## Math 2050 Test 4. Spring 2016

1. Find the length of the curve $y=\ln (\sec x)$, $0 \leq x \leq \pi / 3$.
2. Set up (and simplify if possible) an integral to compute the area of the surface formed by revolving $y=\cos x, 0 \leq x \leq \pi$ around the $x$ axis. You do not have to evaluate the integral.
3. (a) Write parametric equations for the line that passes through the point $(2,2)$ and $(3,5)$.
(b) Write parametric equation for the circle that is centered at $(3,2)$ and has radius 4.
4. A particle is moving along a path given by the parametric equations:

$$
x(t)=\ln \left(t^{3}\right), \quad y(t)=\ln (t), \quad(t>0)
$$

(a) De-parametrize the path (write and equation that relates $x$ directly to $y$ ).
(b) Sketch its graph, and draw an arrow on it to indicate which direction the particle is moving.
5. The curve $x=\cos t, y=\sin t \cos t,(0 \leq$ $t<2 \pi)$ crosses through $(0,0)$ twice. Find the slopes of the tangent lines at those two crossings.
6. (a) The rectangular coordinates for a point are $(1, \sqrt{3})$. Find polar coordinates for it.
(b) Polar coordinates for a point are $(-2, \pi / 2)$. Find rectangular coordinates for it.
7. Write the polar equation $r=4 \sin \theta$ as a Cartesian equation. Graph it.
8. Sketch the graph of the polar curve $r=$
$1-\sin (\theta)$.
9. Sketch the graph of the polar curve $r=$ $3 \cos (2 \theta)$.
10. Set up an integral to calculate the area inside one loop of the petal curve $r=2 \cos (3 \theta)$. You do not have to evaluate the integral.
11. Set up an integral (or integrals) to find the area that lies inside the polar curve $r=3 \cos \theta$ but outside $r=2-\cos \theta$. You do not have to evaluate the integral.
12. A curve $\mathcal{C}$ is constructed as follows: starting from the origin $O$, rotate an angle $\theta$ and move in a straight line until intersecting the line $x=1$ at the point $Q$. Now travel horizontally to $P$ so that the distance from $P$ to $Q$ is the square of the distance from $O$ to $Q$. Parametrize, with parameter $\theta$, the curve $\mathcal{C}$.


## SOLUTIONS

1. Since $d y / d x=\tan x$,

$$
\begin{aligned}
L & =\int_{0}^{\pi / 3} \sqrt{1+\tan ^{2} x} d x \\
& =\int_{0}^{\pi / 3} \sec x d x \\
& =\left.\ln |\sec x+\tan x|\right|_{0} ^{\pi / 3} \\
& =\ln |2+\sqrt{3}|
\end{aligned}
$$

2. Since $d y / d x=-\sin x$,

$$
A=\int_{0}^{\pi} 2 \pi \cos x \sqrt{1+\sin ^{2} x} d x
$$

3. (a)

$$
\left\{\begin{array}{l}
x(t)=2+t \\
y(t)=2+3 t
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{l}
x(t)=3+4 \cos t \\
y(t)=2+4 \sin t
\end{array}\right.
$$

4. (a) Write $x=3 \ln t 3=y$, so $y=x / 3$.
(b)
5. When $x=y=0, t=\pi / 2$ or $t=3 \pi / 2$. Then

$$
m=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{-\sin ^{2} t+\cos ^{2} t}{-\sin t}
$$

At $t=\pi / 2, m=1$. At $t=3 \pi / 2, m=-1$.
6. (a) $r^{2}=1^{2}+(\sqrt{3})^{2} \Longrightarrow r=2$. $\tan \theta=$ $\sqrt{3} / 1 \Longrightarrow \theta=\pi / 3$. The coordinates are $(2, \pi / 3)$.
(b) $x=-2 \cos (\pi / 2)=0$ and $y=-2 \sin (\pi / 2)=$ -2 , so the coordinates are $(0,-2)$.
7.

$$
\begin{gathered}
r^{2}=4 r \sin \theta \\
x^{2}+y^{2}=4 y \\
x^{2}+y^{2}-4 y+4=4 \\
x^{2}+(y-2)^{2}=4
\end{gathered}
$$

It is a circle, with center $(0,2)$ and radius 2 .

8.

9.

10. $2 \cos (3 \theta)=0 \Longrightarrow 3 \theta= \pm \pi / 2 \Longrightarrow$ $\theta= \pm \pi / 6$, so one petal is traced out when $-\pi / 6 \leq \theta \leq \pi / 6$. Therefore

$$
A=\int_{-\pi / 6}^{\pi / 6} \frac{1}{2}(2 \cos (3 \theta))^{2} d \theta
$$

11. 



The two curves intersect when $3 \cos \theta=2-$ $\cos \theta \Longrightarrow \cos \theta=1 / 2 \Longrightarrow \theta=\pi / 3$ (there is also an intersection in the fourth quadrant that this calculation does not pick up). Then

$$
A=2 \int_{0}^{\pi / 3} \frac{1}{2}\left((3 \cos \theta)^{2}-(2-\cos \theta)^{2}\right) d \theta
$$

12. 

$$
\left\{\begin{array}{l}
x(\theta)=1+\sec ^{2} \theta \\
y(\theta)=\tan \theta
\end{array}\right.
$$

