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Axiom

Let’s start with some very basic things. This book is about plane geometry,
and in plane geometry you can’t get much more basic than points and
lines. So let’s start there. The first thing to realize is that both of these
things, points and lines, are abstractions. You will not find them in the
real world. Oh sure, there are point-like things out there– atoms might
be a good example. There are line-like things too– laser beams come to
mind. But these physical manifestations fall short of “true” points and
lines. Points and lines, in other words, are not things we can point to in
the real world. In a casual setting, that may not be a big deal. After all, the
whole of human experience requires us to deal with abstraction in a variety
of contexts on a daily basis. But to try to develop a precise mathematical
system from these abstractions– well, that is a little bit more problematic.
Consider the opening statements in Euclid’s Elements,

Definition 1. A point is that which has no part.
Definition 2. A line is breadthless length.

I have to admit, I do like those definitions. They are kind of poetic (at
least as poetic as mathematics is permitted to be). But let’s be honest–
how much information do they really convey? Euclid doesn’t define a
part, nor does he define breadth or length. Were he to define those terms,
they would be have to be described using other terms, which would in turn
need their own definition, and so on. It isn’t that Euclid’s definitions are
bad. It is that this is a hopeless situation. You can’t define everything.

Modern geometry takes an entirely different approach to the issue of
elementary definitions. In truth, I think it would be fair to say that modern
geometry dodges the question. But it does so in such an artful way that
you almost feel foolish for asking the question in the first place. Like
its classical counterpart, modern geometry is built upon a foundation of a
few basic terms, such as point and line. Unlike the classical approach, in
modern geometry no effort is made to define those basic terms. In fact,
they are called the undefineds of the system. Well, you may ask, what can
I do with terms that have no meaning? This is where the axioms of the
geometry come into play. All the behavior, properties and interactions of
the undefined terms are described in a set of statements called the axioms
of the system. No effort is made to argue for the truth of the axioms.
How could you do so?– they are statements about terms which themselves
have no meaning. As long as the axioms do not contradict one another,
they will define some kind of geometry. It may be quite different from
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the Euclidean geometry to which we are accustomed, but it is a geometry
none the less.

Model

Okay, you say, I see what you are saying, but I have done geometry before,
and I really like those pictures and diagrams. They help me to understand
what is going on. Well, I agree completely! Sure, a bad diagram can be
misleading. Even a good diagram can be misleading at times. On the
whole, though, I believe that diagrams lead more often than they mislead.
The very thesis of this book is that illustrations are an essential part of the
subject.

In that case, what is the relationship between illustrations and axioms?
First of all, we have to accept that the illustrations are imperfect. Lines
printed on paper have a thickness to them. They are finite in length. Points
also have a length and width– otherwise we couldn’t see them. That’s just
the way it has to be. But really, I don’t think that is such a big deal. I think
the focus on those imperfections tends to mask an even more important
issue. And that is that these illustrations represent only one manifestation
of the axioms. Points and lines as we depict them are one way to interpret
the undefined terms of point and line. This intepretation happens to be
consistent with all of the standard Euclidean axioms. But there may be a
completely different interpretation of the undefineds which also satisfies
the Euclidean axioms. Any such interpretation is called a model for the
geometry. A geometry may have many models, and from a theoretical
point of view, no one model is more right than any other. It is important,
then, to prove facts about the geometry itself, and not peculiarities of one
particular model.
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Fano’s Geometry

To see how axiomatic geometry works without having our Euclidean intu-
ition getting in the way, let’s consider a decidely non-Euclidean geometry
called Fano’s geometry (named after the Italian algebraic geometer Gino
Fano). In Fano’s geometry there are three undefined terms, point, line,
and on. Five axioms govern these undefined terms.

Ax 1. There exists at least one line.
Ax 2. There are exactly three points on each line.
Ax 3. Not all points are on the same line.
Ax 4. There is exactly one line on any two distinct points.
Ax 5. There is at least one point on any two distinct lines.

Fano’s geometry is a simple example of what is called a finite projective
geometry. It is projective because, by the fifth axiom, all lines intersect
one another (lines cannot be parallel). It is finite because, as we will see,
it only contains finitely many points and lines. To get a sense of how an
axiomatic proof works, let’s count the points and lines in Fano’s geometry.

THM
Fano’s geometry has exactly seven points and seven lines.

Proof. I have written this proof in the style I was taught in high school
geometry, with a clear separation of each statement and its justification
(in this case, an axiom). It is my understanding that geometry is rarely
taught this way now. A shame, I think, since I think that this is a good
way to introduce the idea of logical thought and proof.

1
1
2
3
4

2 3 4
PT

LN Ax 1 There is a line �1.
Ax 2 On �1, there are three points.

Label them p1, p2 and p3.
Ax 3 There is a fourth point p4 that

is not on �1.
Ax 4 There are lines: �2 on p1 and

p4, �3 on p2 and p4, and �4
on p3 and p4. Each of these
lines is distinct.

1
This chart tracks the incidences of 
points on lines through the proof.
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1
1
2
3
4
5
6
7

2 3 4
PT

LN 1
1
2
3
4
5
6
7

2 3 4 5
PT

LN

1
1
2
3
4
5
6
7

2 3 4 5 6
PT

LN 1
1
2
3
4
5
6
7

2 3 4 5 6 7
PT

LN

Ax 4 There must be a line �5 on
p1 and p6.

Ax 2 The line �5 must have one
more point on it.

Ax 4 That point cannot be either
p3 or p4.

Ax 5 For �5 and �4 to intersect, the
third point of �5 must be p7.

Ax 4 There must be a line �6 on
p2 and p5.

Ax 2 The line �6 must have a third
point on it.

Ax 4 That point cannot be p3 or
p4.

Ax 5 For �6 and �4 to intersect, the
third point of �6 must be p7.

Ax 2 Each of these lines has a third
point on it.

Ax 4 They are distinct and differ-
ent from any of the previously
declared points. Label them:
p5 on �2, p6 on �3, and p7 on
�4.

2 3

4 5
Ax 4 There must be a line �7 on

p3 and p5.
Ax 2 The line �7 must have one

more point on it.
Ax 4 That point cannot be p2 or

p4.
Ax 5 For �7 and �3 to intersect, the

third point of �7 must be p6.
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We now have seven points and seven lines as required. Could there be
more? Let’s suppose there were an eighth point p8.

Ax 4 Then there would be a line �8 on p1 and p8.

Ax 3 Line �8 would have to have another point on it.

Ax 4 This other point would have to be distinct from each of p2 through
p7.

Ax 5 Then �8 would not share a point with �3 (and other lines as well).
Thus there cannot be an eighth point.

Ax 4 There is now a line on every pair of points. Therefore there can be
no more lines.

A model for Fano’s geometry.
The nodes of the graph represent the 
points. The six segments and the circle 
represent the lines.
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Further reading

Euclid’s Elements is still a fantastic read. There are several editions avail-
able, both in text form and online, including, for instance, [3]. If you want
to know more about projective geometry in general, I would recommend
Coxeter’s book [2]. For a finite projective planes, I have found a nice set
of online notes by Jurgen Bierbrauer [1]. At the time of this writing they
are available at the web address:

http://www.math.mtu.edu/∼jbierbra/HOMEZEUGS/finitegeom04.ps.

[1] Jürgen Bierbrauer. Finite geometries: MA5980. Lecture notes dis-
tributed on World Wide Web, 2004.

[2] H.S.M. Coxeter. Projective Geometry. Blaisdell Publishing Co., New
York, 1st edition, 1964.

[3] Euclid. The Thirteen Books of Euclid’s Elements. Dover Publications,
New York, 2nd edition, 1956. Translated from the text of Heiberg,
with introduction and commentary by Sir Thomas L. Heath.
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1NEUTRAL GEOMETRY   

The goal of this book is to provide a pleasant but thorough introduction
to Euclidean and non-Euclidean (hyperbolic) geometry. Before I go any
further, let me clear up something that could lead to confusion on down
the road. Some mathematicians use the term non-Euclidean geometry to
mean any of a whole host of geometries which fail to be Euclidean for
any number of reasons. The kind of non-Euclidean geometry that we will
study in these lessons, and the kind that I mean when I use the term non-
Euclidean geometry, is something much more specific– it is a geometry
that satisfies all of Hilbert’s axioms for Euclidean geometry except the
parallel axiom.

It turns out that that parallel axiom is absolutely central to the nature
of the geometry. The Euclidean geometry with the parallel axiom and the
non-Euclidean geometry without it are radically different. Even so, Eu-
clidean and non-Euclidean geometry are not polar opposites. As different
as they are in many ways, they still share many basic characteristics. Neu-
tral geometry (also known as absolute geometry in older texts) is the study
of those commonalities.





1. OUR DUCKS IN A ROW
THE AXIOMS OF INCIDENCE 

AND ORDER
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From Euclid to Hilbert

You pretty much have to begin a study of Euclidean geometry with at
least some mention of Euclid’s Elements, the book that got the ball rolling
over two thousand years ago. The Elements opens with a short list of
definitions. As discussed in the previous chapter, the first few of these
definitions are a little problematic. If we can push past those, we get to
Euclid’s five postulates, the core accepted premises of his development of
the subject.

EUCLID’S POSTULATES

P1 To draw a straight line from any point to any point.
P2 To produce a finite straight line continuously in a straight

line.
P3 To describe a circle with any center and distance.
P4 That all right angles are equal to one another.
P5 That, if a straight line falling on two straight lines makes the

interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.

The first three postulates describe constructions. Today we would proba-
bly reinterpret them as statements about the existence of certain objects.
The fourth provides a way to compare angles. As for the fifth, well, in all
of history, not many sentences have received as much scrutiny as that one.

1

t

2

Euclid’s Parallel Postulate

2

1

Because (∠1)+(∠2) < 180◦,
1 and 2 intersect on this side of t.
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When you look at these postulates, and Euclid’s subsequent develop-
ment of the subject from them, it appears that Euclid may have been at-
tempting an axiomatic development of the subject. There is some debate,
though, about the extent to which Euclid really was trying to do that. His
handling of “S·A·S,” for example, is not founded upon the postulates, and
not merely in a way that might be attributed to oversight. With a cou-
ple thousand years between us and him, we can only guess at his true
intentions. In any case, Euclidean geometry was not properly and com-
pletely axiomatized until much later, at the end of the nineteenth century
by the German mathematician David Hilbert. His 1899 book, The Foun-
dations of Geometry gave an axiomatic description of what we think of as
Euclidean geometry. Subsequently, there have been several other axiom-
atizations, including notably ones by Birkhoff and Tarski. The nice thing
about Hilbert’s approach is that proofs developed in his system “feel” like
Euclid’s proofs. Some of the other axiomatizations, while more stream-
lined, do not retain that same feel.

Neutral Geometry

It might be an obvious statement, but it needs to be said: Euclid’s Fifth
Postulate does not look like the other four. It is considerably longer and
more convoluted than the others. For that reason, generations of geome-
ters after Euclid hoped that the Fifth might actually be provable– that it
could be taken as a theorem rather than a postulate. From their efforts
(which, by the way, were unsuccessful) there arose a whole area of study.
Called neutral geometry or absolute geometry, it is the study of the geom-
etry of the plane without Euclid’s Fifth Postulate.

So what exactly do you give up when you decide not to use Euclid’s
Fifth? Essentially Euclid’s Fifth tells us something about the nature of
parallel lines. It does so in a rather indirect way, though. Nowadays it
is common to use Playfair’s Axiom in place of Euclid’s Fifth because it
addresses the issue of parallels much more directly. Playfair’s Axiom both
implies and is implied by Euclid’s Fifth, so the two statements can be used
interchangeably.

PLAYFAIR’S AXIOM
For any line � and for any point P which is not on �, there is exactly
one line through P which is parallel to �.
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Even without Playfair’s Axiom, it is relatively easy to show that there
must be at least one parallel through P, so what Playfair’s Axiom is re-
ally telling us is that in Euclidean geometry there cannot be more than
one parallel. The existence of a unique parallel is crucial to many of the
proofs of Euclidean geometry. Without it, neutral geometry is quite lim-
ited. Still, neutral geometry is the common ground between Euclidean and
non-Euclidean geometries, and it is where we begin our study.

In the first part of this book, we are going to develop neutral geometry
following the approach of Hilbert. In Hilbert’s system there are five unde-
fined terms: point, line, on, between, and congruent. Fifteen of his axioms
are needed to develop neutral plane geometry. Generally the axioms are
grouped into categories to make it a bit easier to keep track of them: the
axioms of incidence, the axioms of order, the axioms of congruence, and
the axioms of continuity. We will investigate them in that order over the
next several chapters.

Incidence

Hilbert’s first set of axioms, the axioms of incidence, describe the inter-
action between points and lines provided by the term on. On is a binary
relationship between points and lines so, for instance, you can say that a
point P is (or is not) on a line �. In situations where you want to express
the line’s relationship to a point, rather than saying that a line � is on a
point P (which is technically correct), it is much more common to say that
� passes through P.

THE AXIOMS OF INCIDENCE

In 1 There is a unique line on any two distinct points.
In 2 There are at least two points on any line.
In 3 There exist at least three points that do not all lie on the same

line.

Incidence

1 Two points on a line. 
2 A line on two points.
3 And there’s more.

1
2

3 Incidence

1 Two points on a line
2 A line on two points
3 And there’s more.
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By themselves, the axioms of incidence do not afford a great wealth of
theorems. Some notation and a few definitions are all we get. First, the
notation. Because of the first axiom, there is only one line through any
two distinct points. Therefore, for any two distinct points A and B, we
use the notation � AB � to denote the line through A and B. As you
are probably all aware, this is not exactly the standard notation for a line.
Conventionally, the line symbol is placed above the points. I just don’t
like that notation in print– unless you have lots of room between lines of
text, the symbol crowds the line above it.

Now the definitions. Any two distinct points lie on one line. Three or
more points may or may not all lie on the same line.

DEF: COLINEARITY
Three or more points are colinear if they are all on the same line and
are non-colinear if they are not.

According to the first axiom, two lines can share at most one point. How-
ever, they may not share any points at all.

DEF: PARALLEL AND INTERSECTING
Two lines intersect if there is a point P which is on both of them. In
this case, P is the intersection or point of intersection of them. Two
lines which do not share a point are parallel.

Lines 1 and 2 intersect. Both are parallel to line 3. Because there are two 
lines through P parallel to line 3, this is not a Euclidean geometry.

1
2

3 P

Lines 1 and 2 intersect. Both are parallel to line 3. Because there appear to be 
two lines through P parallel to line 3, this does not look like Euclidean geometry.
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Order

The axioms of order describe the undefined term between. Between is a
relation between a point and a pair of points. We say that a point B is, or
is not, between two points A and C and we use the notation A ∗B ∗C to
indicate that B is between A and C. Closely related to this “between-ness”
is the idea that a line separates the plane. This behavior, which is explained
in the last of the order axioms, depends upon the following definition.

DEF: SAME SIDE
Let � be a line and let A and B be two points which are not on �.
Points A and B are on the same side of � if either � and �AB� do not
intersect at all, or if do they intersect but the point of intersection is
not between A and B.

So now, without further delay, the Axioms of Order describing the prop-
erties of between.

THE AXIOMS OF ORDER

Or 1 If A ∗ B ∗C, then the points A, B, C are distinct colinear
points, and C ∗B∗A.

Or 2 For any two points B and D, there are points A, C, and E,
such that A∗B∗D, B∗C ∗D and B∗D∗E.

Or 3 Of any three distinct points on a line, exactly one lies be-
tween the other two.

Or 4 The Plane Separation Axiom. For any line � and points A,
B, and C which are not on �: (i) If A and B are on the same
side of � and A and C are on the same side of �, then B and C
are on the same side of �. (ii) If A and B are not on the same
side of � and A and C are not on the same side of �, then B
and C are on the same side of �.

1

A

A

AB C

B
B

C
P

C

D E

2 3 4i 4ii

Order

1 Points in order 
2 Between and beyond
3 But no circularity

PSA

A line separates 
the plane. A point 
separates a line.
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The last of these, the Plane Separation Axiom (PSA), is a bit more to digest
than the previous axioms. It is pretty critical though– it is the axiom which
limits plane geometry to two dimensions. Let’s take a closer look. Let �
be a line and let P be a point which is not on �. We’re going to define two
sets of points.

S1: P itself and all points on the same side of � as P.
S2: all points which are not on � nor on the same side of � as P

By the second axiom of order both S1 and S2 are nonempty sets. The first
part of PSA tells us is that all the points of S1 are on the same side; the
second part tells us that all the points of S2 are on the same side. Hence
there are two and only two sides to a line. Because of this, we can refer to
points which are not on the same side of a line as being on opposite sides.

Just as a line separates the remaining points of the plane, a point on a
line separates the remaining points on that line. If P is between A and B,
then A and B are on opposite sides of P. Otherwise, A and B are on the
same side of P. You might call this separation of a line by a point “line
separation”. It is a direct descendent of plane separation via the following
simple correspondence. For three distinct points A, B, and P on a line �,

A, B on the same side of P ⇐⇒ A, B are on the same side of
any line through P other than �

A, B on opposite sides of P ⇐⇒ A, B are on opposite sides of
any line through P other than �

Because of this, there is a counterpart to the Plane Separation Axiom for
lines. Suppose that A, B, C and P are all on a line. (1) If A and B are on
the same side of P and A and C are on the same side of P, then B and C
are on the same side of P. (2) If A and B are on opposite sides of P and A
and C are on opposite sides of P, then B and C are on the same side of P.
As a result, a point divides a line into two sides.

1

A

A

AB C

B
B

C
P

C

D E

2 3 4i 4ii

Order

1 Points in order 
2 Between and beyond
3 But no circularity

PSA

A line separates 
the plane. A point 
separates a line.



20 LESSON 2

With between, we can now introduce some a few of the main characters
in this subject.

DEF: LINE SEGMENT
For any two points A and B, the line segment between A and B is the
set of points P such that A∗P∗B, together with A and B themselves.
The points A and B are called the endpoints of the segment.

DEF: RAY
For two distinct points A and B, the ray from A through B consists of
the point A together with all the points on � AB � which are on the
same side of A as B. The point A is called the endpoint of the ray.

The notation for the line segment between A and B is AB. For rays, I write
AB� for the ray with endpoint A through the point B. As with my notation
for lines, this is a break from the standard notation which places the ray
symbol above the letters.

DEF: OPPOSITE RAY
For any ray AB�, the opposite ray (AB�)op consists of the point A
together with all the points of �AB� which are on the opposite side
of A from B.

Putting Points in Order

The order axioms describe how to put three points in order. Sometimes,
though, three is not enough. It would be nice to know that more than three
points on a line can be ordered in a consistent way. Thankfully, the axioms
of order make this possible as well.

THM: ORDERING POINTS
Given n ≥ 3 colinear points, there is a labeling of them P1, P2, . . . , Pn
so that if 1 ≤ i < j < k ≤ n, then Pi ∗Pj ∗Pk. In that case, we write

P1 ∗P2 ∗ · · · ∗Pn.
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Proof. This is a proof by induction. The initial case, when there are just
three points to put in order, is an immediate consequence of the axioms
of order. Now let’s assume that any set of n colinear points can be put in
order, and let’s suppose we want to put a set of n+ 1 colinear points in
order. I think the natural way to do this is to isolate the first point (call it
Q), put the remaining points in order, and then stick Q back on the front.
The problem with this approach is that figuring out which point is the first
point essentially presupposes that you can put the points in order. Getting
around this is a little delicate, but here’s how it works. Choose n of the
n+1 points. Put them in order and label them so that p1 ∗ p2 ∗ · · ·∗ pn. Let
q be the one remaining point. Now, one of the following three things must
happen:

q∗ p1 ∗ p2 or p1 ∗q∗ p2 or p1 ∗ p2 ∗q.

In the first case, let Q = q and let P1 = p1, P2 = p2, . . . , Pn = pn. In the
second and third cases, let Q = p1.Then put the remaining points p1, . . . ,
pn and q in order and label them P1, P2, . . . ,Pn. Having done this, we have
two pieces of an ordering

Q∗P1 ∗P2 and P1 ∗P2 ∗ · · · ∗Pn.

Q

q

q

q

... ...

1

2

3

p1

p1

p1

p2

p2

p2

p3

p3

p3

P1 P3P2 Pn

pn

pn

pn

The three possible positions of q in relation to p1 and p2.

Proof. This is a proof by induction. The initial case, when there are just
three points to put in order, is an immediate consequence of the axioms
of order. Now let’s assume that any set of n colinear points can be put in
order, and let’s suppose we want to put a set of n+ 1 colinear points in
order. I think the natural way to do this is to isolate the first point (call it
Q), put the remaining points in order, and then stick Q back on the front.
The problem with this approach is that figuring out which point is the first
point essentially presupposes that you can put the points in order. Getting
around this is a little delicate, but here’s how it works. Choose n of the
n+1 points. Put them in order and label them so that p1 ∗ p2 ∗ · · ·∗ pn. Let
q be the one remaining point. Now, one of the following three things must
happen:

q∗ p1 ∗ p2 or p1 ∗q∗ p2 or p1 ∗ p2 ∗q.

In the first case, let Q = q and let P1 = p1, P2 = p2, . . . , Pn = pn. In the
second and third cases, let Q = p1.Then put the remaining points p1, . . . ,
pn and q in order and label them P1, P2, . . . ,Pn. Having done this, we have
two pieces of an ordering

Q∗P1 ∗P2 and P1 ∗P2 ∗ · · · ∗Pn.
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The proof is not yet complete, though, because we still need to show that
Q is ordered properly with respect to the remaining P’s. That is, we need
to show Q∗Pi ∗Pj when 1 ≤ i < j ≤ n. Let’s do that (in several cases).

Case 1: i = 1.
The result is given when j = 2, so let’s
suppose that j > 2. Then:
1. Q∗P1 ∗P2 so Q and P1 are on the

same side of P2.
2. P1 ∗P2 ∗Pj so P1 and Pj are on op-

posite sides of P2.
3. Therefore Q and Pj are on oppo-

site sides of P1, so Q∗P1 ∗Pj.

Case 2: i = 2.
1. Q∗P1 ∗P2 so Q and P1 are on the

same side of P2.
2. P1 ∗P2 ∗Pj so P1 and Pj are on op-

posite sides of P2.
3. Therefore Q and Pj are on oppo-

site sides of P2, so Q∗P2 ∗Pj.

Case 3: i > 2.
1. P1 ∗P2 ∗Pi so P1 and Pi are on op-

posite sides of P2.
2. Q∗P1 ∗P2 so Q and P1 are on the

same side of P2.
3. Therefore Q and Pi are on oppo-

site sides of P2, so Q∗P2 ∗Pi.
4. Consequently, Q and P2 are on the

same side of Pi.
5. Meanwhile, P2 ∗Pi ∗Pj so P2 and

Pj are on opposite sides of Pi.
6. Therefore, Q and Pj are on oppo-

site sides of Pi, so Q∗Pi ∗Pj.

Q P1 P2 Pj

Q P1 P2 Pj

Q P1 P2 Pi Pj
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Exercises

1. Prove that if A∗B∗C then AB ⊂ AC and AB�⊂ AC�.

2. Prove that if A∗B∗C ∗D then AC∪BD = AD and AC∩BD = BD.

3. Prove that the points which are on both AB� and BA� are the points
of AB.

4. Use the axioms of order to show that there are infinitely many points
on any line and that there are infinitely many lines through a point.

5. The familiar model for Euclidean geometry is the “Cartesian model.”
In that model, points are interepreted as coordinate pairs of real num-
bers (x,y). Lines are loosely interpreted as equations of the form

Ax+By =C

but technically, there is a little bit more to it than that. First, A and B
cannot both simultaneously be zero. Second, if A′ = kA, B′ = kB, and
C′ = kC for some nonzero constant k, then the equations Ax+By =C
and A′x+B′y = C′ both represent the same line [in truth then, a line
is represented by an equivalence class of equations]. In this model, a
point (x,y) is on a line Ax+By=C if its coordinates make the equation
true. With this interpretation, verify the axioms of incidence.

6. In the Cartesian model, a point (x2,y2) is between two other points
(x1,y1) and (x3,y3) if:
1. the three points are distinct and on the same line, and
2. x2 is between x1 and x3 (either x1 ≤ x2 ≤ x3 or x1 ≥ x2 ≥ x3), and
3. y2 is between y1 and y3 (either y1 ≤ y2 ≤ y3 or y1 ≥ y2 ≥ y3).
With this interpretation, verify the axioms of order.
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Further reading

For these first few“moves”, we are pretty constricted, with few results to
build from and very little flexibility about where we can go next. Since
we have adopted the axioms of Hilbert, our initial steps (in this and the
next few lessons) follow fairly closely those of Hilbert in his Foundations
of Geometry [2].

In addition, let me refer you to a few more contemporary books which
examine the first steps in the development of the subject. Moise’s Elemen-
tary Geometry from an Advanced Standpoint [3] is one of my favorites. I
have taught from both Wallace and West’s Roads to Geometry [4], and
Greenberg’s Euclidean and Non-Euclidean Geometries [1].

[1] Marvin J. Greenberg. Euclidean and Non-Euclidean Geometries: De-
velopment and History. W.H. Freeman and Company, New York, 4th
edition, 2008.

[2] David Hilbert. The Foundations of Geometry.

[3] Edwin E. Moise. Elementary Geometry from an Advanced Stand-
point. Addison Wesley Publishing Company, Reading, Mas-
sachusetts, 2nd edition, 1974.

[4] Edward C. Wallace and Stephen F. West. Roads to Geometry. Pearson
Education, Inc., Upper Saddle River, New Jersey, 3rd edition, 2004.



2. IN ONE SIDE, OUT THE OTHER
ANGLES AND TRIANGLES
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These are the first steps. They are tentative. But it is right to be cautious.
It is so difficult keeping intuition from making unjustified leaps. The two
main theorems in this lesson, Pasch’s Lemma and the Crossbar Theorem,
are good examples of this. Neither can be found in Euclid’s Elements.
They just seem so obvious that I guess it didn’t occur to him that they
needed to be proved (his framework of postulates would not allow him to
prove those results anyway). The kind of intersections that they guarantee
are essential to many future results, though, so we must not overlook them.

Angles and Triangles

In the last lesson we defined ray and segment. They are the most elemen-
tary of objects, defined directly from the undefined terms. Now in this
lesson, another layer: angles and triangles, which are built from rays and
segments.

DEF: ANGLE
An angle consists of a (unordered) pair of non-opposite rays with the
same endpoint. The mutual endpoint is called the vertex of the angle.

Let’s talk notation. If the two rays are AB � and AC �, then the angle
they form is written ∠BAC, with the endpoint listed in the middle spot.
There’s more than one way to indicate that angle though. For one, it does
not matter which order the rays are taken, so ∠CAB points to the same
angle as ∠BAC. And if B′ is on AB� and C′ is on AC� (not the endpoint
of course), then ∠B′AC′ is the same as ∠BAC too. Frequently, it is clear in
the problem that you only care about one angle at a particular vertex. On
those occasions you can often get away with the abbreviation ∠A in place
of the full ∠BAC. Just as a line divides the plane into two sides, so too
does an angle. In this case the two parts are the interior and the exterior of
the angle.

DEF: ANGLE INTERIOR
A point lies in the interior or is an interior point of ∠BAC if it is on
the same side of � AB � as C and same side of � AC � as B. A
point which does not lie in the interior of the angle and does not lie
on either of the rays composing the angle is exterior to the angle and
is called an exterior point.
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The last definition in this section is that of the triangle. Just as an angle is
formed by joining two rays at their mutual endpoint, a triangle is formed
by joining three segments at mutual endpoints.

DEF: TRIANGLE
A triangle is an (unordered) triple of non-colinear points and the
points on the segments between each of the three pairs of points.
Each of the three points is called a vertex of the triangle. Each of the
three segments is called a side or edge of the triangle.

If A, B, and C are non-colinear points then we write �ABC for the triangle.
The ordering of the three vertices does not matter, so there is more than
one way to write a given triangle:

�ABC =�ACB =�BAC =�BCA =�CAB =�CBA.

The three sides of �ABC are AB, AC, and BC. The three angles ∠ABC,
∠BCA and ∠CAB are called the interior angles of �ABC. A point which
is in the interior of all the three of the interior angles is said to be inside
the triangle. Together they form the interior of the triangle. Points which
are not inside the triangle and aren’t on the triangle itself, are said to be
outside the triangle. They make the exterior of the triangle.

A

B

C
The light region is the interior. The dark the exterior.∠BAC.

A

B

C

interior edgesvertices

Parts of a triangle
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A Line Passes Through It

The rest of this lesson is dedicated to three fundamental theorems. The
first, a result about lines crossing triangles is called Pasch’s Lemma after
Moritz Pasch, a nineteenth century German mathematician whose works
are a precursor to Hilbert’s. It is a direct consequence of the Plane Sep-
aration Axiom. The second result, the Crossbar Theorem, is a bit more
difficult. It deals with lines crossing through the vertex of an angle. The
third says that rays with a common endpoint can be ordered in a consistent
way, in the same way that points on a line can be ordered.

PASCH’S LEMMA
If a line intersects a side of a triangle at a point other than a vertex,
then it must intersect another side of the triangle. If a line intersects
all three sides of a triangle, then it must intersect two of the sides at
a vertex.

