begin{array}{r}
2 \cdot \cos \left(45^{\circ}\right)=2(\sqrt{2} / 2)=\sqrt{2} \\
\sin (\pi / 3+\pi / 6)=\sin (\pi / 2)=1 \\
\sin (\pi / 3)+\sin (\pi / 6)=\frac{\sqrt{3}}{2}+\frac{1}{2}=\frac{\sqrt{3}+1}{2}
\end{array}
$$

6.

$$
1.5 \times \frac{180^{\circ}}{\pi} \approx 86^{\circ}
$$

7. Convert 80° to radians:

$$
80^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{4 \pi}{9}
$$

Then

$$
L=r \theta=5 \cdot \frac{4 \pi}{9}=\frac{20 \pi}{9} \approx 6.98
$$

and

$$
A=\frac{1}{2} r^{2} \theta=\frac{1}{2} 5^{2} \cdot \frac{4 \pi}{9}=\frac{50 \pi}{9} \approx 17.45
$$

8. Let x be the height of the tree. Then

$$
\begin{gathered}
\tan 55^{\circ}=x / 35 \\
x=35 \tan 55^{\circ} \\
x \approx 50 \text { feet }
\end{gathered}
$$

9. The horizontal line divides the picture into two right triangles. Let x be the length of the side opposite the 35° angle, and y be the length of the side opposite the 25° angle. Then

$$
\tan 35^{\circ}=\frac{x}{60} \Longrightarrow x=60 \tan 35^{\circ} \approx 42
$$

and

$$
\tan 25^{\circ}=\frac{y}{60} \Longrightarrow y=60 \tan 25^{\circ} \approx 28
$$

The height of the tree is then $42+28=70$ feet.