Proof. Suppose that a line � intersects side AB of �ABC at a point P other
than the endpoints. If � also passes through C, then that’s the other inter-
section; in this case � does pass through all three sides of of the triangle,
but it passes through two of them at a vertex. Now what if � does not pass
through C? There are only two possibilities: either C is on the same side
of � as A, or it is on the opposite side of � from A. This is where the Plane
Separation Axiom comes to the rescue. Because P is between A and B,
those two points have to be on opposite sides of �. Thus, if C is on the
same side of � as A, then it is on the opposite side of � from B, and so �
intersects BC but not AC. On the other hand, if C is on the opposite side
of � from A, then it is on the same side of � as B, so � intersects AC but not
BC. Either way, � intersects two of the three sides of the triangle.

A

B

CP P PC C

B B

A A

 passes through AC  passes through C  passes through BC
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As I mentioned at the start of the section, the proof of the Crossbar Theo-
rem is more challenging. I think it is helpful to separate out one small part
into the following lemma.

LEMMA
If A is a point on line �, and B is a point which is not on �, then all
the points of AB � (and therefore all the points of AB) except A are
on the same side of � as B.

Proof. If C is any point on AB � other than A or B, then C has to be on
the same side of A as B, and so either A ∗B ∗C or A ∗C ∗B. Either way,
� AC � and � intersect at the point A, but that point of intersection does
not lie between B and C. Hence B and C are on the same side of �.

THE CROSSBAR THEOREM
If D is an interior point of angle ∠BAC, then the ray AD� intersects
the segment BC.

Proof. If you take a couple minutes to try to prove this for yourself, you
will probably find yourself thinking– hey, this seems awfully similar to
Pasch’s Lemma– we could use �ABC for the triangle and � AD � for
the line. The problem is that one pesky condition in Pasch’s Lemma: the
given intersection of the line and the triangle can’t be at a vertex. In the
situation we have here, the ray in question AD � does pass through the
vertex. Still, the basic idea is sound. The actual proof does use Pasch’s
Lemma, we just have to bump the triangle a little bit so that AD� doesn’t
cross through the vertex.

As I mentioned at the start of the section, the proof of the Crossbar Theo-
rem is more challenging. I think it is helpful to separate out one small part
into the following lemma.

LEMMA
If A is a point on line �, and B is a point which is not on �, then all
the points of AB � (and therefore all the points of AB) except A are
on the same side of � as B.

Proof. If C is any point on AB � other than A or B, then C has to be on
the same side of A as B, and so either A ∗B ∗C or A ∗C ∗B. Either way,
� AC � and � intersect at the point A, but that point of intersection does
not lie between B and C. Hence B and C are on the same side of �.

THE CROSSBAR THEOREM
If D is an interior point of angle ∠BAC, then the ray AD� intersects
the segment BC.

Proof. If you take a couple minutes to try to prove this for yourself, you
will probably find yourself thinking– hey, this seems awfully similar to
Pasch’s Lemma– we could use �ABC for the triangle and � AD � for
the line. The problem is that one pesky condition in Pasch’s Lemma: the
given intersection of the line and the triangle can’t be at a vertex. In the
situation we have here, the ray in question AD � does pass through the
vertex. Still, the basic idea is sound. The actual proof does use Pasch’s
Lemma, we just have to bump the triangle a little bit so that AD� doesn’t
cross through the vertex.

(l) The lemma says that 
a ray cannot recross a 
line like this. (r) The 
Crossbar Theorem 
guarantees the 
existence of the point P.

A A

BB

C
P

C
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According to the second axiom of order, there are points on the opposite
side of A from C. Let A′ be one of them. Now �AD� intersects the side
A′C of the triangle �A′BC. By Pasch’s Lemma, � AD � must intersect
one of the other two sides of triangle, either A′B or BC. There are two
scenarios to cause concern. First, what if � AD � crosses A′B instead of
BC? And second, what if �AD� does cross BC, but the intersection is on
(AD�)op instead of AD� itself?

I think it is easier to rule out the second scenario first so let’s start there.
(1)If D′ is any point on (AD�)op, then it is on the opposite side of A from
D. Therefore D′ and D are on opposite sides of �A′C�. (2)Since D is an
interior point, it is on the same side of �A′C� as B, and so D′ and B are
on opposite sides of A′C. (3)By the previous lemma, all the points of A′B
and of BC are on the same side of �A′C� as B. (4)Therefore they are on
the opposite side of �A′C � fom D′, so no point of (AD�)op may lie on
either A′B or BC.

With the opposite ray ruled out entirely, we now just need to make sure
that AD� does not intersect A′B. (5)Points A′ and C are on opposite sides
of �AB�. (6)Because D is an interior point, D and C are on the same side
of �AB�. (7)Therefore A′ and D are on opposite sides of �AB�. (8)Using
the preceding lemma, all the points of A′B are on opposite sides of �AB�
from all the points of AD �. This means that AD � cannot intersect A′B,
so it must intersect BC.

According to the second axiom of order, there are points on the opposite
side of A from C. Let A′ be one of them. Now �AD� intersects the side
A′C of the triangle �A′BC. By Pasch’s Lemma, � AD � must intersect
one of the other two sides of triangle, either A′B or BC. There are two
scenarios to cause concern. First, what if � AD � crosses A′B instead of
BC? And second, what if �AD� does cross BC, but the intersection is on
(AD�)op instead of AD� itself?

I think it is easier to rule out the second scenario first so let’s start there.
(1)If D′ is any point on (AD�)op, then it is on the opposite side of A from
D. Therefore D′ and D are on opposite sides of �A′C�. (2)Since D is an
interior point, it is on the same side of �A′C� as B, and so D′ and B are
on opposite sides of A′C. (3)By the previous lemma, all the points of A′B
and of BC are on the same side of �A′C� as B. (4)Therefore they are on
the opposite side of �A′C � fom D′, so no point of (AD�)op may lie on
either A′B or BC.

With the opposite ray ruled out entirely, we now just need to make sure
that AD� does not intersect A′B. (5)Points A′ and C are on opposite sides
of �AB�. (6)Because D is an interior point, D and C are on the same side
of �AB�. (7)Therefore A′ and D are on opposite sides of �AB�. (8)Using
the preceding lemma, all the points of A′B are on opposite sides of �AB�
from all the points of AD �. This means that AD � cannot intersect A′B,
so it must intersect BC.
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The Crossbar Theorem provides a essential conduit between the notion
of between for points and interior for angles. I would like to use that con-
duit in the next theorem, which is the angle interior analog to the ordering
of points theorem in the last lesson. First let me state a useful lemma.

LEMMA 2
Consider an angle ∠ABC and a ray r whose endpoint is B. Either all
the points of r other than B lie in the interior of ∠ABC, or none of
them do.

I am going to leave the proof of this lemma to you, the reader. It is a
relatively straightforward proof, and lemma 1 should provide some useful
clues. Now on to the theorem.

THM: ORDERING RAYS
Consider n ≥ 2 rays with a common basepoint B which are all on the
same side of a line �AB� through B. There is an ordering of them:

r1, r2, . . . ,rn

so that if i < j then ri is in the interior of the angle formed by BA�
and r j.

The Crossbar Theorem provides a essential conduit between the notion
of between for points and interior for angles. I would like to use that con-
duit in the next theorem, which is the angle interior analog to the ordering
of points theorem in the last lesson. First let me state a useful lemma.

LEMMA 2
Consider an angle ∠ABC and a ray r whose endpoint is B. Either all
the points of r other than B lie in the interior of ∠ABC, or none of
them do.

I am going to leave the proof of this lemma to you, the reader. It is a
relatively straightforward proof, and lemma 1 should provide some useful
clues. Now on to the theorem.

THM: ORDERING RAYS
Consider n ≥ 2 rays with a common basepoint B which are all on the
same side of a line �AB� through B. There is an ordering of them:

r1, r2, . . . ,rn

so that if i < j then ri is in the interior of the angle formed by BA�
and r j.

Lemma 2. Rays cannot do this.

B

C

A r

B A

1

345 2

An ordering of five rays and five 
angles so that each ray is in the 
interior of all of the subsequent 
angles.
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Proof. I am going to use a proof by induction. First consider the case of
just n = 2 rays, r1 and r2. If r1 lies in the interior of the angle formed by
BA� and r2, then we’ve got it. Let’s suppose, though, that r1 does not lie
in the interior of that angle. There are two requirements for r1 to lie in the
interior: (1) it has to be on the same side of � AB � as r2 and (2) it has
to be the same side of r2 as A. From the very statement of the theorem,
we can see that r1 has to satisfy the first requirement, so if r1 is not in
the interior, the problem has got to be with the second requirement. That
means that any point C1 on r1 has to be on the opposite side of r2 from
A– that is, the line containing r2 must intersect AC1. Actually we can be a
little more specific about where this intersection occurs: you see, AC1 and
rop

2 are on opposite sides of �AB� so they cannot intersect. Therefore the
intersection is not on rop

2 – it has to be on r2 itself. Call this intersection
point C2. Then A∗C2 ∗C1 so C2 is on the same side of r1 as A. Therefore
r2 is on the same side of r1 as A, and so r2 is in the interior of the angle
formed by BA� and r1. Then it is just a matter of switching the labeling
of r1 and r2 to get the desired result.

Now let’s tackle the inductive step. Assume that any n rays can be put
in order and consider a set of n+1 rays all sharing a common endpoint B
and on the same side of the line �AB�. Take n of those rays and put them
in order as r1, r2, . . . , rn. That leaves just one more ray– call it s. What I
would like to do is to compare s to what is currently the ”outermost” ray,
rn. One of two things can happen: either [1] s lies in the interior of the
angle formed by BA� and rn, or [2] it doesn’t, and in this case, as we saw
in the proof of the base case, that means that rn lies in the interior of the
angle formed by BA� and s. Our path splits now, as we consider the two
cases.

Proof. I am going to use a proof by induction. First consider the case of
just n = 2 rays, r1 and r2. If r1 lies in the interior of the angle formed by
BA� and r2, then we’ve got it. Let’s suppose, though, that r1 does not lie
in the interior of that angle. There are two requirements for r1 to lie in the
interior: (1) it has to be on the same side of � AB � as r2 and (2) it has
to be the same side of r2 as A. From the very statement of the theorem,
we can see that r1 has to satisfy the first requirement, so if r1 is not in
the interior, the problem has got to be with the second requirement. That
means that any point C1 on r1 has to be on the opposite side of r2 from
A– that is, the line containing r2 must intersect AC1. Actually we can be a
little more specific about where this intersection occurs: you see, AC1 and
rop

2 are on opposite sides of �AB� so they cannot intersect. Therefore the
intersection is not on rop

2 – it has to be on r2 itself. Call this intersection
point C2. Then A∗C2 ∗C1 so C2 is on the same side of r1 as A. Therefore
r2 is on the same side of r1 as A, and so r2 is in the interior of the angle
formed by BA� and r1. Then it is just a matter of switching the labeling
of r1 and r2 to get the desired result.

Now let’s tackle the inductive step. Assume that any n rays can be put
in order and consider a set of n+1 rays all sharing a common endpoint B
and on the same side of the line �AB�. Take n of those rays and put them
in order as r1, r2, . . . , rn. That leaves just one more ray– call it s. What I
would like to do is to compare s to what is currently the ”outermost” ray,
rn. One of two things can happen: either [1] s lies in the interior of the
angle formed by BA� and rn, or [2] it doesn’t, and in this case, as we saw
in the proof of the base case, that means that rn lies in the interior of the
angle formed by BA� and s. Our path splits now, as we consider the two
cases.

The base case: what happens if r1 is
not in the interior of the angle formed
by BA and r2?

B
A

C2

C1

r1

r2
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[1] Here rn is the outermost ray,
so let’s relabel it as Rn+1. The re-
maining rays r1, r2, . . . , rn−1 and
s are all in the interior of the angle
formed by BA� and Rn+1. There-
fore, if Cn+1 is any point on Rn+1
(other than B) then each of r1, r2,
. . . , rn−1 and s intersect the seg-
ment ACn+1 (this is the Crossbar
Theorem in action). We can put
all of those intersection points in
order

A∗C1 ∗C2 ∗ · · · ∗Cn ∗Cn+1.

[2] In this case, we will eventually
see that s is the outermost ray, but
all we know at the outset is that it
is farther out than rn. Let’s relabel
s as Rn+1 and let Cn+1 be a point
on this ray. Since rn is in the inte-
rior of the angle formed by BA �
and Rn+1, by the Crossbar Theo-
rem, rn must intersect ACn+1. Let
Cn be this intersection point. But
we know that r1, r2, . . . , rn−1 lie in
the interior of the angle formed by
BA � and Rn, so ACn must inter-
sect each of r1, r2, . . . , rn. We can
put all of those intersection points
in order

A∗C1 ∗C2 ∗ · · · ∗Cn ∗Cn+1.

With the rays sorted and the intersections marked, the two strands of the
proofs merge. Label the ray with point Ci as Ri. Then, for any i < j, Ci is
on the same side of Cj as A, and so Ri is in the interior of the angle formed
by BA� and Cj. This is the ordering that we want.

Once the outermost ray is identified, a 
line connecting that ray to A intersects 
all the other rays (because of the 
Crossbar Theorem).
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Exercises

1. Prove that there are points in the interior of any angle. Similarly, prove
that there are points in the interior of any triangle.

2. Suppose that a line � intersects a triangle at two points P and Q. Prove
that all the points on the segment PQ other than the endpoints P and Q
are in the interior of the triangle.

3. We have assumed Plane Separation as an axiom and used it to prove
Pasch’s Lemma. Try to reverse that– in other words, assume Pasch’s
Lemma and prove the Plane Separation Axiom.

4. Let P be a point in the interior of ∠BAC. Prove that all of the points of
AP� other than A are also in the interior of ∠BAC. Prove that none of
the points of (AP�)op are in the interior of ∠BAC.

5. Prove Lemma 2.

6. A model for a non-neutral geometry: Q2. We alter the standard Eu-
clidean model R2 so that the only points are those with rational coor-
dinates. The only lines are those that pass through at least two rational
points. Incidence and order are as in the Euclidean model. Demon-
strate that this models a geometry which satisfies all the axioms of
incidence and order except the Plane Separation Axiom. Show that
Pasch’s Lemma and the Crossbar Theorem do not hold in this geome-
try.

References

I got my proof of the Crossbar Theorem from Moise’s book on Euclidean
geometry [1].

[1] Edwin E. Moise. Elementary Geometry from an Advanced Stand-
point. Addison Wesley Publishing Company, Reading, Mas-
sachusetts, 2nd edition, 1974.
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encecon gru

THE AXIOMS OF CONGRUENCE

Cg1 The Segment Construction Axiom If A and B are distinct
points and if A� is any point, then for each ray r with end-
point A�, there is a unique point B� on r such that AB � A�B�.

Cg2 Segment congruence is reflexive (every segment is congru-
ent to itself), symmetric (if AA� � BB� then BB� � AA�), and
transitive (if AA� � BB� and BB� �CC�, then AA� �CC�).

Cg3 The Segment Addition Axiom If A∗B∗C and A� ∗B� ∗C�, and
if AB � A�B� and BC � B�C�, then AC � A�C�.

Cg4 The Angle Construction Axiom Given ∠BAC and any ray
A�B��, there is a unique ray A�C�� on a given side of the
line �A�B�� such that ∠BAC � ∠B�A�C�.

Cg5 Angle congruence is reflexive (every angle is congruent to
itself), symmetric (if ∠A � ∠B, then ∠B � ∠A), and transi-
tive (if ∠A � ∠B and ∠B � ∠C, then ∠A �∠C).

Cg6 The Side Angle Side (S·A·S) Axiom. Consider two triangles:
�ABC and �A�B�C�. If AB � A�B�, ∠B � ∠B�, and BC �
B�C�, then ∠A � ∠A�.

encecon gru
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I think this is the lesson where the geometry we are doing starts to look like
the geometry you know. I don’t think your typical high school geometry
class covers Pasch’s Lemma or the Crossbar Theorem, but I’m pretty sure
that it does cover congruence of triangles. And that is what we are going
to do in the next three lessons.

Axioms of Congruence

Points, lines, segments, rays, angles, triangles– we are starting to pile up
a lot of objects here. At some point you are probably going to want to
compare them to each other. You might have two different triangles in dif-
ferent locations, different orientations, but they have essentially the same
shape, so you want to say that for practical purposes, they are equivalent.
Well, congruence is a way to do that. Congruence, if you recall, is one
of the undefined terms in Hilbert’s system. Initially it describes a relation
between a pair of segments or a pair of angles, so that we can say, for in-
stance, that two segments are or are not congruent, or that two angles are
or are not congruent. Later, the term is extended so that we can talk about
congruence of triangles and other more general shapes. The notation used
to indicate that two things (segments, angles, whatever) are congruent is
�. In Hilbert’s system, there are six axioms of congruence. Three deal
with congruence of segments, two deal with congruence of angles, and
one involves both segments and angles.

The first and fourth of these make it possible to construct congruent
copies of segments and angles wherever we want. They are a little remi-
niscent of Euclid’s postulates in that way. The second and fifth axioms tell
us that congruence is an equivalence relation. The third and sixth– well,
I suppose that in a way they form a pair too– both deal with three points
and the segments that have them as their endpoints. In the third axiom,
the points are colinear, while in the sixth they are not. There is a more
direct counterpart to the third axiom though, a statement which does for
angles what the Segment Addition Axiom does for segments. It is called
the Angle Addition Theorem and we will prove it in lesson 5.

I use a variety of 
symbols to mark 
segment and angle 
congruence. 
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Any time you throw something new into the mix, you probably want
to figure out how it intermingles with what has come before. How does
the new fit with the old? I realize that is a pretty vague question, but a
more precise statement really depends upon the context. In our current
situation, we have just added congruence to a system that already had
incidence and order. The axioms of congruence themselves provide some
basic connections between congruence and incidence and order. I think
the most important remaining connection between congruence, incidence,
and order is the Triangle Inequality, but that result is still a little ways
away. In the meantime, the next theorem provides one more connection.

CONGRUENCE AND ORDER
Suppose that A1 ∗A2 ∗A3 and that B3 is a point on
the ray B1B2 �. If A1A2 � B1B2 and A1A3 � B1B3,
then B1 ∗B2 ∗B3.

Proof. Since B3 is on B1B2� one of three things is going to happen:

(1) B2 = B3 (2) B1 ∗B3 ∗B2 (3) B1 ∗B2 ∗B3.

The last is what we want, so it is just a matter of ruling out the other two
possibilities.

(1) Why can’t B3 be equal to B2? With B2 = B3, both A1A2 and A1A3
are congruent to the same segment. Therefore they are two different con-
structions of a segment starting from A1 along A1A2 � and congruent to
B1B2. The Segment Construction Axiom says that there be only one.

A1

A1

A2

A2

B3
B1

B2

A3

A3

The case against case I
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(2) Why can’t B3 be between B1 and B2? By the Segment Construction
Axiom, there is a point B4 on the opposite side of B2 from B1 so that
B2B4 � A2A3. Now look:

B1B2 � A1A2 & B2B4 � A2A3

so by the Segment Addition Axiom, B1B4 � A1A3. This creates the same
problem we ran into last time– two different segments B1B3 and B1B4,
both starting from B1 and going out along the same ray, yet both are sup-
posed to be congruent to A1A3.

Triangle Congruence

Congruence of segments and angles is undefined, subject only to the ax-
ioms of congruence. But congruence of triangles is defined. It is defined
in terms of the congruences of the segments and angles that make up the
triangles.

DEF: TRIANGLE CONGRUENCE
Two triangles �ABC and �A′B′C′ are congruent if all of their corre-
sponding sides and angles are congruent:

AB � A′B′ BC � B′C′ CA �C′A′

∠A � ∠A′ ∠B �∠B′ ∠C � ∠C′.

A1

A1

A2

A2

B3 B2 B4
B1

A3

A3

The case against case II
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Now that definition suggests that you have to match up six different things
to say that two triangles are congruent. In actuality, triangles aren’t really
that flexible. Usually you only have to match up about half that many
things. For example, the next result we will prove, the S·A·S Triangle
Congruence Theorem, says that you only have to match up two sides of
the triangles, and the angles between those sides, to show that the triangles
are congruent. In this lesson, we begin the investigation of those minimum
conditions.

Before we start studying these results, I would like to point out another
way to view these theorems, this time in terms of construction. The tri-
angle congruence theorems are set up to compare two triangles. Another
way to think of them, though, is as a restriction on the way that a single
triangle can be formed. To take an example, the S·A·S theorem below says
that, modulo congruence, there is really only one triangle with a given pair
of sides and a given intervening angle. Therefore, if you are building a tri-
angle, and have decided upon two sides and an intervening angle, well,
the triangle is decided– you don’t get to choose the remaining side or the
other two angles.

S·A·S TRIANGLE CONGRUENCE
In triangles �ABC and �A�B�C�, if

AB � A�B� ∠B �∠B� BC � B�C�,

then �ABC ��A�B�C�.

Proof. To show that two triangles are congruent, you have to show that
three pairs of sides and three pairs of angles are congruent. Fortunately,
two of the side congruences are given, and one of the angle congruences
is given. The S·A·S axiom guarantees a second angle congruence, ∠A �
∠A�. So that just leaves one angle congruence and one side congruence.

Let’s do the angle first. You know, working abstractly creates a lot
of challenges. On the few occasions when the abstraction makes things
easier, it is a good idea to take advantage of it. This is one of those times.
The S·A·S lemma tells us about ∠A in �ABC. But let’s not be misled
by lettering. Because �ABC =�CBA and �A�B�C� =�C�B�A�, we can
reorder the given congruences:

CB �C�B� ∠B � ∠B� BA � B�A�.

Then the S·A·S lemma says that ∠C � ∠C�. Sneaky isn’t it? It is a com-
pletely legitimate use of the S·A·S axiom though.
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That just leaves the sides AC and A�C�. We are going to construct a
congruent copy of �A�B�C� on top of �ABC (Euclid’s flawed proof of
S·A·S in The Elements used a similar argument but without the axioms to
back it up). Thanks to the Segment Construction Axiom, there is a unique
point C� on AC so that AC� � A�C�. Now if we can just show that C� =C
we will be done. Look:

BA � B�A� ∠A � ∠A� AC� � ∠A�C�.

By the S·A·S axiom then, ∠ABC� � ∠A�B�C�. That in turn means that
∠ABC� � ∠ABC. But wait– both of those angles are constructed on the
same side of BA �. According to the Angle Construction Axiom, that
means they must be the same. That is, BC�= BC��. Both C and C� are
the intersection of this ray and the line AC. Since a ray can only intersect
a line once, C and C� do have to be the same.

Two orderings of the 
list of congruences 
for the SAS lemma.

A

B C B C

A

C

B

A
C

C

B

A

B

A To show the last 
sides are congruent, 
construct a third 
triangle from parts 
of the original two. 
The key to the 
location of C is the 
angle at B.
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One of the things that I really appreciate about the triangle congruence
theorems is how transparent they are: their names tell us when to use
them. For instance, you use S·A·S when you know congruences for two
sides and the angle between them. And you use A·S·A when...

A·S·A TRIANGLE CONGRUENCE
In triangles �ABC and �A�B�C�, if

∠A � ∠A� AB � A�B� ∠B � ∠B�,

then �ABC ��A�B�C�.

Proof. This time, it is a little easier–if we can just get one more side con-
gruence, then S·A·S will provide the rest. You will probably notice some
similarities between this argument and the last part of the S·A·S proof.
Because of the Segment Construction Axiom, there is a point C� on AC�
so that AC� � A�C�. Of course, the hope is that C� = C, and that is what
we need to show. To do that, observe that

BA � B�A� ∠A � ∠A� AC� � ∠A�C�.

By S·A·S, �ABC� ��A�B�C�. In particular, look at what is happening at
vertex B:

∠ABC� �∠A�B�C� �∠ABC.

There is only one way to make that angle on that side of BA �, and that
means BC� �= BC �. Since both C and C� are where this ray intersects
�AC�, C =C�.

C

B

A
C

C

B

A

B

A

Does this look 
familiar?
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That’s the hard work. All that is left is to wrap up the argument. Since
C =C�, AC = AC�, and that means AC � A�C�. Then

BA � B�A� ∠A � ∠A� AC � A�C�

so by S·A·S, �ABC ��A�B�C�.

Let’s take a look at how the triangle congruence theorems can be put to
work. This next theorem is the angle equivalent of the theorem at the start
of this lesson relating congruence and the order of points.

THM: CONGRUENCE AND ANGLE INTERIORS
Suppose that ∠ABC�∠A�B�C�. Suppose that D is in
the interior of ∠ABC. And suppose that D� is located
on the same side of � AB � as C so that ∠ABD �
∠A�B�D�. Then D� is in the interior of ∠A�B�C�.

Proof. Because there is some flexibility in which points you choose to
represent an angle, there is a good chance that our points are not orga-
nized in a very useful way. While we can’t change the rays or the angles
themselves, we can choose other points to represent them. So the first step
is to reposition our points in the most convenient way possible. Let A� be
the point on BA� so that BA� � B�A�. Let C� be the point on BC� so that
BC� � B�C�. Since D is in the interior of ∠ABC, the Crossbar Theorem
guarantees that BD� intersects A�C�. Let’s call this intersection E . Then

A�B � A�B� ∠A�BC� � A�B�C� BC� � B�C�

so by S·A·S, �A�BC� ��A�B�C�.

That’s the hard work. All that is left is to wrap up the argument. Since
C =C�, AC = AC�, and that means AC � A�C�. Then

BA � B�A� ∠A � ∠A� AC � A�C�

so by S·A·S, �ABC ��A�B�C�.

Let’s take a look at how the triangle congruence theorems can be put to
work. This next theorem is the angle equivalent of the theorem at the start
of this lesson relating congruence and the order of points.

THM: CONGRUENCE AND ANGLE INTERIORS
Suppose that ∠ABC�∠A�B�C�. Suppose that D is in
the interior of ∠ABC. And suppose that D� is located
on the same side of � AB � as C so that ∠ABD �
∠A�B�D�. Then D� is in the interior of ∠A�B�C�.

Proof. Because there is some flexibility in which points you choose to
represent an angle, there is a good chance that our points are not orga-
nized in a very useful way. While we can’t change the rays or the angles
themselves, we can choose other points to represent them. So the first step
is to reposition our points in the most convenient way possible. Let A� be
the point on BA� so that BA� � B�A�. Let C� be the point on BC� so that
BC� � B�C�. Since D is in the interior of ∠ABC, the Crossbar Theorem
guarantees that BD� intersects A�C�. Let’s call this intersection E . Then

A�B � A�B� ∠A�BC� � A�B�C� BC� � B�C�

so by S·A·S, �A�BC� ��A�B�C�.

After repositioning 
points, the first use 
of SAS.
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Okay, now let’s turn our attention to the second configuration of points–
the ones with the � marks. According to the Segment Construction Axiom,
there is a point E� on A�C�� so that A�E � �A�E . Furthermore, thanks to the
earlier theorem relating congruence and order, since E is between A� and
C�, E � must be between A� and C�, and so it is in the interior of ∠A�B�C�.
Now look:

BA� � B�A� ∠BA�E � ∠B�A�E � A�E � A�E �

so by S·A·S, �BA�E ��B�A�E �.
In particular, this means that ∠A�BE � ∠A�B�E �. But we were origi-

nally told that ∠A�BE � ∠A�B�D�. Since angle congruence is transitive
this must mean that ∠A�B�D� � ∠A�B�E �. Well, thanks to the Angle Con-
struction Axiom, this means that the two rays B�D�� and B�E �� must be
the same. Since E� is in the interior of ∠A�B�C�, D� must be as well.

Symmetry in Triangles

I don’t think it comes as a great surprise that in some triangles, two or
even all three sides or angles may be congruent. Thanks to the triangle
congruence theorems, we can show that these triangles are congruent to
themselves in non-trivial ways. These non-trivial congruences reveal the
internal symmetries of those triangles.

DEF: ISOSCELES, EQUILATERAL, SCALENE
If all three sides of a triangle are congruent, the triangle is equilat-
eral. If exactly two sides of a triangle are congruent, the triangle is
isosceles. If no pair of sides of the triangle is congruent, the triangle
is scalene.

Okay, now let’s turn our attention to the second configuration of points–
the ones with the � marks. According to the Segment Construction Axiom,
there is a point E� on A�C�� so that A�E � �A�E . Furthermore, thanks to the
earlier theorem relating congruence and order, since E is between A� and
C�, E � must be between A� and C�, and so it is in the interior of ∠A�B�C�.
Now look:

BA� � B�A� ∠BA�E � ∠B�A�E � A�E � A�E �

so by S·A·S, �BA�E ��B�A�E �.
In particular, this means that ∠A�BE � ∠A�B�E �. But we were origi-

nally told that ∠A�BE � ∠A�B�D�. Since angle congruence is transitive
this must mean that ∠A�B�D� � ∠A�B�E �. Well, thanks to the Angle Con-
struction Axiom, this means that the two rays B�D�� and B�E �� must be
the same. Since E� is in the interior of ∠A�B�C�, D� must be as well.

Symmetry in Triangles

I don’t think it comes as a great surprise that in some triangles, two or
even all three sides or angles may be congruent. Thanks to the triangle
congruence theorems, we can show that these triangles are congruent to
themselves in non-trivial ways. These non-trivial congruences reveal the
internal symmetries of those triangles.

DEF: ISOSCELES, EQUILATERAL, SCALENE
If all three sides of a triangle are congruent, the triangle is equilat-
eral. If exactly two sides of a triangle are congruent, the triangle is
isosceles. If no pair of sides of the triangle is congruent, the triangle
is scalene.

The second use of 
SAS: E' and D' are 
on the same ray.C
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Here is one of those internal symmetry results. I put the others in the
exercises.

THE ISOSCELES TRIANGLE THEOREM
In an isosceles triangle, the angles opposite the congruent sides are
congruent.

Proof. Suppose �ABC is isosceles, with AB � AC. Then

AB � AC ∠A � ∠A AC � AB,

so by S·A·S, �ABC � �ACB (there’s the non-trivial congruence of the
triangle with itself). Comparing corresponding angles, ∠B � ∠C.

Two orderings of the 
list of congruences 
for the SAS lemma.

B C

A
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Exercises

1. Given any point P and any segment AB, prove that there are infinitely
many points Q so that PQ � AB.

2. Verify that triangle congruence is an equivalence relation– that it is
reflexive, symmetric, and transitive.

3. Prove the converse of the Isosceles Triangle Theorem: that if two in-
terior angles of a triangle are congruent, then the sides opposite them
must also be congruent.

4. Prove that all three interior angles of an equilateral triangle are congru-
ent.

5. Prove that no two interior angles of a scalene triangle can be congruent.

6. In the exercises in Lesson 1, I introduced the Cartesian model and de-
scribed how point, line, on and between are interpreted in that model.
Let me extend that model now to include congruence. In the Carte-
sian model, segment congruence is defined in terms of the length of
the segment, which, in turn, is defined using the distance function. If
(xa,ya) and (xb,yb) are the coordinates of A and B, then the length of
the segment AB, written |AB|, is

|AB|=
√

(xa − xb)2 +(ya − yb)2.

Two segments are congruent if and only if they are the same length.
With this intepretation, verify the first three axioms of congruence.

7. Angle congruence is the most difficult to interpret in the Cartesian
model. Like segment congruence, angle congruence is defined via
measure– in this case angle measure. You may remember from calcu-
lus that the dot product provides a way to measure the angle between
two vectors: that for any two vectors v and w,

v ·w = |v||w|cosθ ,

where θ is the angle between v and w. That is the key here. Given
an angle ∠ABC, its measure, written (∠ABC), is computed as follows.
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Let (xa,ya), (xb,yb) and (xc,yc) be the coordinates for points A, B, and
C, then define vectors

v = �xa − xb,ya − yb� w = �xc − xb,yc − yb�.

and measure
(∠ABC) = cos−1

(
v ·w
|v||w|

)
.

Two angles are congruent if and only if they have the same angle mea-
sure. With this interpretation, verify the last three axioms of congru-
ence.





4. CONGRUENCE VERSE II
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The ultimate objective of this lesson is derive a third triangle congruence
theorem, A·A·S. The basic technique I used in the last chapter to prove
S·A·S and A·S·A does not quite work this time though, so along the way
we are going to get to see a few more of the tools of neutral geometry:
supplementary angles, the Alternate Interior Angle Theorem, and the Ex-
terior Angle Theorem.

Supplementary Angles

There aren’t that many letters in the alphabet, so it is easy to burn through
most of them in a single proof if you aren’t frugal. Even if your variables
don’t run the full gamut from A to Z, it can be a little challenging just
trying to keep up with them. Some of this notation just can’t be avoided;
fortunately, some of it can. One technique I like to use to cut down on
some notation is what I call “relocation”. Let’s say you are working with
a ray AB �. Now you can’t change the endpoint A without changing the
ray itself, but there is a little flexibility with the point B. If B′ is any other
point on the ray (other than A), then AB � and AB′ � are actually the
same. So rather than introduce a whole new point on the ray, I like to just
”relocate” B to a more convenient location. The same kind of technique
can also be used for angles and lines. Let me warn you: you must be
careful not to abuse this relocation power. I have seen students relocate a
point to one intersection, use the fact that the point is at that intersection in
their proof, and then relocate it again a few steps later to another location.
That is obviously bad! Yes there is some flexibility to the placement of
some of these points, but once you have used up that flexibility, the point
has to stay put.

Relocation of points is a shortcut to cut down on notation.  Illustrated here are 
the relocations of points A, B, and C to make the congruences needed for the 
proof that the supplements of congruent angles are congruent.

C
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Three noncolinear points A, B, and C define an angle ∠ABC. When
they are colinear, they do not define a proper angle, but you may want to
think of them as forming a kind of degenerate angle. If A∗B∗C, then A,
B, and C form what is called a “straight angle”. One of the most basic
relationships that two angles can have is defined in terms of these straight
angles.

DEF: SUPPLEMENTARY ANGLES
Suppose that A, B and C form a straight angle with A∗B∗C. Let D be
a fourth point which is not the line through A, B and C. Then ∠ABD
and ∠CBD are supplementary angles.

Supplements have a nice and healthy relationship with congruence as re-
lated in the next theorem.

THM: CONGRUENT SUPPLEMENTS
The supplements of congruent angles are congruent:
given two pairs of supplementary angles
Pair 1: ∠ABD and ∠CBD and
Pair 2: ∠A′B′D′ and ∠C′B′D′,
if ∠ABD � ∠A′B′D′, then ∠CBD � ∠C′B′D′.

Proof. The idea is to relocate points to create a set of congruent triangles,
and then to find a path of congruences leading from the given angles to
the desired angle. In this case the relocation is easy enough: position A,
C, and D on their respective rays BA�, BC� and BD� so that

BA � B′A′ BC � B′C′ BD � B′D′.

Three noncolinear points A, B, and C define an angle ∠ABC. When
they are colinear, they do not define a proper angle, but you may want to
think of them as forming a kind of degenerate angle. If A∗B∗C, then A,
B, and C form what is called a “straight angle”. One of the most basic
relationships that two angles can have is defined in terms of these straight
angles.

DEF: SUPPLEMENTARY ANGLES
Suppose that A, B and C form a straight angle with A∗B∗C. Let D be
a fourth point which is not the line through A, B and C. Then ∠ABD
and ∠CBD are supplementary angles.

Supplements have a nice and healthy relationship with congruence as re-
lated in the next theorem.

THM: CONGRUENT SUPPLEMENTS
The supplements of congruent angles are congruent:
given two pairs of supplementary angles
Pair 1: ∠ABD and ∠CBD and
Pair 2: ∠A′B′D′ and ∠C′B′D′,
if ∠ABD � ∠A′B′D′, then ∠CBD � ∠C′B′D′.

Proof. The idea is to relocate points to create a set of congruent triangles,
and then to find a path of congruences leading from the given angles to
the desired angle. In this case the relocation is easy enough: position A,
C, and D on their respective rays BA�, BC� and BD� so that

BA � B′A′ BC � B′C′ BD � B′D′.

D

CBA A pair of supplementary angles:
∠ABD and ∠DBC
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The path through the series of congruent triangles isn’t that hard either if
you just sit down to figure it out yourself. The problem is in writing it
down so that a reader can follow along. In place of a traditional proof,
I have made a chart that I think makes it easy to walk through the con-
gruences. To read the chart, you need to know that I am using a little
shorthand notation for each of the congruences. Here’s the thing– each
congruence throughout the entire proof compares segments, angles, or tri-
angles with the same letters. The difference is that on the right hand side,
the letters are marked with a ′, while on the left they are not. For in-
stance, the goal of this proof is to show that ∠CBD � ∠C′B′D′. When I
was working through the proof I found it a little tedious have to write the
whole congruence out with every single step. Since the left hand side of
the congruence determines the right hand side anyway, I just got in the
habit of writing down only the left hand side. In the end I decided that
was actually easier to read than the whole congruence, so in the chart, the
statement AB really means AB � A′B′. I still feel a little uneasy doing this,
so let me give another defense of this shorthand. One of the things I talked
about in the last lesson was the idea of these congruences “locking in” a
triangle– if you know S·A·S, for instance, then the triangle is completely
determined. The statements in this proof can be interpreted as the locking
in of various segments, angles, and triangles. For instance, B is between
A and C, so if AB and BC are given, then AC is locked in by the Segment
Addition Axiom. Okay, so that’s enough about the notation. Here’s the
chart of the proof.

A B

D

C A B

D

C A B

D

C

Given :
∠ABD

BA
BC
BD

SAS : ABD
a ∠DAB

AB s
∠ABD a

BD s
a ∠BDA
s DA

a
s
a
s
a
s

SAS : ACD
∠DAC a

AC s
a ∠ACD
s CD
a ∠CDA

DA s

a
s
a
s
a
s

SAS : BCD
a ∠DBC

BC s
∠BCD a

CD s
a ∠CDB
s DB

a
s
a
s
a
s

Segment Addn
AB

AC
BC
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The path through the series of congruent triangles isn’t that hard either if
you just sit down to figure it out yourself. The problem is in writing it
down so that a reader can follow along. In place of a traditional proof,
I have made a chart that I think makes it easy to walk through the con-
gruences. To read the chart, you need to know that I am using a little
shorthand notation for each of the congruences. Here’s the thing– each
congruence throughout the entire proof compares segments, angles, or tri-
angles with the same letters. The difference is that on the right hand side,
the letters are marked with a ′, while on the left they are not. For in-
stance, the goal of this proof is to show that ∠CBD � ∠C′B′D′. When I
was working through the proof I found it a little tedious have to write the
whole congruence out with every single step. Since the left hand side of
the congruence determines the right hand side anyway, I just got in the
habit of writing down only the left hand side. In the end I decided that
was actually easier to read than the whole congruence, so in the chart, the
statement AB really means AB � A′B′. I still feel a little uneasy doing this,
so let me give another defense of this shorthand. One of the things I talked
about in the last lesson was the idea of these congruences “locking in” a
triangle– if you know S·A·S, for instance, then the triangle is completely
determined. The statements in this proof can be interpreted as the locking
in of various segments, angles, and triangles. For instance, B is between
A and C, so if AB and BC are given, then AC is locked in by the Segment
Addition Axiom. Okay, so that’s enough about the notation. Here’s the
chart of the proof.

A B

D

C A B

D

C A B

D

C

Given :
∠ABD

BA
BC
BD

SAS : ABD
a ∠DAB

AB s
∠ABD a

BD s
a ∠BDA
s DA

a
s
a
s
a
s

SAS : ACD
∠DAC a

AC s
a ∠ACD
s CD
a ∠CDA

DA s
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SAS : BCD
a ∠DBC
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Every angle has two supplements. To get a supplement of an angle, simply
replace one of the two rays forming the angle with its opposite ray. Since
there are two candidates for this replacement, there are two supplements.
There is a name for the relationship between these two supplements.

DEF: VERTICAL ANGLES
Vertical angles are two angles which are supplementary to the same
angle.

Every angle is part of one and only one vertical angle pair (something you
may want to prove). For ∠ABC, the other half of the pair is the angle
formed by the rays (BA �)op and (BC �)op. Without a doubt, the single
most important property of vertical angles is that

THM: ON VERTICAL ANGLES
Vertical angles are congruent.

Proof. Two vertical angles are, by definition, supplementary to the same
angle. That angle is congruent to itself (because of the second axiom
of congruence). Now we can use the last theorem. Since the vertical
angles are supplementary to congruent angles, they themselves must be
congruent.

Every angle has two supplements. To get a supplement of an angle, simply
replace one of the two rays forming the angle with its opposite ray. Since
there are two candidates for this replacement, there are two supplements.
There is a name for the relationship between these two supplements.

DEF: VERTICAL ANGLES
Vertical angles are two angles which are supplementary to the same
angle.

Every angle is part of one and only one vertical angle pair (something you
may want to prove). For ∠ABC, the other half of the pair is the angle
formed by the rays (BA �)op and (BC �)op. Without a doubt, the single
most important property of vertical angles is that

THM: ON VERTICAL ANGLES
Vertical angles are congruent.

Proof. Two vertical angles are, by definition, supplementary to the same
angle. That angle is congruent to itself (because of the second axiom
of congruence). Now we can use the last theorem. Since the vertical
angles are supplementary to congruent angles, they themselves must be
congruent.

C

C

B

A

A

Two intersecting lines generate 
two pairs of vertical angles. 
 
Pair 1: ∠ABC and ∠ABC

Pair 2: ∠ABA and ∠CBC
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The Alternate Interior Angle Theorem

The farther we go in the study of neutral geometry, the more we are go-
ing to bump into issues relating to how parallel lines behave. A lot of
the results we will derive are maddeningly close to results of Euclidean
geometry, and this can lead to several dangerous pitfalls. The Alternate
Interior Angle Theorem is maybe the first glimpse of that.

DEF: TRANSVERSALS
Given a set of lines, {�1, �2, . . . , �n}, a transversal is a line which
intersects all of them.

DEF: ALTERNATE AND ADJACENT INTERIOR ANGLES
Let t be a transversal to �1 and �2. Alternate interior angles are pairs
of angles formed by �1, �2, and t, which are between �1 and �2, and
on opposite sides of t. Adjacent interior angles are pairs of angles on
the same side of t.

The Alternate Interior Angle Theorem tells us something about transver-
sals and parallel lines. Read it carefully though. The converse of this
theorem is used a lot in Euclidean geometry, but in neutral geometry this
is not an “if and only if” statement.

t
A transversal t of a set of lines.

2

34

1

Alternate pairs: 1 and 3, 2 and 4. Adjacent pairs: 1 and 4, 2 and 3.



56 LESSON 4

THE ALTERNATE INTERIOR ANGLE THEOREM
Let �1 and �2 be two lines, crossed by a transversal t.
If the alternate interior angles formed are congruent,
then �1 and �2 are parallel.

Proof. First I want to point out something that may not be entirely clear
in the statement of the theorem. The lines �1, �2 and t will actually form
two pairs of alternate interior angles. However, the angles in one pair are
the supplements of the angles in the other pair, so if the angles in one
pair are congruent then angles in the other pair also have to be congruent.
Now let’s get on with the proof, a proof by contradiction. Suppose that
�1 and �2 are crossed by a transversal t so that alternate interior angles are
congruent, but suppose that �1 and �2 are not parallel. Label

A: the intersection of �1 and t;

B: the intersection of �2 and t;

C: the intersection of �1 and �2.

By the Segment Construction Axiom there are also points

D on �1 so that D∗A∗C and so that AD � BC, and

D′ on �2 so that D′ ∗B∗C and so that BD′ � AC.

In terms of these marked points the congruent pairs of alternate interior
angles are

∠ABC � ∠BAD & ∠ABD′ � ∠BAC.

Take the first of those congruences, together with the fact that that we
have constructed AD � BC and AB � BA, and that’s enough to use S·A·S:
�ABC ��BAD. I really just want to focus on one pair of corresponding
angles in those triangles though: ∠ABD � ∠BAC. Now ∠BAC is con-
gruent to its alternate interior pair ∠ABD′, so since angle congruence is
transitive, this means that ∠ABD � ∠ABD′. Here’s the problem. There is
only one way to construct this angle on that side of t, so the rays BD� and
BD′� must actually be the same. That means that D, which we originally
placed on �1, is also on �2. That would imply that �1 and �2 share two
points, C and D, in violation of the very first axiom of incidence.

If 1 and 2 crossed on one side of t, they would have to cross on the other side.

D

D

A

B

C

1

2

D
D

A

B

C
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The Exterior Angle Theorem

We have talked about congruent angles, but so far we have not discussed
any way of saying that one angle is larger or smaller than the other. That
is something that we will need to do eventually, in order to develop a
system of measurement for angles. For now though, we need at least some
rudimentary definitions of this, even if the more fully developed system
will wait until later.

DEF: SMALLER AND LARGER ANGLES
Given two angles ∠A1B1C1 and ∠A2B2C2, the Angle Construction
Axiom guarantees that there is a point A� on the same side of �B2C2�
as A2 so that ∠A�B2C2 �∠A1B1C1. If A� is in the interior of ∠A2B2C2,
then we say that ∠A1B1C1 is smaller than ∠A2B2C2. If A� is on
the ray B2C2, then the two angles are congruent as we have previ-
ously seen. If A� is neither in the interior of ∠A2B2C2, nor on the ray
B2C2�, then ∠A1B1C1 is larger than ∠A2B2C2.

THE ALTERNATE INTERIOR ANGLE THEOREM
Let �1 and �2 be two lines, crossed by a transversal t.
If the alternate interior angles formed are congruent,
then �1 and �2 are parallel.

Proof. First I want to point out something that may not be entirely clear
in the statement of the theorem. The lines �1, �2 and t will actually form
two pairs of alternate interior angles. However, the angles in one pair are
the supplements of the angles in the other pair, so if the angles in one
pair are congruent then angles in the other pair also have to be congruent.
Now let’s get on with the proof, a proof by contradiction. Suppose that
�1 and �2 are crossed by a transversal t so that alternate interior angles are
congruent, but suppose that �1 and �2 are not parallel. Label

A: the intersection of �1 and t;

B: the intersection of �2 and t;

C: the intersection of �1 and �2.

By the Segment Construction Axiom there are also points

D on �1 so that D∗A∗C and so that AD � BC, and

D′ on �2 so that D′ ∗B∗C and so that BD′ � AC.

In terms of these marked points the congruent pairs of alternate interior
angles are

∠ABC � ∠BAD & ∠ABD′ � ∠BAC.

Take the first of those congruences, together with the fact that that we
have constructed AD � BC and AB � BA, and that’s enough to use S·A·S:
�ABC ��BAD. I really just want to focus on one pair of corresponding
angles in those triangles though: ∠ABD � ∠BAC. Now ∠BAC is con-
gruent to its alternate interior pair ∠ABD′, so since angle congruence is
transitive, this means that ∠ABD � ∠ABD′. Here’s the problem. There is
only one way to construct this angle on that side of t, so the rays BD� and
BD′� must actually be the same. That means that D, which we originally
placed on �1, is also on �2. That would imply that �1 and �2 share two
points, C and D, in violation of the very first axiom of incidence.

1 2 3

∠3 is larger than ∠2∠1 is smaller than ∠2
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In lesson 8, I will come back to this in more detail. Feel free to skip ahead
if you would like a more detailed investigation of this way of comparing
non-congruent angles.

DEF: EXTERIOR ANGLES
An exterior angle of a triangle is an angle supplementary to one of
the triangle’s interior angles.

THE EXTERIOR ANGLE THEOREM
The measure of an exterior angle of a triangle is
greater than the measure of either of the nonadjacent
interior angles.

Proof. I will use a straightforward proof by contradiction. Starting with
the triangle �ABC, extend the side AC past C: just pick a point D so
that A ∗C ∗D. Now suppose that the interior angle at B is larger than the
exterior angle at ∠BCD. Then there is a ray r from B on the same side
of BC as A so that BC � and r form an angle congruent to ∠BCD. This
ray will lie in the interior of ∠B, though, so by the Crossbar Theorem,
r must intersect AC. Call this intersection point P. Now wait, though.
The alternate interior angles ∠PBC and ∠BCD are congruent. According
to the Alternate Interior Angle Theorem r and AC must be parallel– they
can’t intersect. This is an contradiction.

In lesson 8, I will come back to this in more detail. Feel free to skip ahead
if you would like a more detailed investigation of this way of comparing
non-congruent angles.

DEF: EXTERIOR ANGLES
An exterior angle of a triangle is an angle supplementary to one of
the triangle’s interior angles.

THE EXTERIOR ANGLE THEOREM
The measure of an exterior angle of a triangle is
greater than the measure of either of the nonadjacent
interior angles.

Proof. I will use a straightforward proof by contradiction. Starting with
the triangle �ABC, extend the side AC past C: just pick a point D so
that A ∗C ∗D. Now suppose that the interior angle at B is larger than the
exterior angle at ∠BCD. Then there is a ray r from B on the same side
of BC as A so that BC � and r form an angle congruent to ∠BCD. This
ray will lie in the interior of ∠B, though, so by the Crossbar Theorem,
r must intersect AC. Call this intersection point P. Now wait, though.
The alternate interior angles ∠PBC and ∠BCD are congruent. According
to the Alternate Interior Angle Theorem r and AC must be parallel– they
can’t intersect. This is an contradiction.

Three pairs of exterior angles Exterior Angle Th’m: a proof by contradiction

D

A P

B

r

C
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A·A·S TRIANGLE CONGRUENCE
In triangles �ABC and �A′B′C′, if

∠A � ∠A′ ∠B � ∠B′ BC � B′C′,

then �ABC ��A′B′C′.

Proof. The setup of this proof is just like the proof of A·S·A, but for the
critical step we are going to need to use the Exterior Angle Theorem.
Locate A� on BA � so that A�B � A′B′. By S·A·S, �A�BC � �A′B′C′.
Therefore ∠A� � ∠A′ � ∠A. Now if B∗A∗A� (as illustrated) then ∠A is
an exterior angle and ∠A� is a nonadjacent interior angle of the triangle
�AA�C. Acording to the Exterior Angle Theorem, these angles can’t be
congruent. If B∗A∗A�, then ∠A� is an exterior angle and ∠A is a nonadja-
cent interior angle. Again, the Exterior Angle Theorem says these angles
can’t be congruent. The only other possibility, then, is that A = A�, so
AB � A′B′, and by S·A·S, that means �ABC ��A′B′C′.

C

B

A

C

B

A

B

A

A familiar chase to 
prove AAS, but this 
time we have to call 
upon the Exterior 
Angle Theorem.

C

A
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Exercises

1. Prove that for every segment AB there is a point M on AB so that AM �
MB. This point is called the midpoint of AB.

2. Prove that for every angle ∠ABC there is a ray BD � in the interior
of ∠ABC so that ∠ABD � ∠DBC. This ray is called the bisector of
∠ABC.

3. Working from the spaghetti diagram proof that the supplements of con-
gruent angles are congruent, write a traditional proof.



5. CONGRUENCE VERSE III
OBJECTIVE: SSS
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In the last lesson I pointed out that the first and second axioms of congru-
ence have angle counterparts in the fourth and fifth axioms, but that there
was no direct angle counterpart to the third axiom, the Segment Addition
Axiom. The next couple of results fill that hole.

THE ANGLE SUBTRACTION THEOREM
Let D and D′ be interior points of ∠ABC and ∠A′B′C′

respectively. If

∠ABC � ∠A′B′C′ & ∠ABD � ∠A′B′D′,

then ∠DBC � ∠D′B′C′.

Proof. This proof is a lot like the proof that supplements of congruent
angles are congruent, and I am going to take the same approach. The first
step is one of relocation. Relocate A and C on BA� and BC� respectively
so that

BA � B′A′ & BC � B′C′.

Since D is in the interior of ∠ABC, by the Crossbar Theorem, BD � in-
tersects AC. Relocate D to that intersection. Likewise, relocate D′ to
the intersection of B′D′ � and A′C′. Note that this does not mean that
BD � B′D′ although that is something that we will establish in the course
of the proof. I am going to use a chart to illustrate the congruences in
place of a “formal” proof.

A

B

D C
A

B

D C
A

B

D C
*

SAS : ABC
a ∠CAB

AB s
∠ABC a

BC s
a ∠BCA
s CA

a
s
a
s
a
s

ASA : ABD
∠DAB a

AB s
∠ABD a

s BD
a ∠BDA
s DA

a
s
a
s
a
s

AAS : BCD
a ∠DBC

BC s
∠BCD a

s CD
∠CDB a

s DB

a
s
a
s
a
s

Given :
AB
BC

∠ABC
∠ABD

*

*if angles are congruent, 
 their supplements are too. 
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Relocations for A, B, and D.

C

B

D
C

A

A

B

D

In the last lesson I pointed out that the first and second axioms of congru-
ence have angle counterparts in the fourth and fifth axioms, but that there
was no direct angle counterpart to the third axiom, the Segment Addition
Axiom. The next couple of results fill that hole.

THE ANGLE SUBTRACTION THEOREM
Let D and D′ be interior points of ∠ABC and ∠A′B′C′

respectively. If

∠ABC � ∠A′B′C′ & ∠ABD � ∠A′B′D′,

then ∠DBC � ∠D′B′C′.

Proof. This proof is a lot like the proof that supplements of congruent
angles are congruent, and I am going to take the same approach. The first
step is one of relocation. Relocate A and C on BA� and BC� respectively
so that

BA � B′A′ & BC � B′C′.

Since D is in the interior of ∠ABC, by the Crossbar Theorem, BD � in-
tersects AC. Relocate D to that intersection. Likewise, relocate D′ to
the intersection of B′D′ � and A′C′. Note that this does not mean that
BD � B′D′ although that is something that we will establish in the course
of the proof. I am going to use a chart to illustrate the congruences in
place of a “formal” proof.
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*if angles are congruent, 
 their supplements are too. 
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With angle subtraction in the toolbox, angle addition is now easy to prove.

THE ANGLE ADDITION THEOREM
Suppose that D is in the interior of ∠ABC and that
D′ is in the interior of ∠A′B′C′. If

∠ABD � ∠A′B′D′ & ∠DBC � ∠D′B′C′,

then ∠ABC � ∠A′B′C′.

Proof. Because of the Angle Construction Axiom, there is a ray BC�� on
the same side of � AB � as C so that ∠ABC� � ∠A′B′C′. What we will
show here is that BC� and BC�� are actually the same so that the angles
∠ABC and ∠ABC� are the same as well. This all boils down to one simple
application of the Angle Subtraction Theorem:

∠ABC��∠A′B′C′ & ∠ABD�∠A′B′D′ =⇒ ∠DBC��∠D′B′C′.

We already know that ∠D′B′C′ �∠DBC, so ∠DBC� �∠DBC. The Angle
Construction Axiom tells us that there is but one way to construct this
angle on this side of �DB�, so BC�� and BC� have to be the same.

The proof of the Angle Addition Theorem.

C ACD

A

D

BB B

A D

angle 
subtraction

C
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We end this lesson with the last of the triangle congruence theorems.
The proofs of the previous congruence theorems all used essentially the
same approach, but that approach required an angle congruence. No angle
congruence is given this time, so that won’t work. Instead we are going to
be using the Isosceles Triangle Theorem.

S · S · S TRIANGLE CONGRUENCE
In triangles �ABC and �A′B′C′ if

AB � A′B′ BC � B′C′ CA �C′A′,

then �ABC ��A′B′C′.

Proof. The first step is to get the two triangles into a more convenient
configuration. To do that, we are going to create a congruent copy of
�A′B′C′ on the opposite side of � AC � from B. The construction is
simple enough: there is a unique point B� on the opposite side of �AC�
from B such that:

∠CAB� � ∠C′A′B′ & AB� � A′B′.

In addition, we already know that AC � A′C′, so by S·A·S, �ABC� is con-
gruent to �A′B′C′. Now the real question is whether �ABC� is congruent
to �ABC, and that is the next task.

Creating a congruent copy of the second triangle abutting the first triangle.

C
B

C

A
A B

B
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Three possible locations of P, and the resulting isosceles triangles.

B

C

C=P

A A A

P P
B B B B B

C
1 2 3
Since B and B� are on opposite sides of �AC�, the segment BB� inter-

sects �AC�. Let’s call that point of intersection P. Now we don’t know
anything about where P is on �AC�, and that opens up some options:

(1) P could be between A and C, or
(2) P could be either of the endpoints A or C, or
(3) P could be on the line �AC� but not the segment AC.

I am just going to deal with that first possibility. If you want a complete
proof, you are going to have to look into the remaining two cases yourself.
Assuming that A ∗P ∗C, both of the triangles �ABB� and �CBB� are
isosceles:

AB � A′B′ � AB�

CB �C′B′ �CB�.

According to the Isosceles Triangle Theorem, the angles opposite those
congruent sides are themselves congruent:

∠ABP � ∠AB�P
∠CBP � ∠CB�P.

Since we are assuming that P is between A and C, we can use the An-
gle Addition Theorem to combine these two angles into the larger an-
gle ∠ABC � ∠AB�C. We already know ∠AB�C � ∠A′B′C′, so ∠ABC �
∠A′B′C′ and that is the needed angle congruence. By S·A·S, �ABC �
�A′B′C′.

Since B and B� are on opposite sides of �AC�, the segment BB� inter-
sects �AC�. Let’s call that point of intersection P. Now we don’t know
anything about where P is on �AC�, and that opens up some options:

(1) P could be between A and C, or
(2) P could be either of the endpoints A or C, or
(3) P could be on the line �AC� but not the segment AC.

I am just going to deal with that first possibility. If you want a complete
proof, you are going to have to look into the remaining two cases yourself.
Assuming that A ∗P ∗C, both of the triangles �ABB� and �CBB� are
isosceles:

AB � A′B′ � AB�

CB �C′B′ �CB�.

According to the Isosceles Triangle Theorem, the angles opposite those
congruent sides are themselves congruent:

∠ABP � ∠AB�P
∠CBP � ∠CB�P.

Since we are assuming that P is between A and C, we can use the An-
gle Addition Theorem to combine these two angles into the larger an-
gle ∠ABC � ∠AB�C. We already know ∠AB�C � ∠A′B′C′, so ∠ABC �
∠A′B′C′ and that is the needed angle congruence. By S·A·S, �ABC �
�A′B′C′.
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Two noncongruent triangles 
sharing S·S·A.

Four noncongruent triangles 
sharing A·A·A.

Failures of S·S·A and A·A·A in the Euclidean model.

A A

B

C

C
B3

B1
B2

B4 C1

C2

C3

C4

We have established four triangle congruences: S·A·S, A·S·A, A·A·S,
and S·S·S. For each, you need three components, some mix of sides and
angles. It would be natural to wonder whether there are any other com-
binations of three sides and angles which give a congruence. There are
really only two other fundamentally different combinations: A·A·A and
S·S·A. Neither is a valid congruence theorem in neutral geometry. In fact,
both fail in Euclidean geometry. The situation in non-Euclidean geome-
try is a little bit different, but I am going to deflect that issue for the time
being.
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Exercises

1. The Segment Addition Axiom. The Angle Subtraction Theorem. The
Angle Addition Theorem. That just leaves the Segment Subtraction
Theorem. State it. Prove it.

2. One of the conditions in the statement of the Angle Subtraction The-
orem is that both D and D′ must be in the interiors of ther respective
angles. In fact, this condition can be weakened: prove that you do not
need to assume that D′ is in the interior of the angle, just that it is on
the same side of A′B′ as C′.

3. Complete the proof of S·S·S by handling the other two cases (when P
is one of the endpoints and when P is on the line � AC � but not the
segment AC).

4. Suppose that A∗B∗C and that A′ and C′ are on opposite sides of �AC�.
Prove that if ∠ABA′ � ∠CBC′, then A′ ∗B∗C′.

5. Suppose that A, B, C, and D are four distinct non-colinear points. Prove
that if �ABC ��DCB, then �BAD ��CDA.



6. READER’S SOLO 
SHORTER AND LONGER
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The purpose of this short section is to develop a system of comparison
for segments that aren’t congruent. I am going to let you provide all the
proofs in this section. It will give you the opportunity to work with order
and congruence on your own.

DEF: SHORTER AND LONGER
Given segments AB and CD, label E on CD� so that CE � AB.
If C ∗E ∗D, then AB is shorter than CD, written AB ≺CD.
If C ∗D∗E, then AB is longer than CD, written AB �CD.

Note that if you replace CD in this definition with DC, things will change
slightly: calculations will be done on the ray DC� rather than CD�. That
would seem like it could be problem, since CD and DC are actually the
same segment, so your first task in this chapter is to make sure that ≺ and
� are defined the same way, whether you are using CD or DC.

THM: ≺ AND � ARE WELL DEFINED
Given segments AB and CD, label:
E: the unique point on CD� so that AB �CE and
F : the unique point on DC� so that AB � DF .

Then C ∗E ∗D if and only if D∗F ∗C.

The purpose of this short section is to develop a system of comparison
for segments that aren’t congruent. I am going to let you provide all the
proofs in this section. It will give you the opportunity to work with order
and congruence on your own.

DEF: SHORTER AND LONGER
Given segments AB and CD, label E on CD� so that CE � AB.
If C ∗E ∗D, then AB is shorter than CD, written AB ≺CD.
If C ∗D∗E, then AB is longer than CD, written AB �CD.

Note that if you replace CD in this definition with DC, things will change
slightly: calculations will be done on the ray DC� rather than CD�. That
would seem like it could be problem, since CD and DC are actually the
same segment, so your first task in this chapter is to make sure that ≺ and
� are defined the same way, whether you are using CD or DC.

THM: ≺ AND � ARE WELL DEFINED
Given segments AB and CD, label:
E: the unique point on CD� so that AB �CE and
F : the unique point on DC� so that AB � DF .

Then C ∗E ∗D if and only if D∗F ∗C.

D

C

A E

F

B

AB ≺CD EF CD≺
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Here are a bunch of the properties of ≺ for you to verify. There are, of
course, corresponding properties for �, but I have left them out to cut
down on some of the tedium.

THM: TRANSITIVITY OF ≺
If AB ≺CD, and CD ≺ EF , then AB ≺ EF .
If AB ≺CD, and CD � EF , then AB ≺ EF .
If AB �CD, and CD ≺ EF , then AB ≺ EF .

THM: SYMMETRY BETWEEN ≺ AND �
For any two segments AB and CD, AB ≺CD if and only if CD � AB.

THM: ORDER (FOUR POINTS) AND ≺
If A∗B∗C ∗D, then BC ≺ AD.

THM: ADDITIVITY OF ≺
Suppose that A∗B∗C and A′ ∗B′ ∗C′. If AB ≺ A′B′ and BC ≺ B′C′,
then AC ≺ A′C′.





7. FILL THE HOLE 
DISTANCE, LENGTH, AND THE 

AXIOMS OF CONTINUITY
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Hilbert’s geometry starts with incidence, congruence, and order. It is a
synthetic geometry in the sense that it is not centrally built upon mea-
surement. Nowadays, it is more common to take an metrical approach to
geometry, and to establish your geometry based upon a measurement. In
the metrical approach, you begin by defining a distance function– a func-
tion d which assigns to each pairs of points a real number and satisfies the
following requirements

(i) d(P,Q)≥ 0, with d(P,Q) = 0 if and only if P = Q,
(ii) d(P,Q) = d(Q,P), and

(iii) d(P,R)≤ d(P,Q)+d(Q,R).

Once the distance function has been chosen, the length of a segment is
defined to be the distance between its endpoints. I will follow the conven-
tion of using the absolute value sign to notate the length of a segment, so
|PQ|= d(P,Q). Then congruence is defined by saying that two segments
are congruent if they have the same length. Incidence and order also can
be defined in terms of d: points P, Q, and R are all on the same line, and Q
is between P and R when the inequality in (iii) is an equality. You see, syn-
thetic geometry takes a back seat to analytic geometry, and the synthetic
notions of incidence, order, and congruence, are defined analytically. I do
not have a problem with that approach– it is the one that we are going to
take in the development of hyperbolic geometry much later on. We have
been developing a synthetic geometry, though, and so what I would like
to do in this lesson is to build distance out of incidence, order, and con-
gruence. This is what Hilbert did when he developed the real number line
and its properties inside of the framework of his axiomatic system.

Modest Expectations

Here we stand with incidence, order, congruence, the axioms describing
them, and at this point even a few theorems. Before we get out of this
section, I will throw in the last two axioms of neutral geometry, the axioms
of continuity, too. From all of this, we want to build a distance function
d. Look, we have all dealt with distance before in one way or another, and
we want our distance function to meet conditions (i)–(iii) above, so it is
fair to have certain expectations for d. I don’t think it is unreasonable to
expect all of the following.
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(1) The distance between any two distinct points should be a positive
real number and the distance from a point to itself should be zero.
That way, d will satisfy condition (i) above.

(2) Congruent segments should have the same length. That takes care
of condition (ii) above, since AB � BA, but it does a whole lot more
too. You see, let’s pick out some ray r and label its endpoint O. Ac-
cording to the Segment Construction Axiom, for any segment AB,
there is a unique point P on r so that AB � OP. If congruent seg-
ments are to have the same length, then that means |AB|= d(O,P).
Therefore, if we can just work out the distance from O to the other
points on r, then all other distances will follow.

(3) If A∗B∗C, then
|AB|+ |BC|= |AC|.

This is just a part of property (iii) of a distance function. Since
we are going to develop the distance function on r, we don’t have
to worry about non-colinear points just yet (that will come a little
later). Relating back to your work in the last section, since d never
assigns negative values, this means that

AB ≺CD =⇒ |AB|< |CD|,
AB �CD =⇒ |AB|> |CD|.

It is up to us to build a distance function that meets all three of these
requirements. The rest of this chapter is devoted to doing just that.

a b a+b

The additivity condition for d.
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Divide and combine: the dyadic points

With those conditions in mind, let’s start building the distance function
d. The picture that I like to keep in my mind as I’m doing this is that
simple distance measuring device: the good old-fashioned ruler. Not a
metric ruler mind you, but an English ruler with inches on it. Here is
one way that you can classify the markings on the ruler. You have the 1′′
mark. That distance is halved, and halved, and halved again to get the
1/2′′, 1/4′′, and 1/8′′ marks. Depending upon the precision of the ruler,
there may be 1/16′′ or 1/32′′ markings as well. All the other marks on
the ruler are multiples of these. Well, that ruler is the blueprint for how
we are going to build the skeleton of d. First of all, because of condition
(1), d(O,O) = 0. Now take a step along r to another point. Any point is
fine– like the inch mark on the ruler, it sets the unit of measurement. Call
this point P0 and define d(O,P0) = 1. Now, as with the ruler, we want to
repeatedly halve OP0. That requires a little theory.

DEF: MIDPOINT
A point M on a segment AB is the midpoint of AB if AM � MB.

THM: EXISTENCE, UNIQUENESS OF MIDPOINTS
Every segment has a unique midpoint.

Proof. Existence. Given the segment AB,
choose a point P which is not on � AB �.
According to the Angle and Segment Con-
struction Axioms, there is a point Q on the
opposite side of � AB � from P so that
∠ABP � ∠BAQ (that’s the angle construc-
tion part) and so that BP � AQ (that’s the
segment construction part). Since P and Q
are on opposite sides of �AB�, the segment
PQ intersects it. Call that point of intersec-
tion M. I claim that M is the midpoint of AB.
Why? Well, compare �MBP and �MAQ.

P

Q

M

B

A
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In those triangles

∠AMQ � ∠BMP (vertical angles)
∠MAQ � ∠MBP (by construction)
BP � AQ (by construction)

so, by A·A·S, they must be congruent trian-
gles. That means that AM � MB. It is worth
noting that the midpoint of AB has to be be-
tween A and B. If it weren’t, one of two
things would have to happen:

M ∗A∗B =⇒ MA ≺ MB, or
A∗B∗M =⇒ MA � MB,

and either way, the segments MA and MB
couldn’t be congruent.

Uniqueness. Suppose that a segment AB ac-
tually had two midpoints. Let’s call them
M1 and M2, and just for the sake of conve-
nience, let’s say that they are labeled so that
they are ordered as

A∗M1 ∗M2 ∗B.

Since A∗M1 ∗M2, AM1 ≺ AM2. Since M1 ∗
M2 ∗B, BM2 ≺ BM1. But now M2 is a mid-
point, so AM2 � BM2. Let’s put that to-
gether

AM1 ≺ AM2 � BM2 ≺ BM1.

In the last section you proved that ≺ is tran-
sitive. This would imply that AM1 ≺ BM1
which contradicts the fact that M1 is a mid-
point. Hence a segment cannot have two
distinct midpoints.

P

Q

M

B

A

P

Q

M

B

A

There are many choices 
for P, but they each lead 
to the same midpoint 
because a segment can 
have only one midpoint.
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Let’s go back to OP0. We now know that it has a unique midpoint. Let’s
call that point P1. In order for the distance function d to satisfy condition
(3),

|OP1|+ |P1P0|= |OP0|.

But OP1 and P1P0 are congruent, so in order for d to satisfy condition (2),
they have to be the same length. Therefore 2|OP1|= 1 and so |OP1|= 1/2.
Repeat. Take OP1, and find its midpoint. Call it P2. Then

|OP2|+ |P2P1|= |OP1|.

Again, OP2 and P2P1 are congruent, so the must be the same length. There-
fore 2|OP2|= 1/2, and so |OP2|= 1/4. By repeating this process over and
over, you can identify the points Pn which are distances of 1/2n from O.

With the points Pn as building blocks, we can start combining segments
of lengths 1/2n to get to other points. In fact, we can find a point whose
distance from O is m/2n for any positive integers m and n. It is just a
matter of chaining together enough congruent copies of OPn as follows.
Begin with the point Pn. By the first axiom of congruence, there is a
point P2

n on the opposite side of Pn from O so that PnP2
n � OPn. And

there is a point P3
n on the opposite side of P2

n from Pn so that P2
n P3

n � OPn.
And a point P4

n on the opposite side of P3
n from P2

n so that P3
n P4

n � OPn.
And so on. This can be continued until m segments are chained together

P0P1P3 P2O

O
r

P2
0P0

P3
0

P3
1P1

P5
1

P7
1

P3
2P2

P5
2

P7
2

P9
2

P11
2

P13
2
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stretching from O to a point which we will label Pm
n . In order for the

distance function to satisfy the additivity condition (3),

|OPm
n |= |OPn|+ |PnP2

n |+ |P2
n P3

n |+ · · ·+ |Pm−1
n Pm

n |.

All of these segments are congruent, though, so they have to be the same
length (for condition (2)), so

|OPm
n |= m · |OPn|= m ·1/2n = m/2n.

Rational numbers whose denominator can be written as a power of two
are called dyadic rationals. In that spirit, I will call these points the dyadic
points of r.

Fill the Hole

There are plenty of real numbers that aren’t dyadic rationals though, and
there are plenty of points on r that aren’t dyadic points. How can we
measure the distance from O to them? For starters, we are not going to be
able to do this without the last two axioms of neutral geometry.

P0P1P3 P2O

O
r

P2
0P0

P3
0

P3
1P1

P5
1

P7
1

P3
2P2

P5
2

P7
2

P9
2

P11
2

P13
2
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These last two axioms, the axioms of continuity, are a little more technical
than any of the previous ones. The first says that you can get to any point
on a line if you take enough steps. The second, which is inspired by
Dedekind’s construction of the real numbers, says that there are no gaps
in a line.

THE AXIOMS OF CONTINUITY

Ct1 Archimedes’ Axiom If AB and CD are any two segments, there is
some positive integer n such that n congruent copies of CD con-
structed end-to-end from A along the ray AB � will pass beyond
B.

Ct2 Dedekind’s Axiom Let S< and S≥ be two nonempty subsets of a
line � satisfying: (i) S< ∪S≥ = �; (ii) no point of S< is between
two points of S≥; and (iii) no point of S≥ is between two points
of S<. Then there is a unique point O on � such that for any two
other points P1 and P2 with P1 ∈ S< and P2 ∈ S≥ then P1 ∗O∗P2

It is time to get back to the issue of distance on the ray r. So let P be
a point on r. Even if P is not itself a dyadic point, it is surrounded by
dyadic points. In fact, there are so many dyadic points crowding P, that
the distance from O to P can be estimated to any level of precision using
nearby dyadic points. For instance, suppose we consider just the dyadic
points whose denominator can be written as 20:

S0 = {O,P1
0 ,P

2
0 ,P

3
0 , . . .}.

By the Archimedean Axiom, eventually these points will lie beyond P. If
we focus our attention on the one right before P, say Pm0

0 , and the one right
after, Pm0+1

0 , then
O∗Pm0

0 ∗P∗Pm0+1
0 .

(1) Archimedes: Given 
enough steps, P will be 
passed.

(2) Dedekind: There is a 
point between any two 
separated partitions of a 
line.

S− S+
P

(1) (2)
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We can compare the relative sizes of the segments

OPm0
0 ≺ OP ≺ OPm0+1

0

and so, if our distance is going to satisfy condition (3),

|OPm0
0 |<|OP|< |OPm0+1

0 |
m0 <|OP|< m0 +1

Not precise enough for you? Replace S0, with S1, the set of dyadic points
whose denominator can be written as 21:

S1 = {O,P1,P2
1 = P0,P3

1 ,P
4
1 = P2

0 , . . .}.

Again, the Archimedean Axiom guarantees that eventually the points in
S1 will pass beyond P. Let Pm1

1 be the last one before that happens. Then

O∗Pm1
1 ∗P∗Pm1+1

1

so

|OPm1
1 |<|OP|< |OPm1+1

1 |
m1/2 <|OP|< (m1 +1)/2

and this gives |OP| to within an accuracy of 1/2.
Continuing along in this way, you can use S2, dyadics whose denom-

inator can be written as 22, to approximate |OP| to within 1/4, and you
can use S3, dyadics whose denominator can be written as 23, to approx-
imate |OP| to within 1/8. Generally speaking, the dyadic rationals in Sn
provide an upper and lower bound for |OP| which differ by 1/2n. As n
goes to infinity, 1/2n goes to zero, forcing the upper and lower bounds
to come together at a single number. This number is going to have to be
|OP|. Now you don’t really need both the increasing and decreasing se-
quences of approximations to define |OP|. After all, they both end up at
the same number. Here is the description of |OP| using just the increasing
sequence: for each positive integer n, let Pmn

n be the last point in the list
Sn which is between O and P. In order for the distance function to satisfy
condition (3), we must set

|OP|= lim
n→∞

|OPmn
n |= lim

n→∞
mn/2n.
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Now do it in reverse

Every point of r now has a distance associated with it, but is there a point
at every possible distance? Do we know, for instance, that there is a point
at exactly a distance of 1/3 from O? The answer is yes– it is just a matter
of reversing the distance calculation process we just described and using
the Dedekind Axiom. Let’s take as our prospective distance some positive
real number x. For each integer n ≥ 0, let mn/2n be the largest dyadic
rational less than x whose denominator can be written as 2n and let Pmn

n be
the corresponding dyadic point on r. Now we are going to define two sets
of points:

S<: all the points of r that lie between O and any of the Pmn
n , together

with all the points of rop.

S≥: all of the remaining points of r.

So S< contains a sequence of dyadic rationals increasing to x

{Pm0
0 ,Pm1

1 ,Pm2
2 ,Pm3

3 , . . .},

P

Pm1
1

Pm1+1
1

Pm0
0

Pm0+1
0

Pm2
2

Pm2+1
2

(m
2
+

1)
4/

m
0

m
0
+

1

m
1

2/

Capturing a non-dyadic point between two sequences of dyadic points.
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and S≥ contains a sequence of dyadic rationals decreasing to x

{Pm0+1
0 ,Pm1+1

1 ,Pm2+1
2 ,Pm3+1

3 , . . .}.

Together S< and S≥ contain all the points of the line through r, but they
do not intermingle: no point of S< is between two of S≥ and no point of
S≥ is between two of S<. According to the Dedekind Axiom, then, there
is a unique point P between S< and S≥. Now let’s take a look at how far
P is from O. For all n,

OPmn
n ≺OP ≺ OPmn+1

n

|OPmn
n |< |OP|< |OPmn+1

n |
mn/2n < |OP|< (mn +1)/2n

As n goes to infinity, the interval between these two consecutive dyadics
shrinks – ultimately, the only point left is x. So |OP|= x.

Finding a dyadic sequence approaching a particular number can be
tricky business. Finding such a sequence approaching 1/3 is easy,
though, as long as you remember the geometric series formula

∞

∑
n=0

xn =
1

1− x
if |x|< 1.

With a little trial and error, I found that by plugging in x = 1/4,

1+
1
4
+

1
16

+
1

64
+

1
256

+ · · · = 4
3
.

Subtracting one from both sides gives an infinite sum of dyadics to
1/3, and we can extract the sequence from that

1
4
= 0.25

1
4
+

1
16

=
5
16

= 0.3125

1
4
+

1
16

+
1

64
=

21
64

= 0.32825

Example: dyadics approaching 1/3
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Segment addition, redux

For any two points P and Q, there is a unique segment OR on the ray r
which is congruent to PQ. Define d(P,Q) = |OR|. With this setup, our
distance function will satisfy conditions (1) and (2). That leaves condition
(3)– a lot of effort went into trying to build d so that condition would
be satisfied, but it is probably a good idea to make sure that it actually
worked. Let’s close out this lesson with two theorems that do that.

THM: A FORMULA FOR DISTANCE ALONG A RAY
If P and Q are points on r, with |OP| = x and |OQ| = y, and if P is
between O and Q, then |PQ|= y− x.

Proof. If both P and Q are dyadic points, then this is fairly easy. First you
are going to express their dyadic distances with a common denominator:

|OP|= m/2n |OQ|= m′/2n.

Then OP is built from m segments of length 1/2n and OQ is built from
m′ segments of length 1/2n. To get |PQ|, you simply have to take the m
segments from the m′ segments– so |PQ| is made up of m′ −m segments
of length 1/2n. That is

|PQ|= (m′ −m) · 1
2n = y− x.

P

O

Q

m copies
m' copies

1 2n/
Measuring the distance between two dyadic points.
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If one or both of P and Q are not dyadic, then there is a bit more work to
do. In this case, P and Q are approximated by a sequence of dyadics Pmn

n

and Pm′
n

n where

lim
n→∞

mn

2n = x & lim
n→∞

m′
n

2n = y.

Now we can trap |PQ| between dyadic lengths:

Pmn+1
n Pm′

n
n ≺PQ ≺ Pmn

n Pm′
n+1

n

|Pmn+1
n Pm′

n
n |< |PQ|< |Pmn

n Pm′
n+1

n |
m′

n −mn −1
2n < |PQ|< m′

n +1−mn

2n

As n approaches infinity, |PQ| is stuck between two values both of which
are approaching y− x.

Now while this result only gives a formula for lengths of segments on the
ray r, it is easy to extend it to a formula for lengths of segments on the line
containing r. In fact, this is one of the exercises for this lesson. The last
result of this lesson is a reinterpretation of the Segment Addition Axiom
in terms of distance, and it confirms that the distance we have constructed
does satisfy condition (3).

THM: SEGMENT ADDITION, THE MEASURED VERSION
If P∗Q∗R, then |PQ|+ |QR|= |PR|.

Proof. The first step is to transfer the problem over to r so that we can
start measuring stuff. So locate Q′ and R′ on r so that:

O∗Q′ ∗R′, PQ � OQ′, QR � Q′R′.

According to the Segment Addition Axiom, this means that PR � OR′.
Now we can use the last theorem,

|QR|= |Q′R′|= |OR′|− |OQ′|= |PR|− |PQ|.

Just solve that for |PR| and you’ve got it.

P

O

Q

Measuring the distance between two non-dyadic points.

Pm
n

Pm+1
n

Pm+1
n

Pm
n
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OR − OQ

Q

P

O

R

Q R

If one or both of P and Q are not dyadic, then there is a bit more work to
do. In this case, P and Q are approximated by a sequence of dyadics Pmn

n

and Pm′
n

n where

lim
n→∞

mn

2n = x & lim
n→∞

m′
n

2n = y.

Now we can trap |PQ| between dyadic lengths:

Pmn+1
n Pm′

n
n ≺PQ ≺ Pmn

n Pm′
n+1

n

|Pmn+1
n Pm′

n
n |< |PQ|< |Pmn

n Pm′
n+1

n |
m′

n −mn −1
2n < |PQ|< m′

n +1−mn

2n

As n approaches infinity, |PQ| is stuck between two values both of which
are approaching y− x.

Now while this result only gives a formula for lengths of segments on the
ray r, it is easy to extend it to a formula for lengths of segments on the line
containing r. In fact, this is one of the exercises for this lesson. The last
result of this lesson is a reinterpretation of the Segment Addition Axiom
in terms of distance, and it confirms that the distance we have constructed
does satisfy condition (3).

THM: SEGMENT ADDITION, THE MEASURED VERSION
If P∗Q∗R, then |PQ|+ |QR|= |PR|.

Proof. The first step is to transfer the problem over to r so that we can
start measuring stuff. So locate Q′ and R′ on r so that:

O∗Q′ ∗R′, PQ � OQ′, QR � Q′R′.

According to the Segment Addition Axiom, this means that PR � OR′.
Now we can use the last theorem,

|QR|= |Q′R′|= |OR′|− |OQ′|= |PR|− |PQ|.

Just solve that for |PR| and you’ve got it.
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Exercises

1. Our method of measuring distance along a ray r can be extended to the
rest of the line. In our construction each point on r corresponds to a
positive real number (the distance from O to that point). Suppose that
P is a point on rop. There is a point Q on r so that OP � OQ. If x
is the positive real number associated with Q, then we want to assign
the negative number −x to P. Now suppose that P1 and P2 are any two
points on the line and x and y are the associated real numbers. Show
that

d(P1,P2) = |x− y|.

2. Write 1/7, 1/6, and 1/5 as an infinite sum of dyadic rationals.

3. Since writing this, it has come to my attention (via Greenberg’s book
[1]) that Archimedes’ Axiom is actually a consequece of Dedekind’s
Axiom. You can prove this yourself as follows. If Archimedes were
not true, then there would be some point on a ray that could not be
reached by via end-to-end copies of a segment. In that case, the ray
can be divided into two sets: one consisting of the points that can be
reached, the other of the points that cannot. By including the opposite
ray in with the set of points that can be reached, you get a partition of
a line into two sets. Prove that these sets form a Dedekind cut of the
line. Then by Dedekind’s Axiom there is a point between them. Now
consider what would happen if you took one step forward or backward
from this point.

References

[1] Marvin J. Greenberg. Euclidean and Non-Euclidean Geometries: De-
velopment and History. W.H. Freeman and Company, New York, 4th
edition, 2008.
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These next two chapters are devoted to developing a measurement system
for angles. It’s really not that different from what we did in the last two
chapters and again I would like to divide up the work so I don’t feel like I
am doing everything by myself. This time I will prove the results about the
synthetic comparison of angles and I will let you prove the results which
ultimately lead to the degree system of angle measurement.

Synthetic angle comparison

The first step is to develop a way to compare angles so that you can look
at two angles and say that one is smaller or larger than the other. I gave
these definitions back in lesson 4, but in the interest of keeping everything
together, and to introduce some notation, here they are again.

DEF: SMALLER AND LARGER ANGLES
Given angles ∠ABC and ∠A′B′C′, label C� on the same side of AB as
C so that ∠ABC� � ∠A′B′C′.
≺ If C� is in the interior of ∠ABC, then ∠A′B′C′ is smaller than

∠ABC, written ∠A′B′C′ ≺ ∠ABC.
� If C� is in the exterior of ∠ABC, then ∠A′B′C′ is larger than

∠ABC, written ∠A′B′C′ � ∠ABC.

1 2 3

∠1 ≺ ∠2 ∠3 � ∠2≺
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B

BA

CD
A

1

2

3

456 CD

BA

[proved in lesson 2] [proved in lesson 3]
[from lesson 2]

THM: ORDERING RAYS

Given n ≥ 2 rays with a com-
mon basepoint B which are all
on the same side of the line
�AB� through B, there is an
ordering of them:

r1, r2, . . . ,rn

so that if i < j then ri is in the
interior of the angle formed
by BA� and r j.

[from lesson 3]

THM: CONGRUENCE AND AN-
GLE INTERIORS

Given ∠ABC � ∠A′B′C′ and
that the point D is in the in-
terior of ∠ABC. Suppose that
D′ is located on the same side
of �AB� as C so that ∠ABD�
∠A′B′D′. Then D′ is in the in-
terior of ∠A′B′C′.

In addition, the results of this section depend upon two results we proved
a while ago.
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As with the segment comparison definitions, there is a potential issue with
the definitions of ≺ and �. What if we decided to construct C� off of BC�
instead of BA �? Since ∠ABC = ∠CBA, and since we are interested in
comparing the angles themselves, this notion of larger or smaller should
not depend upon which ray we are building from. The next theorem tells
us not to worry.

THM: ≺ AND � ARE WELL DEFINED
Given ∠ABC and ∠A′B′C′, label:
C�– a point on the same side of AB as C for which ∠ABC� �∠A′B′C′

A�– a point on the same side of BC as A for which ∠CBA��∠A′B′C′.
Then C� is in the interior of ∠ABC if and only if A� is.

Proof. This is really a direct corollary of the “Congruence and Angle In-
teriors” result from lesson 3. You see, that is exactly what we have here:
∠ABC � ∠ABC and ∠A�BC � ∠ABC� and C� is on the same side of AB
as C, so if A� is in the interior of ∠ABC, then C� must be too. Conversely,
A� is on the same side of BC as A, so if C� is in the interior, then A� must
be too.

Now let’s take a look at some of the properties of synthetic angle compar-
ison. I am focusing on the ≺ version of these properties: the � version
should be easy enough to figure out from these. There is nothing particu-
larly elegant about these proofs. They mainly rely upon the two theorems
listed above.

As with the segment comparison definitions, there is a potential issue with
the definitions of ≺ and �. What if we decided to construct C� off of BC�
instead of BA �? Since ∠ABC = ∠CBA, and since we are interested in
comparing the angles themselves, this notion of larger or smaller should
not depend upon which ray we are building from. The next theorem tells
us not to worry.

THM: ≺ AND � ARE WELL DEFINED
Given ∠ABC and ∠A′B′C′, label:
C�– a point on the same side of AB as C for which ∠ABC� �∠A′B′C′

A�– a point on the same side of BC as A for which ∠CBA��∠A′B′C′.
Then C� is in the interior of ∠ABC if and only if A� is.

Proof. This is really a direct corollary of the “Congruence and Angle In-
teriors” result from lesson 3. You see, that is exactly what we have here:
∠ABC � ∠ABC and ∠A�BC � ∠ABC� and C� is on the same side of AB
as C, so if A� is in the interior of ∠ABC, then C� must be too. Conversely,
A� is on the same side of BC as A, so if C� is in the interior, then A� must
be too.

Now let’s take a look at some of the properties of synthetic angle compar-
ison. I am focusing on the ≺ version of these properties: the � version
should be easy enough to figure out from these. There is nothing particu-
larly elegant about these proofs. They mainly rely upon the two theorems
listed above.

CB

A

B C

A

A

C

When comparing angles, it doesn’t matter which ray is used as the “base”.
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THM: TRANSITIVITY OF ≺

≺≺ If ∠A1B1C1 ≺ ∠A2B2C2 and ∠A2B2C2 ≺ ∠A3B3C3,
then ∠A1B1C1 ≺ ∠A3B3C3.

�≺ If ∠A1B1C1 � ∠A2B2C2 and ∠A2B2C2 ≺ ∠A3B3C3,
then ∠A1B1C1 ≺ ∠A3B3C3.

≺� If ∠A1B1C1 ≺ ∠A2B2C2 and ∠A2B2C2 � ∠A3B3C3,
then ∠A1B1C1 ≺ ∠A3B3C3.

Proof. Let me just take the first of these statements since the other two
are easier. Most of the proof is just getting points shifted into a useful
position.

1. Copy the first angle into the second: since ∠A1B1C1 ≺ ∠A2B2C2,
there is a point A′

1 in the interior of ∠A2B2C2 so that ∠A1B1C1 �
∠A′

1B2C2.

2. Copy the second angle in to the third: since ∠A2B2C2 ≺ ∠A3B3C3,
there is a point A′

2 in the interior of ∠A3B3C3 so that ∠A2B2C2 �
∠A′

2B3C3.

3. Copy the first angle to the third (although we don’t know quite as
much about this one): pick a point A′′

1 on the same side of B3C3 as
A1 so that A′′

1B3C3 � A1B1C1.

Now we can get down to business. “Congruence and Angle Interiors”:
since A′

1 is in the interior of ∠A2B2C2, A′′
1 has to be in the interior of

∠A′
2B3C3. “Ordering rays”: since B3A′′

1 � is in the interior of ∠A3B3A′
2,

and since B3A′
2� is in the interior of ∠A3B3C3, this means that B3A′′

1� has
to be in the interior of ∠A3B3C3. Therefore ∠A1B1C1 ≺ ∠A3B3C3.

The transitivity of ≺.

A1

A2

B3B1 B2

A3

C1 C2 C3

A
1 A

1

A
2
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THM: ORDERING FOUR RAYS
If A2 and C2 are in the interior of ∠A1BC1, then ∠A2BC2 ≺ ∠A1BC1.

Proof. Locate A�
2 on the same side of �BC1� as A1 so that

∠A�
2BC1 � ∠A2BC2.

Then the question is– is A�
2 in the interior of ∠A1BC1? Well, let’s suppose

that it isn’t. Then

∠A2BC2 ≺ ∠A�
2BC2 ≺ ∠A�

2BC1.

Since we have established that ≺ is transitive, that means ∠A2BC2 ≺
∠A�

2BC1. But this cannot be– those two angles are supposed to be con-
gruent. Hence A�

2 has to be in the interior of ∠A1BC1, and so ∠A2BC2 ≺
∠A1BC1.

THM: SYMMETRY BETWEEN ≺ AND �
For any two angles ∠A1B1C1 and ∠A2B2C2, ∠A1B1C1 ≺∠A2B2C2 if
and only if ∠A2B2C2 � ∠A1B1C1.

Proof. This is a direct consequence of the “Congruence and Angle Interi-
ors” theorem. Suppose that ∠A1B1C1 ≺ ∠A2B2C2. Then there is a point
A′

1 in the interior of ∠A2B2C2 so that ∠A1B1C1 �∠A′
1B2C2. Moving back

to the first angle, there is a point A�
2 on the opposite side of A1B1 from C1

so that ∠A1B1A�
2 � ∠A′

1B2A2. By angle addition, ∠A�
2B1C1 � ∠A2B2C2,

and since A�
2 is not in the interior of ∠A1B1C1, that means ∠A2B2C2 �

∠A1B1C1. The other direction in this proof works very similarly so I won’t
go through it.

A
2

A1 A2

B1 B2C1 C2

A
1

Relating
≺ and � ≺
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THM: ADDITIVITY OF ≺
Suppose that D1 lies in the interior of ∠A1B1C1 and that D2 lies in
the interior of ∠A2B2C2. If ∠A1B1D1 ≺ ∠A2B2D2 and ∠D1B1C1 ≺
∠D2B2C2, then ∠A1B1C1 ≺ ∠A2B2C2.

Proof. Find D′
1 in the interior of ∠A2B2D2 so that ∠A2B2D′

1 �∠A1B1D1.
Find C′

1 on the opposite side of � B2D′
1 � from A2 so that ∠D′

1B2C′
1 �

∠D1B1C1. By angle addition, ∠A2B2C′
1 � ∠A1B1C1, so the question is

whether or not C′
1 is in the interior of ∠A2B2C2. Well, if it was not, then

by the previous theorem

∠D2B2C2 ≺ ∠D′
1B2C′

1 =⇒ ∠D2B2C2 ≺ ∠D1B1C1.

That is a contradiction (the angles were constructed to be congruent),
so C′

1 will have to lie in the interior of ∠A2B2C2, and so ∠A1B1C1 ≺
∠A2B2C2.

Proof by contradiction of the “Ordering Four Rays” Theorem.

A2 A2

A1

B C1

A
2 A1

B C1

C2 C2

A1

C1

D1

B1

D2

D
1

C
1

The proof by contradiction of the additivity of 

A2

B2

C2

≺
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Right angles

Distance and segment length is based upon a completely arbitrary segment
to determine unit length. Angle measure is handled differently– a specific
angle is used as the baseline from which the rest is developed (although,
at least in the degree measurement system, that angle is then assigned a
pretty random measure). That angle is the right angle.

DEF: RIGHT ANGLE
A right angle is an angle which is congruent to its own supplement.

Now I didn’t mention it at the time, but we have already stumbled across
right angles once, in the proof of the S·S·S theorem. But it ought to be
stated again, that

THM: RIGHT ANGLES, EXISTENCE
Right angles do exist.

Proof. We will prove that right angles exist by constructing one. Start
with a segment AB. Now choose a point P which is not on the line �AB�.
If ∠PAB is congruent to its supplement, then it is a right angle, and that’s
it. If ∠PAB is not congruent to its supplement (which is really a lot more
likely), then there is a little more work to do. Thanks to the Segment and
Angle Construction Axioms, there is a point P′ on the opposite side of
�AB� from P so that ∠P′AB �∠PAB (angle construction) and AP′ � AP
(segment construction). Since P and P′ are on opposite sides of �AB�, the
segment PP′ has to intersect the line �AB�. Call that point of intersection
Q. With that construction,

PA � P′A ∠PAQ � ∠P′AQ AQ � AQ

so by S·A·S triangle congruence theorem, �PAQ ��P′AQ. Out of those
two triangles, the relevant congruence is between the two angles that share
the vertex Q: ∠AQP � ∠AQP′. These angles are supplements. They are
congruent. By definition, they are right angles.

Right angles

Distance and segment length is based upon a completely arbitrary segment
to determine unit length. Angle measure is handled differently– a specific
angle is used as the baseline from which the rest is developed (although,
at least in the degree measurement system, that angle is then assigned a
pretty random measure). That angle is the right angle.

DEF: RIGHT ANGLE
A right angle is an angle which is congruent to its own supplement.

Now I didn’t mention it at the time, but we have already stumbled across
right angles once, in the proof of the S·S·S theorem. But it ought to be
stated again, that

THM: RIGHT ANGLES, EXISTENCE
Right angles do exist.

Proof. We will prove that right angles exist by constructing one. Start
with a segment AB. Now choose a point P which is not on the line �AB�.
If ∠PAB is congruent to its supplement, then it is a right angle, and that’s
it. If ∠PAB is not congruent to its supplement (which is really a lot more
likely), then there is a little more work to do. Thanks to the Segment and
Angle Construction Axioms, there is a point P′ on the opposite side of
�AB� from P so that ∠P′AB �∠PAB (angle construction) and AP′ � AP
(segment construction). Since P and P′ are on opposite sides of �AB�, the
segment PP′ has to intersect the line �AB�. Call that point of intersection
Q. With that construction,

PA � P′A ∠PAQ � ∠P′AQ AQ � AQ

so by S·A·S triangle congruence theorem, �PAQ ��P′AQ. Out of those
two triangles, the relevant congruence is between the two angles that share
the vertex Q: ∠AQP � ∠AQP′. These angles are supplements. They are
congruent. By definition, they are right angles.

Right angles. In diagrams, squares angle markers are often used to indicate 
that an angle is right.
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Right angles

Distance and segment length is based upon a completely arbitrary segment
to determine unit length. Angle measure is handled differently– a specific
angle is used as the baseline from which the rest is developed (although,
at least in the degree measurement system, that angle is then assigned a
pretty random measure). That angle is the right angle.

DEF: RIGHT ANGLE
A right angle is an angle which is congruent to its own supplement.

Now I didn’t mention it at the time, but we have already stumbled across
right angles once, in the proof of the S·S·S theorem. But it ought to be
stated again, that

THM: RIGHT ANGLES, EXISTENCE
Right angles do exist.

Proof. We will prove that right angles exist by constructing one. Start
with a segment AB. Now choose a point P which is not on the line �AB�.
If ∠PAB is congruent to its supplement, then it is a right angle, and that’s
it. If ∠PAB is not congruent to its supplement (which is really a lot more
likely), then there is a little more work to do. Thanks to the Segment and
Angle Construction Axioms, there is a point P′ on the opposite side of
�AB� from P so that ∠P′AB �∠PAB (angle construction) and AP′ � AP
(segment construction). Since P and P′ are on opposite sides of �AB�, the
segment PP′ has to intersect the line �AB�. Call that point of intersection
Q. With that construction,

PA � P′A ∠PAQ � ∠P′AQ AQ � AQ

so by S·A·S triangle congruence theorem, �PAQ ��P′AQ. Out of those
two triangles, the relevant congruence is between the two angles that share
the vertex Q: ∠AQP � ∠AQP′. These angles are supplements. They are
congruent. By definition, they are right angles.

Okay, so they are out there. But how many are there? The next result is
something like a uniqueness statement– that there is really only one right
angle “modulo congruence”.

THM: RIGHT ANGLES AND CONGRUENCE
Suppose that ∠ABC is a right angle. Then ∠A′B′C′ is a right angle if
and only if it is congruent to ∠ABC.

Proof. This is an “if and only if” statement, and that means that there are
two directions to prove.

=⇒ If ∠A′B′C′ is a right angle, then ∠A′B′C′ � ∠ABC.

⇐= If ∠A′B′C′ � ∠ABC, then ∠A′B′C′ is a right angle.

A

B

P

Q

P

Proof of existence by construction.
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=⇒ To start, let’s go ahead and mark a few more points so that we can
refer to the supplements of these angles. Mark the points

D on �BC� so that D∗B∗C and

D′ on �B′C′� so that D′ ∗B′ ∗C′.

Therefore ∠ABC and ∠ABD are a supplementary pair, as are ∠A′B′C′

and ∠A′B′D′. Now suppose that both ∠ABC and ∠A′B′C′ are right an-
gles. Thanks to the Angle Construction Axiom, it is possible to build a
congruent copy of ∠A′B′C′ on top of ∠ABC: there is a ray BA� � on
the same side of BC as A so that ∠A�BC � ∠A′B′C′. Earlier we proved
that the supplements of congruent angles are congruent, so that means
∠A�BD � ∠A′B′D′. How, though, does ∠A�BC compare to ∠ABC? If
BA� � and BA � are the same ray, then the angles are equal, meaning
that ∠ABC and ∠A′B′C′ are congruent– which is what we want. But what
happens if the two rays are not equal? In that case one of two things can
happen: either BA� � is in the interior of ∠ABC, or it is in the interior
of ∠ABD. Both of these cases are going to leads to essentially the same
problem, so let me just focus on the first one. In that case, A� is in the in-
terior of ∠ABC, so ∠A�BC ≺∠ABC, but A� is in the exterior of ∠ABD, so
∠A�BD � ∠ABD. That leads to a string of congruences and inequalities:

∠A′B′C′ � ∠A�BC ≺ ∠ABC � ∠ABD ≺ ∠A�BD � ∠A′B′D′.

Because of the transitivity of ≺ then, ∠A′B′C′ ≺ ∠A′B′D′. This can’t be–
those two supplements are supposed to be congruent. The second scenario
plays out in the same way, with � in place of ≺. Therefore BA� � and
BA� have to be the same ray, and so ∠A′B′C � ∠ABC.

⇐= The other direction is easier. Suppose that ∠A′B′C′ �∠ABC and that
∠ABC is a right angle. Let’s recycle the points D and D′ from the first
part of the proof. The angles ∠A′B′D′ and ∠ABD are supplementary to
congruent angles, so they too must be congruent. Therefore

∠A′B′C′ � ∠ABC � ∠ABD � ∠A′B′D′.

and so we can see that ∠A′B′C′ is congruent to its supplement– it must be
a right angle.

A

BD
C

Any two right angles are congruent: if one right angle were larger or 
smaller than another, it could not be congruent to its complement.

D
B

C

AA
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D on �BC� so that D∗B∗C and

D′ on �B′C′� so that D′ ∗B′ ∗C′.

Therefore ∠ABC and ∠ABD are a supplementary pair, as are ∠A′B′C′

and ∠A′B′D′. Now suppose that both ∠ABC and ∠A′B′C′ are right an-
gles. Thanks to the Angle Construction Axiom, it is possible to build a
congruent copy of ∠A′B′C′ on top of ∠ABC: there is a ray BA� � on
the same side of BC as A so that ∠A�BC � ∠A′B′C′. Earlier we proved
that the supplements of congruent angles are congruent, so that means
∠A�BD � ∠A′B′D′. How, though, does ∠A�BC compare to ∠ABC? If
BA� � and BA � are the same ray, then the angles are equal, meaning
that ∠ABC and ∠A′B′C′ are congruent– which is what we want. But what
happens if the two rays are not equal? In that case one of two things can
happen: either BA� � is in the interior of ∠ABC, or it is in the interior
of ∠ABD. Both of these cases are going to leads to essentially the same
problem, so let me just focus on the first one. In that case, A� is in the in-
terior of ∠ABC, so ∠A�BC ≺∠ABC, but A� is in the exterior of ∠ABD, so
∠A�BD � ∠ABD. That leads to a string of congruences and inequalities:

∠A′B′C′ � ∠A�BC ≺ ∠ABC � ∠ABD ≺ ∠A�BD � ∠A′B′D′.

Because of the transitivity of ≺ then, ∠A′B′C′ ≺ ∠A′B′D′. This can’t be–
those two supplements are supposed to be congruent. The second scenario
plays out in the same way, with � in place of ≺. Therefore BA� � and
BA� have to be the same ray, and so ∠A′B′C � ∠ABC.

⇐= The other direction is easier. Suppose that ∠A′B′C′ �∠ABC and that
∠ABC is a right angle. Let’s recycle the points D and D′ from the first
part of the proof. The angles ∠A′B′D′ and ∠ABD are supplementary to
congruent angles, so they too must be congruent. Therefore

∠A′B′C′ � ∠ABC � ∠ABD � ∠A′B′D′.

and so we can see that ∠A′B′C′ is congruent to its supplement– it must be
a right angle.

A

BD
C

If an angle is congruent to a right angle, it is a right angle too.

D
B

C

A

With ≺ and � and with right angles as a point of comparison, we have a
way to classify non-right angles.

DEF: ACUTE AND OBTUSE
An angle is acute if it is smaller than a right angle. An angle is obtuse
if it is larger than a right angle.

Rays that form an obtuse 
angle with r.

Rays that form an acute 
angle with r.

r
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Exercises

1. Verify that the supplement of an acute angle is an obtuse angle and that
the supplement of an obtuse angle is an acute angle.

2. Prove that an acute angle cannot be congruent to an obtuse angle (and
vice versa).

3. Two intersecting lines are perpendicular if the angles formed at their
intersection are right angles. For any line � and point P, prove that
there is a unique line through P which is perpendicular to �. Note that
there are two scenarios: P may or may not be on �.

4. Consider two isosceles triangles with a common side: �ABC and �A′BC
with AB � AC and A′B � A′C. Prove that �AA′ � is perpendicular to
�BC�.

5. Two angles are complementary if together they form a right angle. That
is, if D is in the interior of a right angle ∠ABC, then ∠ABD and ∠DBC
are complementary angles. Prove that every acute angle has a com-
plement. Prove that if ∠ABC and ∠A′B′C′ are congruent acute angles,
then their complements are also congruent.

6. Verify that if �1 is perpendicular to �2 and �2 is perpendicular to �3,
then either �1 = �3, or �1 and �3 are parallel.



9. READER’S SOLO II 
ANGLE MEASURE
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In this lesson I am going to outline what you need to do to construct the de-
gree measurement system for angles. First, let’s talk notation. I think the
most common way to indicate the measure of an angle ∠ABC is to write
m(∠ABC). The advantage of that notation is that it draws a clear distinc-
tion between an angle and its measure. Of course, the disadvantage is that
it is cumbersome, and that any equation with lots of angles measures in
it will be cluttered up with m’s. At the other extreme, I have noticed that
students tend to just write the angle ∠ABC to indicate its measure. Sure, it
is just laziness, but I suppose you could pass it off as notational efficiency
as well. The obvious disadvantage of this approach is that it completely
blurs the distinction between an angle and its measure. I have tried to find
the middle ground between these two approaches and I write (∠ABC) to
denote the measure of ∠ABC. This notation is not perfect either. I think
the biggest problem is that it puts even more pressure on two of the most
overused symbols in mathematics, the parentheses.

Now lets talk about what you are going to want in a system of angle
measurement. Of course these expectations are going to closely mirror
expectations for measures of distance. They are

(1) The measure of an angle should be a positive real number.

(2) Congruent angles should have the same measure. That allows us to
focus our investigation on just the angles which are built off of one
fixed ray.

(3) If D is in the interior of ∠ABC, then

(∠ABC) = (∠ABD)+(∠DBC).

Therefore, since the measure of an angle has to be positive,

∠ABC ≺ ∠A′B′C′ =⇒ (∠ABC)< (∠A′B′C′)

∠ABC � ∠A′B′C′ =⇒ (∠ABC)> (∠A′B′C′).

It is your turn to develop a system of angle measure that will meet those
requirements. The first step is to establish the measurement of dyadic
angles. To do that, you will have to prove that it is possible to divide an
angle in half.
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DEF: ANGLE BISECTOR
For any angle ∠ABC, there is a unique ray BD � in the interior of
∠ABC so that ∠ABD � ∠DBC. This ray is called the angle bisector
of ∠ABC.

With segment length, everything begins with an arbitrary segment which
is assigned a length of one. With angle measure, everything begins with a
right angle which, in the degree measurement system, is assigned a mea-
sure of 90◦. From that, your next step is to describe the process of con-
structing angles with measures 90◦ · m/2n. Here you are going to run
into one fundamental difference between angles and segments– segments
can be extended arbitrarily, but angles cannot be put together to exceed a
straight angle. Therefore segments can be arbitrarily long, but all angles
must measure less than 180◦ (since a straight angle is made up of two
right angles). It is true that the unit circle in trigonometry shows how you
can loop back around to define angles with any real measure, positive or
negative, and that is a useful extension in some contexts, but it also cre-
ates some problems (the measure of an angle is not uniquely defined, for
instance).

Once you have figured out the dyadic angles, you need to fill in the
rest. You will want to use a limiting process just like I did in the segment
length chapter: this time the key word “interior” will replace the key word
“between.” Then you will want to turn the question around: for any real
number in the interval (0◦,180◦) is there an angle with that as its measure?
This is where I used the Dedekind Axiom before, by taking a limit of ap-
proximating dyadics, and then using the axiom to say that there is a point
at that limit. The problem for you is that the Dedekind Axiom applies only
to points on a line– it is not about angles (or at least not directly). Never-
theless, you need to find a way to set up approximating dyadic angles, and
then you need to find some way to make Dedekind’s Axiom apply in this
situation.

Finally, with angles measured in this way, you will need to verify the
additivity of angle measure:

THM: ANGLE ADDITION, THE MEASURED VERSION
If D is in the interior of ∠ABC, then (∠ABC) = (∠ABD)+(∠DBC).
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In this lesson we are going to take our newly created measurement sys-
tems, our rulers and our protractors, and see what we can tell us about
triangles. We will derive three of the most fundamental results of neutral
geometry: the Saccheri-Legendre Theorem, the Scalene Triangle Theo-
rem, and the Triangle Inequality.

The Saccheri-Legendre Theorem

The Saccheri-Legendre Theorem is a theorem about the measures of the
interior angles of a triangle. For the duration of this lesson, if �ABC is
any triangle, I will call

s(�ABC) = (∠A)+(∠B)+(∠C)

the angle sum of the triangle. As you probably know, in Euclidean ge-
ometry the angle sum of any triangle is 180◦. That is not necessarily the
case in neutral geometry, though, so we will have to be content with a less
restrictive (and less useful) condition.

THE SACCHERI LEGENDRE THEOREM
For any triangle �ABC, s(�ABC)≤ 180◦.

I will prove this result in three parts– two preparatory lemmas followed
by the proof of the main theorem.

Euclidean triangle non-Euclidean triangle not a neutral triangle



107TRIANGLE MEASUREMENTS

Exterior Angle Th.
(∠ABC) < (∠BAD)

Supplements
∠BAC and ∠BAD

(∠BAC)+(∠ABC) < (∠BAC)+(∠BAD) = 180◦.

A

B

C
D

In this lesson we are going to take our newly created measurement sys-
tems, our rulers and our protractors, and see what we can tell us about
triangles. We will derive three of the most fundamental results of neutral
geometry: the Saccheri-Legendre Theorem, the Scalene Triangle Theo-
rem, and the Triangle Inequality.

The Saccheri-Legendre Theorem

The Saccheri-Legendre Theorem is a theorem about the measures of the
interior angles of a triangle. For the duration of this lesson, if �ABC is
any triangle, I will call

s(�ABC) = (∠A)+(∠B)+(∠C)

the angle sum of the triangle. As you probably know, in Euclidean ge-
ometry the angle sum of any triangle is 180◦. That is not necessarily the
case in neutral geometry, though, so we will have to be content with a less
restrictive (and less useful) condition.

THE SACCHERI LEGENDRE THEOREM
For any triangle �ABC, s(�ABC)≤ 180◦.

I will prove this result in three parts– two preparatory lemmas followed
by the proof of the main theorem.

LEMMA ONE
The sum of the measures of any two angles in a triangle is less than
180◦.

Proof. Let’s suppose that we are given a triangle �ABC and we want to
show that (∠A) + (∠B) < 180◦. First I need to label one more point:
choose D so that D∗A∗C. Then

(∠BAC)+(∠ABC)< (∠BAC)+(∠BAD) = 180◦.

Note that this means that a triangle cannot support more than one right or
obtuse angle– if a triangle has a right angle, or an obtuse angle, then the
other two angles have to be acute. That leads to some more terminology.

DEF: ACUTE, RIGHT, AND OBTUSE TRIANGLES
A triangle is acute if all three of its angles are acute. A triangle is
right if it has a right angle. A triangle is obtuse if it has an obtuse
angle.

Acute Right Obtuse

LEMMA ONE
The sum of the measures of any two angles in a triangle is less than
180◦.

Proof. Let’s suppose that we are given a triangle �ABC and we want to
show that (∠A) + (∠B) < 180◦. First I need to label one more point:
choose D so that D∗A∗C. Then

(∠BAC)+(∠ABC)< (∠BAC)+(∠BAD) = 180◦.

Note that this means that a triangle cannot support more than one right or
obtuse angle– if a triangle has a right angle, or an obtuse angle, then the
other two angles have to be acute. That leads to some more terminology.

DEF: ACUTE, RIGHT, AND OBTUSE TRIANGLES
A triangle is acute if all three of its angles are acute. A triangle is
right if it has a right angle. A triangle is obtuse if it has an obtuse
angle.



108 LESSON 10

The real key to this proof of the Saccheri-Legendre Theorem, the mecha-
nism that makes it work, is the second lemma.

LEMMA TWO
For any triangle �ABC, there is another triangle �A′B′C′ so that
1. s(�ABC) = s(�A′B′C′), and
2. (∠A′)≤ (∠A)/2.

Proof. This is a constructive proof: I am going to describe how to build
a triangle from �ABC that meets both of the requirements listed in the
theorem. First we are going to need to label a few more points:

D: the midpoint of BC,
E: on AD�, so that A∗D∗E and AD � DE.

My claim is that �ACE satisfies both of the conditions (1) and (2). Show-
ing that it does involves comparing angle measures, and with that in mind
I think it is helpful to abbreviate some of the angles:

∠1 for ∠BAD, ∠2 for ∠DAC, ∠3 for ∠DCE, and ∠4 for ∠ACD.

The key to showing that �ACE meets requirements (1) and (2) is the pair
of congruent triangles formed by carving away the overlap of �ABC and
�ACE. Notice that by S·A·S

BD �CD ∠BDA � ∠CDE DA � DE

so by S·A·S, �BDA � �CDE. Matching up the two remaining pairs of
angles in those triangles ∠1 � ∠E and ∠B � ∠3. Now let’s check those
two conditions.

The real key to this proof of the Saccheri-Legendre Theorem, the mecha-
nism that makes it work, is the second lemma.

LEMMA TWO
For any triangle �ABC, there is another triangle �A′B′C′ so that
1. s(�ABC) = s(�A′B′C′), and
2. (∠A′)≤ (∠A)/2.

Proof. This is a constructive proof: I am going to describe how to build
a triangle from �ABC that meets both of the requirements listed in the
theorem. First we are going to need to label a few more points:

D: the midpoint of BC,
E: on AD�, so that A∗D∗E and AD � DE.

My claim is that �ACE satisfies both of the conditions (1) and (2). Show-
ing that it does involves comparing angle measures, and with that in mind
I think it is helpful to abbreviate some of the angles:

∠1 for ∠BAD, ∠2 for ∠DAC, ∠3 for ∠DCE, and ∠4 for ∠ACD.

The key to showing that �ACE meets requirements (1) and (2) is the pair
of congruent triangles formed by carving away the overlap of �ABC and
�ACE. Notice that by S·A·S

BD �CD ∠BDA � ∠CDE DA � DE

so by S·A·S, �BDA � �CDE. Matching up the two remaining pairs of
angles in those triangles ∠1 � ∠E and ∠B � ∠3. Now let’s check those
two conditions.

A

B

1

2 3
4C

D

E

BD CD
∠BDA  ∠CDE

DA  DE BDA CDE
∠1  ∠E
∠B  ∠3



109TRIANGLE MEASUREMENTS

Condition 1. For the first, all you have to do is compare the two angle
sums:

s(�ABC) = (∠A)+(∠B)+(∠4) = (∠1)+(∠2)+(∠B)+(∠4)
s(�ACE) = (∠2)+(∠ACE)+(∠E) = (∠2)+(∠3)+(∠4)+(∠E).

Sure enough, they are the same.

Condition 2. The second part is a little devious, because I can’t tell you
which angle of �ACE will end up being ∠A′. What I can say, though, is
that

(∠BAC) = (∠1)+(∠2) = (∠E)+(∠2).

Therefore it isn’t possible for both ∠E and ∠2 to measure more than
(∠BAC)/2. Let ∠A′ be the smaller of the two (or just choose one if they
are both the same size).

Now we can combine those two lemmas into a proof of the Saccheri-
Legendre Theorem itself.

Proof. Suppose that there is a triangle �ABC whose angle sum is more
than 180◦. In order to keep track of that excess, write

s(�ABC) = (180+ x)◦.

Now let’s iterate! According to Lemma 2, there is a triangle

�A1B1C1 with the same angle sum but (∠A1)≤ 1
2(∠A);

�A2B2C2 with the same angle sum but (∠A2)≤ 1
2(∠A1)≤ 1

4(∠A);

�A3B3C3 with the same angle sum but (∠A3)≤ 1
2(∠A2)≤ 1

8(∠A);

s(ABC) = (∠A)+(∠B)+(∠4) = (∠1)+(∠2)+(∠B)+(∠4)

s(ACE) = (∠2)+(∠ACE)+(∠E) = (∠2)+(∠3)+(∠4)+(∠E).

Condition 1. For the first, all you have to do is compare the two angle
sums:

s(�ABC) = (∠A)+(∠B)+(∠4) = (∠1)+(∠2)+(∠B)+(∠4)
s(�ACE) = (∠2)+(∠ACE)+(∠E) = (∠2)+(∠3)+(∠4)+(∠E).

Sure enough, they are the same.

Condition 2. The second part is a little devious, because I can’t tell you
which angle of �ACE will end up being ∠A′. What I can say, though, is
that

(∠BAC) = (∠1)+(∠2) = (∠E)+(∠2).

Therefore it isn’t possible for both ∠E and ∠2 to measure more than
(∠BAC)/2. Let ∠A′ be the smaller of the two (or just choose one if they
are both the same size).

Now we can combine those two lemmas into a proof of the Saccheri-
Legendre Theorem itself.

Proof. Suppose that there is a triangle �ABC whose angle sum is more
than 180◦. In order to keep track of that excess, write

s(�ABC) = (180+ x)◦.

Now let’s iterate! According to Lemma 2, there is a triangle

�A1B1C1 with the same angle sum but (∠A1)≤ 1
2(∠A);

�A2B2C2 with the same angle sum but (∠A2)≤ 1
2(∠A1)≤ 1

4(∠A);

�A3B3C3 with the same angle sum but (∠A3)≤ 1
2(∠A2)≤ 1

8(∠A);

Starting from an equilateral triangle, the first three iterations.

1 2 3
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After going through this procedure n times, we will end up with a tri-
angle �AnBnCn whose angle sum is still (180+x)◦ but with one very tiny
angle– (∠An)≤ 1

2n (∠A). No matter how big ∠A is or how small x is, there
is a large enough value of n so that 1

2n (∠A)< x. In that case, the remaining
two angles of the triangle ∠Bn and ∠Cn have to add up to more than 180◦.
According to Lemma 1, this cannot happen. Therefore there cannot be a
triangle with an angle sum over 180◦.

The Scalene Triangle Theorem

The Scalene Triangle Theorem relates the measures of the angles of trian-
gle to the measures of its sides. Essentially, it guarantees that the largest
angle is opposite the longest side and that the smallest angle is opposite
the shortest side. More precisely

THM: SCALENE TRIANGLE THEOREM
In �ABC suppose that |BC|> |AC|. Then (∠BAC)> (∠ABC).

Proof. With the results we have established so far, this is an easy one.
We need to draw an isosceles triangle into �ABC and that requires one
additional point. Since |BC| > |AC|, there is a point D between B and C
so that CA �CD. Then

(∠BAC)> (∠DAC) = (∠ADC)> (∠ABC).

Isosceles Triangle Th. Exterior Angle Th.

A

B CD

(∠BAC) > (∠DAC) = (∠ADC) > (∠ABC).

D is in the interior
of ∠BAC.

After going through this procedure n times, we will end up with a tri-
angle �AnBnCn whose angle sum is still (180+x)◦ but with one very tiny
angle– (∠An)≤ 1

2n (∠A). No matter how big ∠A is or how small x is, there
is a large enough value of n so that 1

2n (∠A)< x. In that case, the remaining
two angles of the triangle ∠Bn and ∠Cn have to add up to more than 180◦.
According to Lemma 1, this cannot happen. Therefore there cannot be a
triangle with an angle sum over 180◦.

The Scalene Triangle Theorem

The Scalene Triangle Theorem relates the measures of the angles of trian-
gle to the measures of its sides. Essentially, it guarantees that the largest
angle is opposite the longest side and that the smallest angle is opposite
the shortest side. More precisely

THM: SCALENE TRIANGLE THEOREM
In �ABC suppose that |BC|> |AC|. Then (∠BAC)> (∠ABC).

Proof. With the results we have established so far, this is an easy one.
We need to draw an isosceles triangle into �ABC and that requires one
additional point. Since |BC| > |AC|, there is a point D between B and C
so that CA �CD. Then

(∠BAC)> (∠DAC) = (∠ADC)> (∠ABC).

After going through this procedure n times, we will end up with a tri-
angle �AnBnCn whose angle sum is still (180+x)◦ but with one very tiny
angle– (∠An)≤ 1

2n (∠A). No matter how big ∠A is or how small x is, there
is a large enough value of n so that 1

2n (∠A)< x. In that case, the remaining
two angles of the triangle ∠Bn and ∠Cn have to add up to more than 180◦.
According to Lemma 1, this cannot happen. Therefore there cannot be a
triangle with an angle sum over 180◦.

The Scalene Triangle Theorem

The Scalene Triangle Theorem relates the measures of the angles of trian-
gle to the measures of its sides. Essentially, it guarantees that the largest
angle is opposite the longest side and that the smallest angle is opposite
the shortest side. More precisely

THM: SCALENE TRIANGLE THEOREM
In �ABC suppose that |BC|> |AC|. Then (∠BAC)> (∠ABC).

Proof. With the results we have established so far, this is an easy one.
We need to draw an isosceles triangle into �ABC and that requires one
additional point. Since |BC| > |AC|, there is a point D between B and C
so that CA �CD. Then

(∠BAC)> (∠DAC) = (∠ADC)> (∠ABC).
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The Triangle Inequality

The Triangle Inequality deals with the lengths of the three sides of a trian-
gle, providing upper and lower bounds for one side in terms of the other
two. This is one of the results that has escaped the confines of neutral ge-
ometry, though, and you will see triangle inequalities in various disguises
is many different areas of math.

THM: THE TRIANGLE INEQUALITY
In any triangle �ABC, the length of side AC is bounded above and
below by the lengths of AB and BC:

||AB|− |BC||< |AC|< |AB|+ |BC|.

Proof. The second inequality is usually what people think of when they
think of the Triangle Inequality, and that’s the one that I am going to prove.
I will leave the proof of the first inequality to you. The second inequal-
ity is obviously true if AC isn’t the longest side of the triangle, so let’s
focus our attention on the only really interesting case– when AC is the
longest side. As in the proof of the Scalene Triangle Theorem, we are
going to build an isosceles triangle inside �ABC. To do that, label D
between A and C so that AD � AB. According to the Isosceles Triangle
Theorem, ∠ADB � ∠ABD. Thanks to the Saccheri-Legendre Theorem,
we now know that these angles can’t both be right or obtuse, so they have
to be acute. Therefore, ∠BDC, which is supplementary to ∠ADB, is ob-
tuse. Again, the Saccheri-Legendre Theorem: the triangle �BDC will
only support one obtuse angle, so ∠BDC has to be the largest angle in that
triangle. According to the Scalene Triangle Theorem, BC has to be the
longest side of �BDC. Hence |DC|< |BC|. Now let’s put it together

|AC|= |AD|+ |DC|< |AB|+ |BC|.

B

A CD In ABD, ∠B and ∠D are congruent,
so they must be acute.



112 LESSON 10

For proper triangles, the Triangle Inequality promises strict inequalities–
< instead of ≤. When the three points A, B and C collapse into a straight
line, they no longer form a proper triangle, and that is when the inequali-
ties become equalities:

if C ∗A∗B, then |AC|= |BC|− |AB|;
if A∗C ∗B, then |AC|= |AB|− |BC|;
if A∗B∗C, then |AC|= |AB|+ |BC|.

The Triangle Inequality

The Triangle Inequality deals with the lengths of the three sides of a trian-
gle, providing upper and lower bounds for one side in terms of the other
two. This is one of the results that has escaped the confines of neutral ge-
ometry, though, and you will see triangle inequalities in various disguises
is many different areas of math.

THM: THE TRIANGLE INEQUALITY
In any triangle �ABC, the length of side AC is bounded above and
below by the lengths of AB and BC:

||AB|− |BC||< |AC|< |AB|+ |BC|.

Proof. The second inequality is usually what people think of when they
think of the Triangle Inequality, and that’s the one that I am going to prove.
I will leave the proof of the first inequality to you. The second inequal-
ity is obviously true if AC isn’t the longest side of the triangle, so let’s
focus our attention on the only really interesting case– when AC is the
longest side. As in the proof of the Scalene Triangle Theorem, we are
going to build an isosceles triangle inside �ABC. To do that, label D
between A and C so that AD � AB. According to the Isosceles Triangle
Theorem, ∠ADB � ∠ABD. Thanks to the Saccheri-Legendre Theorem,
we now know that these angles can’t both be right or obtuse, so they have
to be acute. Therefore, ∠BDC, which is supplementary to ∠ADB, is ob-
tuse. Again, the Saccheri-Legendre Theorem: the triangle �BDC will
only support one obtuse angle, so ∠BDC has to be the largest angle in that
triangle. According to the Scalene Triangle Theorem, BC has to be the
longest side of �BDC. Hence |DC|< |BC|. Now let’s put it together

|AC|= |AD|+ |DC|< |AB|+ |BC|.

B

A CD In BCD, ∠D is obtuse, so it is the largest
angle. Opposite it, BC is the longest side.
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Exercises

1. Prove the converse of the Scalene Triangle Theorem: in �ABC, if
(∠BAC)> (∠ABC) then |BC|> |AC|.

2. Prove the other half of the triangle inequality.

3. Given a triangle �ABC, consider the interior and exterior angles at a
vertex, say vertex A. Prove that the bisectors of those two angles are
perpendicular.

4. Prove that for any point P and line �, there are points on � which are
arbitrarily far away from �.

5. Prove that equilateral triangles exist in neutral geometry (that is, de-
scribe a construction that will yield an equilateral triangle). Note that
all the interior angles of an equilateral triangle will be congruent, but
you don’t know that the measures of those interior angles is 60◦.

6. Prove a strengthened form of the Exterior Angle Theorem: for any
triangle, the measure of an exterior angle is greater than or equal to the
sum of the measures of the two nonadjacent interior angles.

7. Prove that if a triangle is acute, then the line which passes through a
vertex and is perpendicular to the opposite side will intersect that side
(the segment, that is, not just the line containing the segment).

Recall that SSA is not a valid triangle congruence theorem. If you
know just a little bit more about the triangles in question, though, SSA
can be enough to prove triangles congruent. The next questions look at
some of those situations.

8. In a right triangle, the side opposite the right angle is called the hy-
potenuse. By the Scalene Triangle Theorem, it is the longest side of
the triangle. The other two sides are called the legs of the triangle.
Consider two right triangles �ABC and �A′B′C′ with right angles at
C and C′, respectively. Suppose in addition that

AB � A′B′ & AC � A′C′
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(the hypotenuses are congruent, as are one set of legs). Prove that
�ABC � �A′B′C′. This is the H·L congruence theorem for right tri-
angles.

9. Suppose that �ABC and �A′B′C′ are acute triangles and that

AB � A′B′ BC � B′C′ ∠C � ∠C′.

Prove that �ABC ��A′B′C′.

10. Consider triangles �ABC and �A′B′C′ with

AB � A′B′ BC � B′C′ ∠C � ∠C′.

Suppose further that |AB|> |BC|. Prove that �ABC ��A′B′C′.

References

The proof that I give for the Saccheri-Legendre Theorem is the one I
learned from Wallace and West’s book [1].

[1] Edward C. Wallace and Stephen F. West. Roads to Geometry. Pearson
Education, Inc., Upper Saddle River, New Jersey, 3rd edition, 2004.
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We have spent a lot of time talking about triangles, and I certainly do not
want to give the impression that we are done with them, but in this lesson
I would like to broaden the focus a little bit, and to look at polygons with
more than three sides.

Definitions

Of course the first step is to get a working definition for the term polygon.
This may not be as straightforward as you think. Remember the definition
of a triangle? Three non-colinear points P1, P2, and P3 defined a triangle.
The triangle itself consisted of all the points on the segments P1P2, P2P3,
and P3P1. At the very least, a definition of a polygon (as we think of them)
involves a list of points and segments connecting each point to the next in
the list, and then the last point back to the first:

The Vertices: P1, P2, P3, . . . , Pn

The Sides: P1P2, P2P3, P3P4, . . . , Pn−1Pn, PnP1.

Now the one problem is this– what condition do you want to put on those
points? With triangles, we insisted that the three points be non-colinear.
What is the appropriate way to extend that beyond n = 3? This is not an
easy question to answer. To give you an idea of some of the potential
issues, let me draw a few configurations of points.

Which of these do you think should be considered octagons (polygons
with eight sides and eight vertices)?
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While you are mulling over that question, let me distract you by talking
about notation. No matter what definition of polygon you end up using,
your vertices will cycle around: P1, P2, . . . , Pn and then back to the start P1.
Because polygons do loop back around like this, sometimes you end up
crossing from Pn back to P1. For example, look at the listing of the sides of
the polygon– all but one of them can be written in the form PiPi+1, but the
last side, PnP1, doesn’t fit that pattern. A proof involving the sides would
have to go out of its way to be sure to mention that last side, and that is
just not going to be very elegant. After all, other than the notation, the last
side is not any different from the previous sides– it really should not need
its own case. Fortunately, there is an easy way to sidestep this issue. What
we can do is make our subscripts cycle just like the points do. Rather than
using integer subscripts for the vertices, use integers modulo n (where n
is the number of vertices). That way, for instance, in a polygon with eight
vertices, P9 and P1 would stand for the same point since 9 ∼= 1 mod 8, and
the sides of the polygon would be PiPi+1 for 1 ≤ i ≤ 8.

Now let’s get back to the question of a definition. As I said at the start of
the lesson, I think that there is still a spectrum of opinion on how a poly-
gon should be defined. Some geometers (such as Grünbaum in Are your
polyhedra the same as my polyhedra [2]) will tell you that any ordered list-
ing of n points should define a polygon with n vertices and n sides. This
includes listings where some or even all points are colinear or coinciding
and can therefore can lead to some unexpected configurations: a six-sided
polygon that appears to have only three sides, a triangle that looks like a
line segment, a four-sided polygon that looks like a point. If you can get
past the initial strangeness, though, there is definitely something to be said
for this all-inclusive approach: for one thing, you never have to worry that
moving points around would cause (for instance) your four-sided polygon
to no longer be a four-sided polygon. This liberal definition would go
something like this:
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DEF: POLYGON (INCLUSIVE VERSION)
Any ordered list of points {Pi|1 ≤ i ≤ n} defines a polygon, written
P1P2 · · ·Pn, with vertices Pi, 1 ≤ i ≤ n, and sides PiPi+1, 1 ≤ i ≤ n.

Other geometers like to put a few more restrictions on their polygons. I
suspect that the most common objections to this all-inclusive definition
would be:

(1) This collapsing of the vertices down to a single point or a single line
as shown in illustrations (vii) and (viii) is unacceptable– polygons
should have a two-dimensionality to them.

(2) The edges of a polygon should not trace back over one another
as shown in illustrations (v) and (vi)– at most two edges should
intersect each other once.

(3) On the topic of intersecting edges, only consecutive edges should
meet at a vertex. Configurations such as the one shown in illustra-
tion (iv) do not define a single polygon, but rather several polygons
joined together.

I don’t know to what extent these added restrictions are historical con-
ventions and to what extent they are truly fundamental to proving results
on polygons. Let me point out though, that this all-inclusive definition
doesn’t quite work with our previous definition of a triangle: three colinear
points would define a three-sided polygon, but not a triangle. Somehow,
that just does not seem right. Were we to now to go back and liberalize
our definition of a triangle to include these remaining three-sided poly-
gons, it would cost us some theorems. For instance, neither A·S·A nor
A·A·S would work in the case when all three vertices are colinear. So for
that reason, let me also give a more restrictive definition of polygon that
addresses the three concerns listed above.

i ii iii iv v vi vii viii

exclusivesimple
inclusive
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DEF: POLYGON (EXCLUSIVE VERSION)
Any ordered list of points {Pi|1 ≤ i ≤ n} which satisfies the condi-
tions

(1) no three consecutive points Pi, Pi+1, and Pi+2 are colinear;
(2) if i �= j, then PiPi+1 and PjPj+1 share at most one point;
(3) if Pi = Pj, then i = j;

defines a polygon, written P1P2 · · ·Pn, with vertices Pi, 1 ≤ i ≤ n, and
sides PiPi+1, 1 ≤ i ≤ n.

The crux of it is this: too liberal a definition and you are going to have to
make exceptions and exclude degenerate cases; too conservative a defini-
tion and you end up short-changing your results by not expressing them at
their fullest generality. After all of that, though, I have to say that I’m just
not that worried about it, because for the most part, the polygons that we
usually study are more specialized than either of those definitions– they
are what are called simple polygons. You see, even in the more “exclu-
sive” definition, the segments of a polygon are permitted to criss-cross
one another. In a simple polygon, that type of behavior is not tolerated.

DEF: SIMPLE POLYGON
Any ordered list of points {Pi|1 ≤ i ≤ n} which satisfies the condi-
tions

(1) no three consecutive points Pi, Pi+1, and Pi+2 are colinear;
(2) if i �= j and PiPi+1 intersects PjPj+1 then either i = j + 1 and
the intersection is at Pi = Pj+1 or j = i+ 1 and the intersection is at
Pi+1 = Pj;

defines a simple polygon, written P1P2 · · ·Pn, with vertices Pi, 1 ≤ i ≤
n, and sides PiPi+1, 1 ≤ i ≤ n.

i ii iii iv v vi vii viii

exclusivesimple
inclusive
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No matter how you choose to define a polygon, the definition of one im-
portant invariant of a polygon does not change:

DEF: PERIMETER
The perimeter P of a polygon is the sum of the lengths of its sides:

P =
n

∑
i=1

|PiPi+1|.

Counting polygons

Two polygons are the same if they have the same vertices and the same
edges. That means that the order that you list the vertices generally does
matter– different orders can lead to different sets of sides. Not all rear-
rangements of the list lead to new polygons though. For instance, the
listings P1P2P3P4 and P3P4P1P2 and P4P3P2P1 all define the same polygon:
one with sides P1P2, P2P3, P3P4 and P4P1. More generally, any two listings
which differ either by a cycling of the vertices or by a reversal of the order
of one of those cyclings will describe the same polygon.

Names of polygons based upon the number of sides (and vertices).

6 hexagon

pentagonenneagon

octagon

heptagon

triangle

quadrilateraldecagon

8

4

3

7

59

10
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So how many possible polygons are there on n points? That depends
upon what definition of polygon you are using. The most inclusive def-
inition of polygon leads to the easiest calculation, for in that case, any
configuration on n points results in a polygon. As you probably know
from either probability or group theory, there are n! possible orderings
of n distinct elements. However for each such list there are n cyclings
of the entries and n reversals of those cyclings, leading to a total of 2n
listings which all correspond to the same polygon. Therefore, there are
n!/(2n) = (n− 1)!/2 possible polygons that can be built on n vertices.
Notice that when n = 3, there is only one possibility, and that is why none
of this was an issue when we were dealing with triangles.

The 24 permutations of 1, 2, 3, 4 and the corresponding polygons on four points.

4321
1432
2143
3214

1234
2341
3412
4123

3421
1342
4213
2134

1243
2431
3124
4312

4231
3142
1423
2314

1324
2413
3241
4132

1

3

2 4

1

3

2 4

1

3

2 4

The 12 polygons on a configuration of five points. In this illustration, segments 
connect two polygons which differ by a swap of two adjacent vertices.
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If instead you are using the more exclusive definition of a polygon, then
things are a bit more complicated. If the vertices are in “general position”
so that any combination of segments PiPj satisfies the requirements out-
lined in that definition, then there are just as many exclusive polygons as
inclusive polygons: (n−1)!/2. Probabilistically, it is most likely that any
n points will be in such a general position, but it is also true that as n
grows, the number of conditions required to attain this general position
increases quite rapidly. Even less understood is the situation for simple
polygons. The condition of simplicity throws the problem from the rela-
tively comfortable world of combinatorics into a much murkier geometric
realm.

Interiors and exteriors

One characteristic of the triangle is that it chops the rest of the plane into
two sets, an interior and an exterior. It isn’t so clear how to do that with
a polygon (this is particularly true if you are using the inclusive definition
of the tem, but to a lesser extent is still true with the exclusive definition).
Simple polygons, though, do separate the plane into interior and exterior.
This is in fact a special case of the celebrated Jordan Curve Theorem,
which states that every simple closed curve in the plane separates the plane
into an interior and an exterior. The Jordan Curve Theorem is one of those
notorious results that seems like you could knock out in an afternoon, but
is actually brutally difficult. In the special case of simple polygons, our
case, there are simpler proofs. I am going to describe the idea behind one
such proof from What is Mathematics? by Courant and Robbins [1].

Thirteen of the sixty polygons on this configuration of six points are simple.



123POLYGONS

THM: POLYGONAL PLANE SEPARATION
Every simple polygon separates the remaining points of the plane
into two connected regions.

Proof. Let P be a simple polygon, and let p be a point which is not on
P . Now let’s look at a ray Rp whose endpoint is p. As long as Rp does not
run exactly along an edge, it will intersect the edges of P a finite number
of times (perhaps none). You want to think of each such intersection as a
crossing of Rp into or out of P .

Since there are only finitely many intersections, they are all within a
finite distance of P. That means that eventually Rp will pass beyond all
the points of P . This is the essence of this argument: eventually the ray
is outside of the polygon, so by counting back the intersections crossing
into and out of the polygon, we can figure out whether the beginning of
the ray, P is inside or outside of P . The one situation where we have to
be a little careful is when Rp intersects a vertex of P . Here is the way to
count those intersections:

{
once if Rp separates the two neighboring edges;
twice if Rp does not separate them.

5 1

3

3

Rays from a point. The 
number of intersections 
with a polygon (in black) 
depends upon which ray is 
chosen, but the parity 
(even or odd) does not.

2 4

2
4

Procedure for counting 
intersections at a vertex.

+1 +2
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Now when you count intesections this way, the number of intersections
depends not just upon the point p, but also upon the of direction of Rp.
The key, though, is that there is one thing which does not depend upon the
direction– whether the number of intersections is odd or even, the “par-
ity” of p. To see why, you have to look at what happens as you move
the ray Rp around, and in particular what causes the number of intersec-
tions to change. Without giving overly detailed explanation, changes can
only happen when Rp crosses one of the vertices of P . Each such vertex
crossing corresponds to either an increase in 2 in the number of crossings,
a decrease by 2 in the number of crossings, or no change in the number of
crossings. In each case, the parity is not changed. Therefore P separates
the remaining points of the plane into two sets– those with even parity and
those with odd parity. Furthermore, each of those sets is connected in the
sense that by tracing just to one side of the edges of P , it is possible to lay
out a path of line segments connecting any two points with even parity, or
any two points with odd parity.

DEF: POLYGON INTERIOR AND EXTERIOR
For any simple polygon P , the set of points with odd parity (as de-
scribed in the last proof) is called the interior of P . The set of points
with even parity is called the exterior of P .

I will leave it to you to prove the intuitively clear result: that a polygon’s
interior is always a bounded region and that its exterior is always an un-
bounded region.

Now when you count intesections this way, the number of intersections
depends not just upon the point p, but also upon the of direction of Rp.
The key, though, is that there is one thing which does not depend upon the
direction– whether the number of intersections is odd or even, the “par-
ity” of p. To see why, you have to look at what happens as you move
the ray Rp around, and in particular what causes the number of intersec-
tions to change. Without giving overly detailed explanation, changes can
only happen when Rp crosses one of the vertices of P . Each such vertex
crossing corresponds to either an increase in 2 in the number of crossings,
a decrease by 2 in the number of crossings, or no change in the number of
crossings. In each case, the parity is not changed. Therefore P separates
the remaining points of the plane into two sets– those with even parity and
those with odd parity. Furthermore, each of those sets is connected in the
sense that by tracing just to one side of the edges of P , it is possible to lay
out a path of line segments connecting any two points with even parity, or
any two points with odd parity.

DEF: POLYGON INTERIOR AND EXTERIOR
For any simple polygon P , the set of points with odd parity (as de-
scribed in the last proof) is called the interior of P . The set of points
with even parity is called the exterior of P .

I will leave it to you to prove the intuitively clear result: that a polygon’s
interior is always a bounded region and that its exterior is always an un-
bounded region.

As the ray shifts across a vertex, the intersection count changes by +2, -2, or 0, 
all even numbers.

+2 –2 +0
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Interior angles: two dilemmas

Now I want to talk a little bit about the interior angles of a simple poly-
gon. If you would, please look at the three marked angles in the polygons
above. The first, ∠1 is the interior angle of a triangle. You can see that the
entire interior of the triangle is contained in the interior of the angle, and
that seems proper, that close connection between the interiors of the inte-
rior angles and the interior of the triangle. Now look at ∠2, and you can
see that for a general simple polygon, things do not work quite as well:
the entire polygon does not lie in the interior of this angle. But at least the
part of the polygon interior which is closest to that vertex is in the interior
of that angle. Finally look at ∠3: the interior of ∠3 encompasses exactly
none of the interior of the polygon– it is actually pointing away from the
polygon.

Let me address the issue surrounding ∠3 first. We have said that two
non-opposite rays define a single angle, and later established a measure for
that angle– some number between 0 and 180◦. But really, two rays like this
divide the plane into two regions, and correspondingly, they should form
two angles. One is the proper angle which we have already dealt with. The
other angle is what is called a reflex angle. Together, the measures of the
proper angle and the reflex angle formed by any two rays should add up to
360◦. There does not seem to be a standard bit of terminology to describe
this relationship between angles; I have seen the term “conjugate” as well
as the term “explementary”. So the problem with ∠3 is that the interior
angle isn’t the proper angle, but instead, that it is its explement.

Now as long as the polygon is fairly simple (no pun intended) this is all
fairly clear, but suppose that we were looking at an angle ∠Pi in a much
more elaborate polygon. Should the interior angle at Pi be the proper angle
∠Pi−1PiPi+1 or its conjugate? Well, to answer that question, you need to
look at the segment Pi−1Pi+1. It may cross into and out of the interior of
the polygon, but if the interior angle is the proper angle, then the first and
last points of Pi−1Pi+1 (the ones closest to Pi−1 and Pi+1) will be in the
interior of the polygon. If the interior angle is the reflex angle, then the
first and last points of Pi−1Pi+1 won’t be in the interior of the polygon.

With the interior angles of a polygon now properly accounted for, we
can define what it means for two polygons to be congruent.

Angle interiors and polygon interiors.

1 2 3

(proper) angleReflex angle

A pair of explementary angles.
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DEF: POLYGON CONGRUENCE
Two polygons P = P1P2 · · ·Pn and Q = Q1Q2 · · ·Qn are congruent,
written P �Q if all corresponding sides and interior angles are con-
gruent:

PiPi+1 � QiQi+1 & ∠Pi � ∠Qi, for all i.

Now let’s take a look at ∠2, where not all of the interior of the polygon lies
in the interior of the angle. The problem here is a little bit more intrinsic–
I don’t think you are going to be able to get around this one by fiddling
with definitions (well, not at least without making a lot of questionable
compromises). There is, though, a class of simple polygon for which the
polygon interior always lies in the interior of each interior angle. These
are the convex polygons.

Interior angles: two dilemmas

Now I want to talk a little bit about the interior angles of a simple poly-
gon. If you would, please look at the three marked angles in the polygons
above. The first, ∠1 is the interior angle of a triangle. You can see that the
entire interior of the triangle is contained in the interior of the angle, and
that seems proper, that close connection between the interiors of the inte-
rior angles and the interior of the triangle. Now look at ∠2, and you can
see that for a general simple polygon, things do not work quite as well:
the entire polygon does not lie in the interior of this angle. But at least the
part of the polygon interior which is closest to that vertex is in the interior
of that angle. Finally look at ∠3: the interior of ∠3 encompasses exactly
none of the interior of the polygon– it is actually pointing away from the
polygon.

Let me address the issue surrounding ∠3 first. We have said that two
non-opposite rays define a single angle, and later established a measure for
that angle– some number between 0 and 180◦. But really, two rays like this
divide the plane into two regions, and correspondingly, they should form
two angles. One is the proper angle which we have already dealt with. The
other angle is what is called a reflex angle. Together, the measures of the
proper angle and the reflex angle formed by any two rays should add up to
360◦. There does not seem to be a standard bit of terminology to describe
this relationship between angles; I have seen the term “conjugate” as well
as the term “explementary”. So the problem with ∠3 is that the interior
angle isn’t the proper angle, but instead, that it is its explement.

Now as long as the polygon is fairly simple (no pun intended) this is all
fairly clear, but suppose that we were looking at an angle ∠Pi in a much
more elaborate polygon. Should the interior angle at Pi be the proper angle
∠Pi−1PiPi+1 or its conjugate? Well, to answer that question, you need to
look at the segment Pi−1Pi+1. It may cross into and out of the interior of
the polygon, but if the interior angle is the proper angle, then the first and
last points of Pi−1Pi+1 (the ones closest to Pi−1 and Pi+1) will be in the
interior of the polygon. If the interior angle is the reflex angle, then the
first and last points of Pi−1Pi+1 won’t be in the interior of the polygon.

With the interior angles of a polygon now properly accounted for, we
can define what it means for two polygons to be congruent.

The dark region shows the 
polygon interior around a 
vertex. In (1), the connecting 
segment begins in the interior, 
so the interior angle is the 
proper angle. In (2), the 
connecting segment begins in 
the exterior, so the interior 
angle is the reflex angle.(1) (2)
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DEF: CONVEX POLYGON
A polygon P is convex if, for any two points p and q in the interior
of P , the entire line segment pq is in the interior of P .

Convexity is a big word in geometry and it comes up in a wide variety of
contexts. Our treatment here will be very elementary, and just touch on
the most basic properties of a convex polygon.

THM: CONVEXITY 1
If P = P1P2 · · ·Pn is a convex polygon, then all the points of the
interior of P lie on the same side of each of the lines PiPi+1.

Proof. The fundamental mechanism that makes this proof work is the way
that we defined the interior and exterior of a polygon by drawing a ray out
and counting how many times it intersects the sides of P . Suppose that
P and Q lie on opposite sides of a segment PiPi+1, so that PQ intersects
PiPi+1. Suppose further that PQ intersects no other sides of the polygon.
Then the ray PQ� will intersect P one more time than the ray (QP�)op.
Therefore P and Q will have different parities, and so one of P and Q will
be an interior point and the other an exterior point.

A (1) convex and (2) a non- 
convex polygon. In the second, 
a segment joins two points in 
the interior, but passes outside 
of the polygon.

(1) (2)

A single side of the polygon comes between P and Q– one must be outside and 
one must be inside.

QP



128 LESSON 11

Now on to the proof, a proof by contradiction. Suppose that both P and
Q are in the interior of a convex polygon, but that they are on the opposite
sides of �PiPi+1�. After the previous discussion, it is tempting to draw a
picture that looks like

In that case, only one of R1, R2 can be in the interior of P and so
P can’t be convex and we have our contradiction. But that misses an
important (and indeed likely) scenario– the one in which PQ intersects
the line �PiPi+1 � but not the segment PiPi+1. To deal with that scenario,
we are going to have to maneuver the intersection so that it does occur on
the segment, which requires a bit more delicate argument.

Choose a point X which is between Pi and Pi+1. We will relay the
interior/exterior information from P and Q back to points which are in
close proximity to X . Choose points R1, R2, S1 and S2 so that

P∗R1 ∗X ∗R2 Q∗S1 ∗X ∗S2.

In addition, we want to make sure that these points are so close together
that none of the other sides of P get in the way, so we will require (1)
R1S1 does intersect the side PiPi+1, but that (2) none of the edges other
than PiPi+1 comes between any two of these points. A polygon only has
finitely many edges, so yes, it is possible to do this. Then R1 and R2 lie
on different sides of the segment PiPi+1, so one is in the interior and one
is in the exterior. Suppose that R2 is the interior point. Then, since P is
convex, and R1 is between two interior points P and R2, R1 must also be an
interior point. Since R1 and R2 cannot both be interior points, that means
that R1 is the interior point. Applying a similar argument to Q, S1 and S2,
you can show that S1 must also be an interior point. But now R1 and S1 are
on opposite sides of PiPi+1, so they cannot both be interior points. This is
the contradiction.

There are a couple immediate corollaries of this– I am going to leave the
proofs of both of these to you.

THM: CONVEXITY 2
If P is a convex polygon, then the interior of P lies in the interior
of each interior angle ∠Pi.

THM: CONVEXITY 3
If P is a convex polygon, then each of its interior angles is a proper
angle, not a reflex angle.

QP R1 R2

Pi

Pi+1

Q
Q

P P

Pi

Pi+1

X
R1

R2S2

S1



129POLYGONS

In that case, only one of R1, R2 can be in the interior of P and so
P can’t be convex and we have our contradiction. But that misses an
important (and indeed likely) scenario– the one in which PQ intersects
the line �PiPi+1 � but not the segment PiPi+1. To deal with that scenario,
we are going to have to maneuver the intersection so that it does occur on
the segment, which requires a bit more delicate argument.

Choose a point X which is between Pi and Pi+1. We will relay the
interior/exterior information from P and Q back to points which are in
close proximity to X . Choose points R1, R2, S1 and S2 so that

P∗R1 ∗X ∗R2 Q∗S1 ∗X ∗S2.

In addition, we want to make sure that these points are so close together
that none of the other sides of P get in the way, so we will require (1)
R1S1 does intersect the side PiPi+1, but that (2) none of the edges other
than PiPi+1 comes between any two of these points. A polygon only has
finitely many edges, so yes, it is possible to do this. Then R1 and R2 lie
on different sides of the segment PiPi+1, so one is in the interior and one
is in the exterior. Suppose that R2 is the interior point. Then, since P is
convex, and R1 is between two interior points P and R2, R1 must also be an
interior point. Since R1 and R2 cannot both be interior points, that means
that R1 is the interior point. Applying a similar argument to Q, S1 and S2,
you can show that S1 must also be an interior point. But now R1 and S1 are
on opposite sides of PiPi+1, so they cannot both be interior points. This is
the contradiction.

There are a couple immediate corollaries of this– I am going to leave the
proofs of both of these to you.

THM: CONVEXITY 2
If P is a convex polygon, then the interior of P lies in the interior
of each interior angle ∠Pi.

THM: CONVEXITY 3
If P is a convex polygon, then each of its interior angles is a proper
angle, not a reflex angle.

Polygons of note

To finish this chapter, I want to mention a few particularly well-behaved
types of polygons.

TYPES OF POLYGONS
An equilateral polygon is one in which all sides are congruent. A
cyclic polygon is one in which all vertices are equidistant from a
fixed point (hence, all vertices lie on a circle, to be discussed later).
A regular polygon is one in which all sides are congruent and all
angles are congruent.

E: equilateral  
C: cyclic  
R: regular

E C R
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The third of these types is actually a combination of the previous two types
as the next theorem shows.

THM: EQUILATERAL + CYCLIC
A polygon P which is both equilateral and cyclic is regular.

Proof. We need to show that the interior angles of P are all congruent.
Let C be the point which is equidistant from all points of P . Divide
P into a set of triangles by constructing segments from each vertex to
C. For any of these triangles, we wish to distinguish the angle at C, the
central angle, from the other two angles in the triangle. Note that the
two constructed sides of these triangles are congruent. By the Isosceles
Triangle Theorem, the two non-central angles are congruent. As well, by
S·S·S, all of these triangles are congruent to each other. In particular, all
non-central angles of all the triangles are congruent. Since adjacent pairs
of such angles comprise an interior angle of P , the interior angles of P
are congruent.

While we normally think of regular polygons as I have shown them
above, there is nothing in the definition that requires a regular polygon to
be simple. In fact, there are non-simple regular polygons– such a polygon
is called a star polygon.

Because of S-S-S and the 
Isosceles Triangle 
Theorem, polygons 
which  are equilateral 
and cyclic are regular.

C

There is a regular star n-gon for each integer p between 1 and n/2 that is 
relatively prime to n. Shown here: n=15. The {n/p} notation is called the 
Schläfli symbol.

{15/1} {15/2} {15/4} {15/7}
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Exercises

1. Verify that a triangle is a convex polygon.

2. A diagonal of a polygon is a segment connecting nonadjacent vertices.
How many diagonals does an n-gon have?

3. Prove theorems 2 and 3 on convexity.

4. Prove that a regular convex polygon is cyclic (to find that equidistant
point, you may have to consider the odd and even cases separately).

5. Prove that if a polygon is convex, then all of its diagonals lie entirely
in the interior of the polygon (except for the endpoints).

6. Prove that if a polygon is not convex, then at least one of its diagonals
does not lie entirely in the interior of the polygon.

7. Verify that the perimeter of any polygon is more than twice the length
of its longest side.

8. Prove that the sum of the interior angles of a convex n-gon is at most
180◦(n−2).

9. Prove that if a polygon P is convex, then there are no other simple
polygons on that configuration of vertices.
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This is the last lesson in neutral geometry. After this, we will allow our-
selves one more axiom dealing with parallel lines, and that is the axiom
which turns neutral geometry into Euclidean geometry. Before turning
down the Euclidean path, let’s spend just a little time looking at quadri-
laterals. The primary goal of this section will be to develop quadrilat-
eral congruence theorems similar to the triangle congruence theorems we
picked up in earlier lessons.

Terminology

Before I start working on congruence theorems, though, let me quickly
run through the definitions of a few particular types of quadrilaterals.

One of the risks that you run when you define an object by requiring
it to have certain properties, as I have done above, is that you may define
something that cannot be– something like an equation with no solution.
The objects I have defined above are all such common shapes in everyday
life that we usually don’t question their existence. Here’s the interesting
thing though– in neutral geometry, there is no construction which guaran-
tees you can make a quadrilateral with four right angles– that is, neutral
geometry does not guarantee the existence of rectangles or squares. At
the same time, it does nothing to prohibit the existence of squares or rect-
angles either. You can make a quadrilateral with three right angles pretty
easily, but once you have done that, you have no control over the fourth
angle, and the axioms of neutral geometry are just not sufficient to prove
definitively whether or not that fourth angle is a right angle. This is one
of the fundamental differences that separates Euclidean geometry from
non-Euclidean geometry. In Euclidean geometry, the fourth angle is a
right angle, so there are rectangles. In non-Euclidean geometry, the fourth
angle cannot be a right angle, so there are no rectangles. When we eventu-
ally turn our attention to non-Euclidean geometry, I want to come back to
this– I would like to begin that study with a more thorough investigation
of these quadrilaterals that try to be like rectangles, but fail.

Tr
Pa Rh

Re Sq

Sq

Trapezoid
Parallelogram
Rhombus
Rectangle
Square

Rhombuses and rectangles 
are parallelograms. A 
square is both a rhombus 
and a rectangle.

a pair of parallel sides
two pairs of parallel sides
four congruent sides
four right angles
four congruent sides and four right angles

Rh

Re

Pa

Tr
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This is the last lesson in neutral geometry. After this, we will allow our-
selves one more axiom dealing with parallel lines, and that is the axiom
which turns neutral geometry into Euclidean geometry. Before turning
down the Euclidean path, let’s spend just a little time looking at quadri-
laterals. The primary goal of this section will be to develop quadrilat-
eral congruence theorems similar to the triangle congruence theorems we
picked up in earlier lessons.

Terminology

Before I start working on congruence theorems, though, let me quickly
run through the definitions of a few particular types of quadrilaterals.

One of the risks that you run when you define an object by requiring
it to have certain properties, as I have done above, is that you may define
something that cannot be– something like an equation with no solution.
The objects I have defined above are all such common shapes in everyday
life that we usually don’t question their existence. Here’s the interesting
thing though– in neutral geometry, there is no construction which guaran-
tees you can make a quadrilateral with four right angles– that is, neutral
geometry does not guarantee the existence of rectangles or squares. At
the same time, it does nothing to prohibit the existence of squares or rect-
angles either. You can make a quadrilateral with three right angles pretty
easily, but once you have done that, you have no control over the fourth
angle, and the axioms of neutral geometry are just not sufficient to prove
definitively whether or not that fourth angle is a right angle. This is one
of the fundamental differences that separates Euclidean geometry from
non-Euclidean geometry. In Euclidean geometry, the fourth angle is a
right angle, so there are rectangles. In non-Euclidean geometry, the fourth
angle cannot be a right angle, so there are no rectangles. When we eventu-
ally turn our attention to non-Euclidean geometry, I want to come back to
this– I would like to begin that study with a more thorough investigation
of these quadrilaterals that try to be like rectangles, but fail.

Quadrilaterals with three right angles. On the left, in Euclidean geometry, the 
fourth angle is a right angle. On the right, in non-Euclidean geometry, the 
fourth angle is acute.
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Quadrilateral Congruence

I feel that many authors view the quadrilateral congruences as a means to
an end, and as such, tend to take a somewhat ad hoc approach to them. I
think I understand this approach– the quadrilateral congruence theorems
themselves are a bit bland compared to their application. Still, I want to
be a bit more systematic in my presentation of them. In the last chapter
we looked at several classes of polygons. To recap:

{convex polygons} ⊂ {simple polygons} ⊂ {polygons}.

For what we are going to be doing in this book, we really only need
the congruence results for convex quadrilaterals, but I am going to try
to tackle the slightly broader question of congruence for simple quadri-
laterals. While the even broader question of congruence for non-simple
quadrilaterals would be interesting, I think it is just too far of a detour.

By definition, two quadrilaterals are congruent if four corresponding
sides and four corresponding interior angles are congruent– that’s a total
of eight congruences. Each congruence theorem says that you can guar-
antee congruence with some subset of that list. If you recall, for triangles
you generally needed to know three of the six pieces of information. For
quadrilaterals, it seems that the magic number is five. So what I would
like to do in this lesson is to look at all the different possible combinations
of five pieces (sides and angles) of a quadrilateral and determine which
lead to valid congruence theorems. I won’t give all the proofs or all the
counterexamples (that way you can tackle some of them on your own),
but I will provide the framework for a complete classification.

The first step is some basic combinatorics. Each of these theorems has
a five letter name consisting of some mix of Ss and As. When forming this
name, there are two choices, S and A for each of the five letters, and so
there are a total of 25 = 32 possible names. Two of these, S·S·S·S·S and
A·A·A·A·A, don’t make any sense in the context of quadrilateral congru-
ences, though, since a quadrilateral doesn’t have five sides or five angles.
That leaves thirty different words. Now it is important to notice that not
all of these words represent fundamentally different information about the
quadrilaterals themselves. For instance, S·S·A·S·A and A·S·A·S·S both
represent the same information, just listed in reverse order. Similarly,
S·S·A·S·S and S·S·S·S·A both represent the same information– four sides
and one angle. Once those equivalences are taken into consideration, we
are left with ten potential quadrilateral congruences.
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S·A·S·A·S yes

A·S·A·S·A yes

A·A·S·A·S SASAA yes

S·S·S·S·A SSSAS SSASS no(∗)

SASSS ASSSS

A·S·A·A·S SAASA no

A·S·A·S·S SSASA no

A·S·S·A·S SASSA no

A·A·A·A·S AAASA AASAA no
ASAAA SAAAA

S·S·S·A·A AASSS ASSSA no
SAASS SSAAS

A·A·A·S·S SAAAS SSAAA yes
ASSAA AASSA

(∗) a valid congruence theorem for convex quadrilaterals

Table 1. Quadrilateral congruence theorems.

Word Variations
Valid 
congruence?
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S·A·S·A·S, A·S·A·S·A, and A·A·S·A·S

Each of these is a valid congruence theorem for simple quadrilaterals.
The basic strategy for their proofs is to use a diagonal of the quadrilateral
to separate it into two triangles, and then to use the triangle congruence
theorems. Now the fact that I am allowing both convex and non-convex
quadrilaterals in this discussion complicates things a little bit, so let’s start
by examining the nature of the diagonals of a quadrilateral. Yes, I will be
leaving out a few details here (more than a few to be honest) so you should
feel free to work out any tricky details for yourself.

Consider a quadrilateral �ABCD (I am going to use a square symbol
to denote a simple quadrilateral). What I want to do is to look at the posi-
tion of the point D relative to the triangle �ABC. Each of the three lines
�AB�, �BC�, and �AC� separate the plane into two pieces. It is not
possible, though, for any point of the plane to simultaneously be

(1) on the opposite side of AB from C
(2) on the opposite side of AC from B, and
(3) on the opposite side of BC from A.

Therefore the lines of �ABC divide the plane into seven (23 −1) distinct
regions.

Now for each of these seven regions, we can determine whether the
diagonals AC and BD are in the interior of �ABCD. Let me point out
that this is always an all-or-nothing proposition– either the entire diagonal
lies in the interior (excepting of course the endpoints) or none of it does.
Additionally, in each case, a diagonal lies in the interior of a quadrilateral
if and only if it lies in the interior of both the angles formed by �ABCD
at its endpoints. What I mean is that if, for example, AC is in the interior
of �ABCD, then AC will be in the interior of both ∠DAB and ∠BCD. If
AC isn’t in the interior of �ABCD, then AC will not be in the interior of
either ∠DAB or ∠BCD.

With the diagonals now properly sorted, we can address the congruence
theorems directly. Perhaps the most useful of them all is S·A·S·A·S.

S·A·S·A·S QUADRILATERAL CONGRUENCE
If �ABCD and �A′B′C′D′ are simple quadrilaterals and

AB � A′B′ ∠B � ∠B′ BC � B′C′ ∠C � ∠C′ CD �C′D′

then �ABCD ��A′B′C′D′.The seven “sides” of a triangle.

A

B

C

I

II

IV

V

VI

VII

III
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S·A·S·A·S, A·S·A·S·A, and A·A·S·A·S

Each of these is a valid congruence theorem for simple quadrilaterals.
The basic strategy for their proofs is to use a diagonal of the quadrilateral
to separate it into two triangles, and then to use the triangle congruence
theorems. Now the fact that I am allowing both convex and non-convex
quadrilaterals in this discussion complicates things a little bit, so let’s start
by examining the nature of the diagonals of a quadrilateral. Yes, I will be
leaving out a few details here (more than a few to be honest) so you should
feel free to work out any tricky details for yourself.

Consider a quadrilateral �ABCD (I am going to use a square symbol
to denote a simple quadrilateral). What I want to do is to look at the posi-
tion of the point D relative to the triangle �ABC. Each of the three lines
�AB�, �BC�, and �AC� separate the plane into two pieces. It is not
possible, though, for any point of the plane to simultaneously be

(1) on the opposite side of AB from C
(2) on the opposite side of AC from B, and
(3) on the opposite side of BC from A.

Therefore the lines of �ABC divide the plane into seven (23 −1) distinct
regions.

Now for each of these seven regions, we can determine whether the
diagonals AC and BD are in the interior of �ABCD. Let me point out
that this is always an all-or-nothing proposition– either the entire diagonal
lies in the interior (excepting of course the endpoints) or none of it does.
Additionally, in each case, a diagonal lies in the interior of a quadrilateral
if and only if it lies in the interior of both the angles formed by �ABCD
at its endpoints. What I mean is that if, for example, AC is in the interior
of �ABCD, then AC will be in the interior of both ∠DAB and ∠BCD. If
AC isn’t in the interior of �ABCD, then AC will not be in the interior of
either ∠DAB or ∠BCD.

With the diagonals now properly sorted, we can address the congruence
theorems directly. Perhaps the most useful of them all is S·A·S·A·S.

S·A·S·A·S QUADRILATERAL CONGRUENCE
If �ABCD and �A′B′C′D′ are simple quadrilaterals and

AB � A′B′ ∠B � ∠B′ BC � B′C′ ∠C � ∠C′ CD �C′D′

then �ABCD ��A′B′C′D′.

D is in is �ABCD D is on the reflex interior
region simple? same side of : angle diagonal:

BC as A AC as B AB as C AC BD

I � � A �

II � � B �

III � � C �

IV � � – – –

V � � � none � �

VI � � – – –

VII � � � � D �

Table 2. The diagonals of a quadrilateral
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Proof. The diagonals AC and A′C′ are the keys to turning this into a prob-
lem of triangle congruence. Unfortunately, we do not know whether or not
those diagonals are in the interiors of their respective quadrilaterals. That
means we have to tread somewhat carefully at first. Because of S·A·S,
�ABC ��A′B′C′. You need to pay attention to what is happening at ver-
tex C. If AC is in the interior of the quadrilateral, then it is in the interior of
∠BCD and that means (∠BCA)< (∠BCD). Then, since ∠B′C′A′ �∠BCA
and ∠B′C′D′ � ∠BCD, (∠B′C′A′) < (∠B′C′D′). Therefore A′C′ must be
in the interior of ∠B′C′D′ and in the interior of �A′B′C′D′. With the same
reasoning, we can argue that if AC is not in the interior of �ABCD, then
A′C′ cannot be in the interior of �A′B′C′D′. So there are two cases, and
the assembly of the quadrilateral from the triangles depends upon the case.
My diagram of the chase through the congruences is below. I have split it,
when necessary, to address the differences in the two cases.

Using essentially this same approach, you should be able to verify both
the A·S·A·S·A and A·A·S·A·S quadrilateral congruences.

SAS : ACD
a ∠DAC

AC s
∠ACD a

CD s
a ∠CDA
s DA

SAS : ABC
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BC s
a ∠BCA
s CA

a
s
a
s
a
s

a
s
a
s
a
s

Given :
AB

∠ABC
BC

∠BCD
CD

∠BCA
∠BCD

∠ACD

Angle Sub n Angle Sub n

∠DAC
∠CAB

∠DAB

Angle Sub n
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S·S·S·S·A

The S·S·S·S·A condition is almost enough to guarantee quadrilateral con-
gruence. Suppose that you know the lengths of all four sides of �ABCD,
and you also know ∠A. Then �BAD is completely determined (S·A·S)
and from that �BCD is completely determined (S·S·S). That still does
not mean that �ABCD is completely determined, though, because there
are potentially two ways to assemble �BAD and �BCD (as illustrated).
One assembly creates a convex quadrilateral, the other a non-convex one.
Now, there will be times when you know the quadrilaterals in question
are all convex, and in those situations, S·S·S·S·A can be used to show that
convex quadrilaterals are congruent.

A·S·A·A·S, A·S·A·S·S, A·S·S·A·S, A·A·A·A·S, and S·S·S·A·A

None of these provide sufficient information to guarantee congruence and
counterexamples can be found in Euclidean geometry. I will just do one
of them– S·S·S·A·A, and leave the rest for you to puzzle out. In the illus-
tration below �ABCD and �ABC′D′ have correponding S·S·S·A·A but
are not congruent.

S·S·S·S·A

The S·S·S·S·A condition is almost enough to guarantee quadrilateral con-
gruence. Suppose that you know the lengths of all four sides of �ABCD,
and you also know ∠A. Then �BAD is completely determined (S·A·S)
and from that �BCD is completely determined (S·S·S). That still does
not mean that �ABCD is completely determined, though, because there
are potentially two ways to assemble �BAD and �BCD (as illustrated).
One assembly creates a convex quadrilateral, the other a non-convex one.
Now, there will be times when you know the quadrilaterals in question
are all convex, and in those situations, S·S·S·S·A can be used to show that
convex quadrilaterals are congruent.
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None of these provide sufficient information to guarantee congruence and
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A·A·A·S·S

This is the intriguing one. The idea of splitting the quadrilateral into tri-
angles along the diagonal just doesn’t work. You fail to get enough infor-
mation about either triangle. Yet, (as we will see) in Euclidean geometry,
the angle sum of a quadrilateral has to be 360◦. Since three of the an-
gles are given, that means that in the Euclidean realm the fourth angle
is determined as well. In that case, this set of congruences is essentially
equivalent to the A·S·A·S·A (which is a valid congruence theorem). The
problem is that in neutral geometry the angle sum of a quadrilateral does
not have to be 360◦. Because of the Saccheri-Legendre Theorem, the an-
gle sum of a quadrilateral cannot be more than 360◦, but that is all we can
say. It turns out that this is a valid congruence theorem in neutral geom-
etry. The proof is a little difficult though. The argument that I want to
use requires us to “drop a perpendicular”. I have described this process in
some of the previous exercises, but let me reiterate here.

LEM 1
For any line � and point P not on �, there is a unique line through P
which is perpendicular to �.

The intersection of � and the perpendicular line is often called the foot
of the perpendicular. The process of finding this foot is called dropping
a perpendicular. I have already proven the existence part of this– the
phrasing was a little different then, but my proof of the existence of right
angles (in the lesson on angle comparison) constructs this perpendicular
line. As for uniqueness part, I will leave that to you.

LEM 2
Let � be a line, P a point not on �, and Q the foot of the perpendicular
to � through P. Then P is closer to Q than it is to any other point on
�.

Again, I am going to pass off the proof to you. I would suggest, though,
that you think about the Scalene Triangle Theorem. Now on to the main
theorem.
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The setup for the proof of AAASS for convex quadrilaterals.

A·A·A·S·S QUADRILATERAL CONGRUENCE
If �ABCD and �A′B′C′D′ are simple quadrilaterals, and

∠A � ∠A′ ∠B � ∠B′ ∠C � ∠C′ CD �C′D′ DA � D′A′

then �ABCD ��A′B′C′D′.

Proof. I will use a proof by contradiction of this somewhat tricky theo-
rem. Suppose that �ABCD and �A′B′C′D′ have the corresponding con-
gruent pieces as described in the statement of the theorem, but suppose
that �ABCD and �A′B′C′D′ are not themselves congruent.

Part One, in which we establish parallel lines.
I want to construct a new quadrilateral: �A�B�CD will overlap �ABCD
as much as possible, but will be congruent to �A′B′C′D′. Here is the con-
struction. Locate B� on CB� so that CB� �C′B′. Note that BC and B′C′

cannot be congruent– if they were the two quadrilaterals would be con-
gruent by A·A·S·A·S. As a result, in the construction, B �= B�. The other
point to place is A�. It needs to be positioned so that:

1. it is on the same side of �BC� as A,
2. ∠AB�C� � ∠A′B′C′, and
3. A�B� � A′B′.

The angle and segment construction axioms guarantee that there is one and
only one point that satisfies these conditions. That finishes the copying–
by S·A·S·A·S, �A�B�CD and �A′B′C′D′ are congruent. There is one
important thing to note about this construction. Since

∠A�B�C � ∠A′B′C′ � ∠ABC,

the Alternate Interior Angle Theorem guarantees that �A�B�� and �AB�
will be parallel.
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Part two, in which we determine the position of D relative to those lines.
The two parallel lines � AB � and � A�B� � carve the plane into three
regions as shown in the illustration below. The reason I mention this is
that my proof will not work if D is in region 2, the region between the
two parallel lines. Now it is pretty easy to show that D will not fall in
region 2 if we know the two quadrilaterals are convex. If we don’t know
that, though, the situation gets a little more delicate, and we will have to
look for possible reflex angles in the two quadrilaterals. The key thing to
keep in mind is that the angle sum of a simple quadrilateral is at most 360◦
(a consequence of the Saccheri-Legendre Theorem), and the measure of
a reflex angle is more than 180◦– therefore, a simple quadrilateral will
support at most one reflex angle.

Suppose that D did lie in region 2. Note that, based upon our construc-
tion, either C∗B∗B� or C∗B� ∗B, and so that means that C is not in region
2. Therefore, one of the two lines (either �AB� or �A�B��) comes be-
tween C and D while the other does not. The two cases are equivalent, so
in the interest of keeping the notation reasonable, let’s assume for the rest
of this proof that �A�B� � separates C and D, but that �AB� does not.
What are the implications of this? Let me refer you back to Table 2 which
characterizes the possible positions of a fourth vertex of a quadrilateral in
relation to the previous three.

A·A·A·S·S QUADRILATERAL CONGRUENCE
If �ABCD and �A′B′C′D′ are simple quadrilaterals, and
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regions as shown in the illustration below. The reason I mention this is
that my proof will not work if D is in region 2, the region between the
two parallel lines. Now it is pretty easy to show that D will not fall in
region 2 if we know the two quadrilaterals are convex. If we don’t know
that, though, the situation gets a little more delicate, and we will have to
look for possible reflex angles in the two quadrilaterals. The key thing to
keep in mind is that the angle sum of a simple quadrilateral is at most 360◦
(a consequence of the Saccheri-Legendre Theorem), and the measure of
a reflex angle is more than 180◦– therefore, a simple quadrilateral will
support at most one reflex angle.

Suppose that D did lie in region 2. Note that, based upon our construc-
tion, either C∗B∗B� or C∗B� ∗B, and so that means that C is not in region
2. Therefore, one of the two lines (either �AB� or �A�B��) comes be-
tween C and D while the other does not. The two cases are equivalent, so
in the interest of keeping the notation reasonable, let’s assume for the rest
of this proof that �A�B� � separates C and D, but that �AB� does not.
What are the implications of this? Let me refer you back to Table 2 which
characterizes the possible positions of a fourth vertex of a quadrilateral in
relation to the previous three.
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Part two, in which we determine the position of D relative to those lines.
The two parallel lines � AB � and � A�B� � carve the plane into three
regions as shown in the illustration below. The reason I mention this is
that my proof will not work if D is in region 2, the region between the
two parallel lines. Now it is pretty easy to show that D will not fall in
region 2 if we know the two quadrilaterals are convex. If we don’t know
that, though, the situation gets a little more delicate, and we will have to
look for possible reflex angles in the two quadrilaterals. The key thing to
keep in mind is that the angle sum of a simple quadrilateral is at most 360◦
(a consequence of the Saccheri-Legendre Theorem), and the measure of
a reflex angle is more than 180◦– therefore, a simple quadrilateral will
support at most one reflex angle.

Suppose that D did lie in region 2. Note that, based upon our construc-
tion, either C∗B∗B� or C∗B� ∗B, and so that means that C is not in region
2. Therefore, one of the two lines (either �AB� or �A�B��) comes be-
tween C and D while the other does not. The two cases are equivalent, so
in the interest of keeping the notation reasonable, let’s assume for the rest
of this proof that �A�B� � separates C and D, but that �AB� does not.
What are the implications of this? Let me refer you back to Table 2 which
characterizes the possible positions of a fourth vertex of a quadrilateral in
relation to the previous three.

Since C and D are on the same side
of � AB �, D has to be in region
III, IV, or V with respect to �ABC
(note that if D is in region VI, then
�ABCD is not simple). If D is in
region III, then �ABCD has a re-
flex angle at C. If D is in region V,
then �ABCD is convex and does
not have a reflex angle. And if D
is in region VII, then �ABCD has
a reflex angle at D.

Since C and D are on opposite sides
� A�B� �, D has to be in region
I or II (if D is in region IV, then
�A�B�CD is not simple. If D is in
region I, then �A�B�CD has a re-
flex angle at A�. If D is in region
II, then �A�B�CD has a reflex an-
gle at B�.

A quadrilateral can only have one reflex angle, so in �ABCD neither ∠A
nor ∠B is reflex. In �A�B�CD one of ∠A� or ∠B� is reflex. Remember
though that ∠A� �∠A and ∠B� �∠B. This is a contradiction– obviously
two angles cannot be congruent if one has a measure over 180◦ while the
other has a measure less than that. So now we know that D cannot lie
between �AB� and �A�B�� and so all the points of �AB� are on the
opposite side of �A�B�� from D.

Part Three, in which we measure the distance from D to those lines.
I would like to divide the rest of the proof into two cases. The first case
deals with the situation when ∠A and ∠A� (which are congruent) are right
angles. The second deals with the situation where they are not.

Case 1. (∠A) = (∠A�) = 90◦.
Since D and A are on opposite sides of �A�B��, there is a point P between
A and D which is on �A�B��. Then

|DP|< |DA|= |DA�|.

But that can’t happen, since A� is the closest point on �A�B�� to D.
Case 2. (∠A) = (∠A�) �= 90◦.
The approach here is quite similar to the one in Case 1. The difference is
that we are going to have to make the right angles first. Locate E and E�,
the feet of the perpendiculars from D to �AB� and �A�B��, respectively.
Please turn your attention to triangles �DAE and �DA�E�. In them,

AD � A�D ∠A � ∠A� ∠E � ∠E�.

By A·A·S, they are congruent, and that means that DE � DE�. But that
creates essentially the same problem that we saw in the first case. Since D
and E are on opposite sides of �A�B��, there is a point P between D and
E which is on �A�E��. Then

|DP|< |DE|= |DE�|.

Again, this cannot happen, as E� should be the closest point to D on
�A�E��.

In either case, we have reached a contradiction. The initial assumption,
that �ABCD and �A′B′C′D′ are not congruent, must be false.
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Case 1: the angle at A is a right angle.
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Please turn your attention to triangles �DAE and �DA�E�. In them,

AD � A�D ∠A � ∠A� ∠E � ∠E�.

By A·A·S, they are congruent, and that means that DE � DE�. But that
creates essentially the same problem that we saw in the first case. Since D
and E are on opposite sides of �A�B��, there is a point P between D and
E which is on �A�E��. Then

|DP|< |DE|= |DE�|.

Again, this cannot happen, as E� should be the closest point to D on
�A�E��.

In either case, we have reached a contradiction. The initial assumption,
that �ABCD and �A′B′C′D′ are not congruent, must be false.

Part Three, in which we measure the distance from D to those lines.
I would like to divide the rest of the proof into two cases. The first case
deals with the situation when ∠A and ∠A� (which are congruent) are right
angles. The second deals with the situation where they are not.
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Case 2. (∠A) = (∠A�) �= 90◦.
The approach here is quite similar to the one in Case 1. The difference is
that we are going to have to make the right angles first. Locate E and E�,
the feet of the perpendiculars from D to �AB� and �A�B��, respectively.
Please turn your attention to triangles �DAE and �DA�E�. In them,

AD � A�D ∠A � ∠A� ∠E � ∠E�.

By A·A·S, they are congruent, and that means that DE � DE�. But that
creates essentially the same problem that we saw in the first case. Since D
and E are on opposite sides of �A�B��, there is a point P between D and
E which is on �A�E��. Then

|DP|< |DE|= |DE�|.

Again, this cannot happen, as E� should be the closest point to D on
�A�E��.

In either case, we have reached a contradiction. The initial assumption,
that �ABCD and �A′B′C′D′ are not congruent, must be false.
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Part Three, in which we measure the distance from D to those lines.
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|DP|< |DA|= |DA�|.

But that can’t happen, since A� is the closest point on �A�B�� to D.
Case 2. (∠A) = (∠A�) �= 90◦.
The approach here is quite similar to the one in Case 1. The difference is
that we are going to have to make the right angles first. Locate E and E�,
the feet of the perpendiculars from D to �AB� and �A�B��, respectively.
Please turn your attention to triangles �DAE and �DA�E�. In them,

AD � A�D ∠A � ∠A� ∠E � ∠E�.

By A·A·S, they are congruent, and that means that DE � DE�. But that
creates essentially the same problem that we saw in the first case. Since D
and E are on opposite sides of �A�B��, there is a point P between D and
E which is on �A�E��. Then

|DP|< |DE|= |DE�|.

Again, this cannot happen, as E� should be the closest point to D on
�A�E��.

In either case, we have reached a contradiction. The initial assumption,
that �ABCD and �A′B′C′D′ are not congruent, must be false.
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Exercises

1. A convex quadrilateral with two pairs of congruent adjacent sides is
called a kite. Prove that the diagonals of a kite are perpendicular to one
another.

2. Prove the A·S·A·S·A, and A·A·S·A·S quadrilateral congruence theo-
rems.

3. Prove the S·S·S·S·A quadrilateral congruence theorem for convex quadri-
laterals.

4. Provide Euclidean counterexamples for each of A·S·A·A·S, A·S·A·S·S,
A·S·S·A·S, and A·A·A·A·S.

5. Here is another way that you could count words: there are four angles
and four sides, a total of eight pieces of information, and you need to
choose five of them. That means there are

(
8
5

)
=

8!
5!(8−5)!

= 56

possibilities. That’s quite a few more than the 25 = 32 possibilities
that I discussed. Resolve this discrepancy and make sure that I haven’t
missed any congruence theorems.
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My goal with all of these lessons is to provide an introduction to both
Euclidean non-Euclidean geometry. The two geometries share many fea-
tures, but they also have very fundamental and radical differences. Neutral
geometry is the part of the path they have in common and that is what we
have been studying so far, but I think we have finally come to the fork in
the path. That fork comes when you try to answer this question:

Given a line � and a point P which is not on �, how many lines pass
through P and are parallel to �?

Using just the axioms of neutral geometry, you can prove that there is
always at least one such parallel. You can also prove that if there is more
than one parallel, then there must be infinitely many. But that is the extent
of what the neutral axioms can say. The neutral axioms just aren’t enough
to determine whether there is one parallel or many. This is what separates
Euclidean and non-Euclidean geometry– a single axiom: the final axiom
of Euclidean geometry calls for exactly one parallel, the final axiom of
non-Euclidean geometry calls for more than one parallel.

2 EUCLIDEAN GEOMETRY   





13 REGARDING PARALLELS,
A DECISION IS MADE
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The next several lessons are devoted to Euclidean geometry. Now you
have to remember that Euclidean geometry is several millenia old, so there
is a lot of it. All that I hope to do in these lessons is to cover the funda-
mentals, but there are many excellent books that do much more. Geometry
Revisited [1] by Coxeter and Greitzer is an excellent one.

The first order of business is to put that final axiom in place. There are
many formulations of the parallel axiom for Euclidean geometry, but the
one that I think gets right to the heart of the matter is Playfair’s Axiom,
named after the Scottish mathematician John Playfair.

PLAYFAIR’S AXIOM
Let � be a line, and let P be a point which is not on �. Then there is
exactly one line through P which is parallel to �.

In this lesson I would like to look at a small collection of theorems which
are almost immediate consequences of this axiom, and as such, are at the
very core of Euclidean geometry. The first of these is Euclid’s Fifth Pos-
tulate. This is the controversial postulate in The Elements, but also the one
that guarantees the same parallel behavior that Playfair’s Axiom provides.
In my opinion, Euclid’s postulate is a little unwieldy, particularly when
compared to Playfair’s Axiom, but it is the historical impetus for so much
of what followed. So let’s use Playfair’s Axiom to prove Euclid’s Fifth
Postulate.

EUCLID’S FIFTH POSTULATE
If lines �1 and �2 are crossed by a transversal t, and the sum of adja-
cent interior angles on one side of t measure less than 180◦, then �1
and �2 intersect on that side of t.

Euclidean parallel non-Euclidean parallels

PP
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Proof. First, some labels. Start with lines �1
and �2 crossed by transversal t. Label P1 and
P2, the points of intersection of t with �1 and
�2 respectively. On one side of t, the two ad-
jacent interior angles should add up to less
than 180◦. Label the one at P1 as ∠1 and the
one at P2 at ∠2. Label the supplement of ∠1
as ∠3 and label the supplement of ∠2 as ∠4.

Primarily, of course, this postulate is about
the location of the intersection of �1 and �2.
But you don’t want to overlook an important
prerequisite: the postulate is also guarantee-
ing that �1 and �2 do intersect. That’s really
the first thing we need to show. Note that ∠1
and ∠4 are alternate interior angles, but they
are not congruent– if they were, their supple-
ments ∠2 and ∠3 would be too, and then

(∠1)+(∠2) = (∠1)+(∠3) = 180◦.

There is, however, another line �� through
P1 which does form an angle congruent to
∠4 (because of the Angle Construction Pos-
tulate), and by the Alternate Interior Angle
Theorem, �� must be parallel to �2. Because
of Playfair’s Axiom, �� is the only parallel to
�2 through P1. That means �1 intersects �2.

The second part of the proof is to figure
out on which side of t that �1 and �2 cross.
Let’s see what would happen if they inter-
sected at a point Q on the wrong side of t:
the side with ∠3 and ∠4. Then the trian-
gle �P1P2Q would have two interior angles,
∠3 and ∠4, which add up to more than 180◦.
This violates the Saccheri-Legendre theorem.
So �1 and �2 cannot intersect on the side of
t with ∠3 and ∠4 and that means that they
must intersect on the side with ∠1 and ∠2.

1

2

An impossible triangle on 
the wrong side of t.

P1

Q
P2

3

4

1

2

Constructing the unique 
parallel.

P1

1

2

The labels.

P1

P2

13

t

4 2
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One of the truly useful theorems of neutral geometry is the Alternate
Interior Angle Theorem. In fact, we just used it in the last proof. But you
may recall from high school geometry, that the converse of that theorem is
often even more useful. The problem is that the converse of the Alternate
Interior Angle Theorem can’t be proved using just the axioms of neutral
geometry. It depends upon Euclidean behavior of parallel lines.

CONVERSE OF THE ALTERNATE INTERIOR ANGLE THEOREM
If �1 and �2 are parallel, then the pairs of alternate interior angles
formed by a transversal t are congruent.

Proof. Consider two parallel lines crossed by a transversal. Label adja-
cent interior angles: ∠1 and ∠2, and ∠3 and ∠4, so that ∠1 and ∠4 are
supplementary and ∠2 and ∠3 are supplementary. That means that the
pairs of alternate interior angles are ∠1 and ∠3 and ∠2 and ∠4. Now, we
just have to do a little arithmetic. From the two pairs of supplementary
angles: {

(∠1)+(∠4) = 180◦ (i)
(∠2)+(∠3) = 180◦. (ii)

Notice that if you add all four angles together, then

(∠1)+(∠2)+(∠3)+(∠4) = 360◦.

Now, here is where Euclid’s Fifth comes into play– and actually, we will
need to use the contrapositive. You see, �1 and �2 are parallel, and that
means that they do not intersect on either side of t. Therefore Euclid’s
Fifth says that on neither side of t may the sum of adjacent interior angles
be less than 180◦: {

(∠1)+(∠2)≥ 180◦

(∠3)+(∠4)≥ 180◦.

If either one of these sums was greater than 180◦, though, the sum of all
four angles would have to be more than 360◦– we saw above that is not
the case, so the inequalities are actually equalities:

{
(∠1)+(∠2) = 180◦ (iii)
(∠3)+(∠4) = 180◦. (iv)

Now you have two systems of equations with four unknowns– it is basic
algebra from here. Subtract equation (iv) from equation (i) to get (∠1) =
(∠3). Subtract equation (iii) from equation (i) to get (∠2) = (∠4). The
alternate interior angles are congruent.

14

23

1

2

t
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Proof. Consider two parallel lines crossed by a transversal. Label adja-
cent interior angles: ∠1 and ∠2, and ∠3 and ∠4, so that ∠1 and ∠4 are
supplementary and ∠2 and ∠3 are supplementary. That means that the
pairs of alternate interior angles are ∠1 and ∠3 and ∠2 and ∠4. Now, we
just have to do a little arithmetic. From the two pairs of supplementary
angles: {

(∠1)+(∠4) = 180◦ (i)
(∠2)+(∠3) = 180◦. (ii)

Notice that if you add all four angles together, then

(∠1)+(∠2)+(∠3)+(∠4) = 360◦.

Now, here is where Euclid’s Fifth comes into play– and actually, we will
need to use the contrapositive. You see, �1 and �2 are parallel, and that
means that they do not intersect on either side of t. Therefore Euclid’s
Fifth says that on neither side of t may the sum of adjacent interior angles
be less than 180◦: {

(∠1)+(∠2)≥ 180◦

(∠3)+(∠4)≥ 180◦.

If either one of these sums was greater than 180◦, though, the sum of all
four angles would have to be more than 360◦– we saw above that is not
the case, so the inequalities are actually equalities:

{
(∠1)+(∠2) = 180◦ (iii)
(∠3)+(∠4) = 180◦. (iv)

Now you have two systems of equations with four unknowns– it is basic
algebra from here. Subtract equation (iv) from equation (i) to get (∠1) =
(∠3). Subtract equation (iii) from equation (i) to get (∠2) = (∠4). The
alternate interior angles are congruent.

14

23

1

2

t
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One of the key theorems we proved in the neutral geometry section was
the Saccheri-Legendre Theorem: that the angle sum of a triangle is at most
180◦. That’s all you can say with the axioms of neutral geometry, but in
a world with Playfair’s Axiom and the converse of the Alterante Interior
Angle Theorem, there can be only one triangle angle sum.

THM
The angle sum of a triangle is 180◦.

Proof. Consider a triangle �ABC. By Playfair’s Axiom, there is a unique
line � through B which is parallel to � AC �. That line and the rays
BA� and BC� form three angles, ∠1, ∠2 and ∠3 as I have shown in the
illustration below.

By the converse of the Alternate Interior Angle Theorem, two pairs of
alternate interior angles are congruent:

∠1 � ∠A ∠3 � ∠C.

Therefore, the angle sum of �ABC is

s(�ABC) = (∠A)+(∠B)+(∠C)

= (∠1)+(∠2)+(∠3)
= 180◦.

One of the key theorems we proved in the neutral geometry section was
the Saccheri-Legendre Theorem: that the angle sum of a triangle is at most
180◦. That’s all you can say with the axioms of neutral geometry, but in
a world with Playfair’s Axiom and the converse of the Alterante Interior
Angle Theorem, there can be only one triangle angle sum.

THM
The angle sum of a triangle is 180◦.

Proof. Consider a triangle �ABC. By Playfair’s Axiom, there is a unique
line � through B which is parallel to � AC �. That line and the rays
BA� and BC� form three angles, ∠1, ∠2 and ∠3 as I have shown in the
illustration below.

By the converse of the Alternate Interior Angle Theorem, two pairs of
alternate interior angles are congruent:

∠1 � ∠A ∠3 � ∠C.

Therefore, the angle sum of �ABC is

s(�ABC) = (∠A)+(∠B)+(∠C)

= (∠1)+(∠2)+(∠3)
= 180◦.

A C

B

2 3

3

1

1
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In the last lesson on quadrilaterals I talked a little bit about the uncertain
status of rectangles in neutral geometry– that it is pretty easy to make a
convex quadrilateral with three right angles, but that once you have done
that, there is no guarantee that the fourth angle will be a right angle. Here
it is now in the Euclidean context:

RECTANGLES EXIST
Let ∠ABC be a right angle. Let rA and rB be rays so that: rA has
endpoint A, is on the same side of �AB� as C, and is perpendicular
to � AB �; rC has endpoint C, is on the same side of � BC � as A,
and is perpendicular to � BC �. Then rA and rC intersect at a point
D, and the angle fomed at this intersection, ∠ADC, is a right angle.
Therefore �ABCD is a rectangle.

Proof. The first bit of business is to make sure that rA and rC intersect. Let
�A and �C be the lines containing rA and rC respectively. By the Alternate
Interior Angle Theorem, the right angles at A and B mean that �A and
�BC� are parallel. So �BC� is the one line parallel to �A through C, and
that means that �C cannot be parallel to �A: it has to intersect �A. Let’s call
that point of intersection D. Now in the statement of the theorem, I claim
that it is the rays, not the lines, that intersect. That means that we need
to rule out the possibility that the intersection of �A and �C might happen
on one (or both) of the opposite rays. Observe that since �A is parallel to
�BC�, all of the points of �A are on the same side of �BC� as A. None of
the points of rop

C are on that side of BC, so D cannot be on rop
C . Likewise,

all the points of �C are on the same side of �AB� as C. None of the points
of rop

A are on that side of AB, so D cannot be on rop
A .

So now we have a quadrilateral �ABCD with three right angles, ∠A,
∠B, and ∠C. It is actually a convex quadrilateral too (I leave it to you
to figure out why), so the diagonal AC divides �ABCD into two triangles
�ABC and �ADC. Then, since the angle sum of a triangle is 180◦,

s(�ABC)+ s(�ADC) = 180◦+180◦

(∠CAB)+(∠B)+(∠ACB)+(∠CAD)+(∠D)+(∠ACD) = 360◦

(∠A)+(∠B)+(∠C)+(∠D) = 360◦

90◦+90◦+90◦+(∠D) = 360◦

(∠D) = 90◦.

A

B

C

rA

rC

A

C
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That means that, yes, rectangles do exist in Euclidean geometry. In the
next lemma, I have listed some basic properties of a rectangle. I will leave
it to you to prove these (they aren’t hard).

LEM: PROPERTIES OF RECTANGLES
Let �ABCD be a rectangle. Then
1. �AB� is parallel to �CD� and �AD� is parallel to �BC�
2. AB �CD and AD � BC and AC � BD.

In the last lesson on quadrilaterals I talked a little bit about the uncertain
status of rectangles in neutral geometry– that it is pretty easy to make a
convex quadrilateral with three right angles, but that once you have done
that, there is no guarantee that the fourth angle will be a right angle. Here
it is now in the Euclidean context:

RECTANGLES EXIST
Let ∠ABC be a right angle. Let rA and rB be rays so that: rA has
endpoint A, is on the same side of �AB� as C, and is perpendicular
to � AB �; rC has endpoint C, is on the same side of � BC � as A,
and is perpendicular to � BC �. Then rA and rC intersect at a point
D, and the angle fomed at this intersection, ∠ADC, is a right angle.
Therefore �ABCD is a rectangle.

Proof. The first bit of business is to make sure that rA and rC intersect. Let
�A and �C be the lines containing rA and rC respectively. By the Alternate
Interior Angle Theorem, the right angles at A and B mean that �A and
�BC� are parallel. So �BC� is the one line parallel to �A through C, and
that means that �C cannot be parallel to �A: it has to intersect �A. Let’s call
that point of intersection D. Now in the statement of the theorem, I claim
that it is the rays, not the lines, that intersect. That means that we need
to rule out the possibility that the intersection of �A and �C might happen
on one (or both) of the opposite rays. Observe that since �A is parallel to
�BC�, all of the points of �A are on the same side of �BC� as A. None of
the points of rop

C are on that side of BC, so D cannot be on rop
C . Likewise,

all the points of �C are on the same side of �AB� as C. None of the points
of rop

A are on that side of AB, so D cannot be on rop
A .

So now we have a quadrilateral �ABCD with three right angles, ∠A,
∠B, and ∠C. It is actually a convex quadrilateral too (I leave it to you
to figure out why), so the diagonal AC divides �ABCD into two triangles
�ABC and �ADC. Then, since the angle sum of a triangle is 180◦,

s(�ABC)+ s(�ADC) = 180◦+180◦

(∠CAB)+(∠B)+(∠ACB)+(∠CAD)+(∠D)+(∠ACD) = 360◦

(∠A)+(∠B)+(∠C)+(∠D) = 360◦

90◦+90◦+90◦+(∠D) = 360◦

(∠D) = 90◦.

A

B

C

D



161THE PARALLEL AXIOM

For the last result of this section, I would like to get back to parallel
lines. One of the things that we will see when we study non-Euclidean ge-
ometry is that parallel lines tend to diverge from each other. That doesn’t
happen in non-Euclidean geometry. It is one of the key differences be-
tween the two geometries. Let me make this more precise. Suppose that
P is a point which is not on a line �. Define the distance from P to � to be
the minimum distance from P to a point on �:

d(P, �) = min
{
|PQ|

∣∣∣Q is on �
}
.

That minimum actually occurs when Q is the foot of the perpendicular to
� through P. To see why, let Q′ be any other point on �. In �PQQ′, the
right angle at Q is the largest angle. By the Scalene Triangle Theorem,
that means that the opposite side PQ′ has to be the longest side, and so
|PQ′|> |PQ|.
Now, for a given pair of parallel lines, that distance as measured along
perpendiculars does not change.

THM: PARALLEL LINES ARE EVERYWHERE EQUIDISTANT
If � and �′ are parallel lines, then the distance from a point on � to �′

is constant. In other words, if P and Q are points on �, then

d(P, �′) = d(Q, �′).

Proof. Let P′ and Q′ be the feet of the perpendiculars on �′ from P and Q
respectively. That way,

d(P, �′) = |PP′| d(Q, �′) = |QQ′|.

Then ∠PP′Q′ and ∠QQ′P′ are right angles. By the converse of the Al-
ternate Interior Angle Theorem, ∠P and ∠Q are right angles too– so
�PQQ′P′ is a rectangle. Using the previous lemma on rectangles, PP′

and QQ′, which are the opposite sides of a rectangle, are congruent.

Q

Q

P

Q

The distance from a point to a line is measured along the segment from the point 
to the line which is perpendicular to the line.

For the last result of this section, I would like to get back to parallel
lines. One of the things that we will see when we study non-Euclidean ge-
ometry is that parallel lines tend to diverge from each other. That doesn’t
happen in non-Euclidean geometry. It is one of the key differences be-
tween the two geometries. Let me make this more precise. Suppose that
P is a point which is not on a line �. Define the distance from P to � to be
the minimum distance from P to a point on �:

d(P, �) = min
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|PQ|

∣∣∣Q is on �
}
.

That minimum actually occurs when Q is the foot of the perpendicular to
� through P. To see why, let Q′ be any other point on �. In �PQQ′, the
right angle at Q is the largest angle. By the Scalene Triangle Theorem,
that means that the opposite side PQ′ has to be the longest side, and so
|PQ′|> |PQ|.
Now, for a given pair of parallel lines, that distance as measured along
perpendiculars does not change.

THM: PARALLEL LINES ARE EVERYWHERE EQUIDISTANT
If � and �′ are parallel lines, then the distance from a point on � to �′

is constant. In other words, if P and Q are points on �, then

d(P, �′) = d(Q, �′).

Proof. Let P′ and Q′ be the feet of the perpendiculars on �′ from P and Q
respectively. That way,

d(P, �′) = |PP′| d(Q, �′) = |QQ′|.

Then ∠PP′Q′ and ∠QQ′P′ are right angles. By the converse of the Al-
ternate Interior Angle Theorem, ∠P and ∠Q are right angles too– so
�PQQ′P′ is a rectangle. Using the previous lemma on rectangles, PP′

and QQ′, which are the opposite sides of a rectangle, are congruent.
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For the last result of this section, I would like to get back to parallel
lines. One of the things that we will see when we study non-Euclidean ge-
ometry is that parallel lines tend to diverge from each other. That doesn’t
happen in non-Euclidean geometry. It is one of the key differences be-
tween the two geometries. Let me make this more precise. Suppose that
P is a point which is not on a line �. Define the distance from P to � to be
the minimum distance from P to a point on �:

d(P, �) = min
{
|PQ|

∣∣∣Q is on �
}
.

That minimum actually occurs when Q is the foot of the perpendicular to
� through P. To see why, let Q′ be any other point on �. In �PQQ′, the
right angle at Q is the largest angle. By the Scalene Triangle Theorem,
that means that the opposite side PQ′ has to be the longest side, and so
|PQ′|> |PQ|.
Now, for a given pair of parallel lines, that distance as measured along
perpendiculars does not change.

THM: PARALLEL LINES ARE EVERYWHERE EQUIDISTANT
If � and �′ are parallel lines, then the distance from a point on � to �′

is constant. In other words, if P and Q are points on �, then

d(P, �′) = d(Q, �′).

Proof. Let P′ and Q′ be the feet of the perpendiculars on �′ from P and Q
respectively. That way,

d(P, �′) = |PP′| d(Q, �′) = |QQ′|.

Then ∠PP′Q′ and ∠QQ′P′ are right angles. By the converse of the Al-
ternate Interior Angle Theorem, ∠P and ∠Q are right angles too– so
�PQQ′P′ is a rectangle. Using the previous lemma on rectangles, PP′

and QQ′, which are the opposite sides of a rectangle, are congruent.
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Exercises

1. Suppose that �1, �2 and �3 are three distinct lines such that: �1 and �2
are parallel, and �2 and �3 are parallel. Prove then that �1 and �3 are
parallel.

2. Find the angle sum of a convex n-gon as a function of n.

3. Prove that the opposite sides and the opposite angles of a parallelogram
are congruent.

4. Consider a convex quadrilateral �ABCD. Prove that the two diagonals
of �ABCD bisect each other if and only if �ABCD is a parallelogram.

5. Show that a parallelogram �ABCD is a rectangle if and only if AC �
BD.

6. Suppose that the diagonals of a convex quadrilateral �ABCD intersect
one another at a point P and that

AP � BP �CP � DP.

Prove that �ABCD is a rectangle.

7. Suppose that the diagonals of a convex quadilateral bisect one another
at right angles. Prove that the quadrilateral must be a rhombus.

8. Consider a triangle �ABC and three additional points A′, B′ and C′.
Prove that if AA′, BB′ and CC′ are all congruent and parallel to one
another then �ABC ��A′B′C′.

9. Verify that the Cartesian model (as developed through the exercises in
lessons 1 and 3) satisfies Playfair’s Axiom.

References

[1] H.S.M. Coxeter and Samuel L. Greitzer. Geometry Revisited. Random
House, New York, 1st edition, 1967.
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Some calisthenics to start the lesson

In the course of this lesson, we are going to need to use a few facts dealing
with parallelograms. First, let me remind of the proper definition of a
parallelogram.

DEF: PARALLELOGRAM
A parallelogram is a simple quadrilateral whose opposite sides are
parallel.

Now on to the facts about parallelograms that we will need for this lesson.
None of their proofs are that difficult, but they would be a good warm-up
for this lesson.

1 Prove that in a parallelogram, the two pairs of opposite sides are
congruent and the two pairs of opposite angles are congruent.

2 Prove that if a convex quadrilateral has one pair of opposite sides
which are both parallel and congruent, then it is a parallelogram.

3 Let �ABB′A′ be a simple quadrilateral. Verify that if AA′ and BB′

are parallel, but AB and A′B′ are not, then AA′ and BB′ cannot be
congruent.

Some calisthenics to start the lesson

In the course of this lesson, we are going to need to use a few facts dealing
with parallelograms. First, let me remind of the proper definition of a
parallelogram.

DEF: PARALLELOGRAM
A parallelogram is a simple quadrilateral whose opposite sides are
parallel.

Now on to the facts about parallelograms that we will need for this lesson.
None of their proofs are that difficult, but they would be a good warm-up
for this lesson.

1 Prove that in a parallelogram, the two pairs of opposite sides are
congruent and the two pairs of opposite angles are congruent.

2 Prove that if a convex quadrilateral has one pair of opposite sides
which are both parallel and congruent, then it is a parallelogram.

3 Let �ABB′A′ be a simple quadrilateral. Verify that if AA′ and BB′

are parallel, but AB and A′B′ are not, then AA′ and BB′ cannot be
congruent.
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Parallel projection

The purpose of this lesson is to introduce a mechanism called parallel
projection, a particular kind of mapping from points on one line to points
on another. Parallel projection is the piece of machinery that you have
to have in place to really understand similarity, which is in turn essential
for so much of what we will be doing in the next lessons. The primary
goal of this lesson is to understand how distances between points may be
distorted by the parallel projection mapping. Once that is figured out, we
will be able to turn our attention to the geometry of similarity.

DEF: PARALLEL PROJECTION
A parallel projection from one line � to another �′ is a map Φ which
assigns to each point P on � a point Φ(P) on �′ so that all the lines
connecting a point and its image are parallel to one another.

It is easy to construct parallel projections. Any one point P on � and its
image Φ(P) on �′ completely determines the projection: for any other
point Q on � there is a unique line which passes through Q and is parallel
to the line � PΦ(P) �. Wherever this line intersects �′ will have to be
Φ(Q). There are only two scenarios where this construction will not work
out: (1) if P is the intersection of � and �′, then the lines of projection run
parallel to �′ and so fail to provide a point of intersection; and (2) if Φ(P)
is the intersection of � and �′, then the lines of projection actually coincide
rather than being parallel.

The path from a point P on  to a point P on  defines a parallel projection
as long as neither P nor P is the intersection of  and  (as shown at right).
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THM: PARALLEL PROJECTION IS A BIJECTION
A parallel projection is both one-to-one and onto.

Proof. Consider a parallel projection Φ :
� → �′. First let’s see why Φ is one-
to-one. Suppose that it is not. That is,
suppose that P and Q are two distinct
points on � but that Φ(P) = Φ(Q). Then
the two projecting lines �PΦ(P)� and
�QΦ(Q)�, which ought to be parallel,
actually share a point. This can’t happen.

Now let’s see why Φ is onto, so take a
point Q′ on �′. We need to make sure that
there is a point Q on � so that Φ(Q) =Q′.
To get a sense of how Φ is casting points
from � to �′, let’s consider a point P on �
and its image Φ(P) on �′. The projecting
line that should lead from Q to Q′ ought
to be parallel to �PΦ(P)�. Now, there
is a line which passes through Q′ and is
parallel to � PΦ(P) �. The only ques-
tion, then, is whether that line intersects
�– if it does, then we have found our Q.
What if it doesn’t though? In that case,
our line is parallel to both �PΦ(P)� and
�. That would mean that �PΦ(P)� and
� are themselves parallel. Since P is on
both of these lines, we know that cannot
be the case.

Since parallel projection is a bijection, I would like to use a naming con-
vention for the rest of this lesson that I think makes things a little more
readable. I will use a prime mark ′ to indicate the parallel projection of a
point. So Φ(P) = P′, Φ(Q) = Q′, and so on.

THM: PARALLEL PROJECTION IS A BIJECTION
A parallel projection is both one-to-one and onto.

Proof. Consider a parallel projection Φ :
� → �′. First let’s see why Φ is one-
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suppose that P and Q are two distinct
points on � but that Φ(P) = Φ(Q). Then
the two projecting lines �PΦ(P)� and
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actually share a point. This can’t happen.

Now let’s see why Φ is onto, so take a
point Q′ on �′. We need to make sure that
there is a point Q on � so that Φ(Q) =Q′.
To get a sense of how Φ is casting points
from � to �′, let’s consider a point P on �
and its image Φ(P) on �′. The projecting
line that should lead from Q to Q′ ought
to be parallel to �PΦ(P)�. Now, there
is a line which passes through Q′ and is
parallel to � PΦ(P) �. The only ques-
tion, then, is whether that line intersects
�– if it does, then we have found our Q.
What if it doesn’t though? In that case,
our line is parallel to both �PΦ(P)� and
�. That would mean that �PΦ(P)� and
� are themselves parallel. Since P is on
both of these lines, we know that cannot
be the case.

Since parallel projection is a bijection, I would like to use a naming con-
vention for the rest of this lesson that I think makes things a little more
readable. I will use a prime mark ′ to indicate the parallel projection of a
point. So Φ(P) = P′, Φ(Q) = Q′, and so on.

THM: PARALLEL PROJECTION IS A BIJECTION
A parallel projection is both one-to-one and onto.

Proof. Consider a parallel projection Φ :
� → �′. First let’s see why Φ is one-
to-one. Suppose that it is not. That is,
suppose that P and Q are two distinct
points on � but that Φ(P) = Φ(Q). Then
the two projecting lines �PΦ(P)� and
�QΦ(Q)�, which ought to be parallel,
actually share a point. This can’t happen.

Now let’s see why Φ is onto, so take a
point Q′ on �′. We need to make sure that
there is a point Q on � so that Φ(Q) =Q′.
To get a sense of how Φ is casting points
from � to �′, let’s consider a point P on �
and its image Φ(P) on �′. The projecting
line that should lead from Q to Q′ ought
to be parallel to �PΦ(P)�. Now, there
is a line which passes through Q′ and is
parallel to � PΦ(P) �. The only ques-
tion, then, is whether that line intersects
�– if it does, then we have found our Q.
What if it doesn’t though? In that case,
our line is parallel to both �PΦ(P)� and
�. That would mean that �PΦ(P)� and
� are themselves parallel. Since P is on
both of these lines, we know that cannot
be the case.

Since parallel projection is a bijection, I would like to use a naming con-
vention for the rest of this lesson that I think makes things a little more
readable. I will use a prime mark ′ to indicate the parallel projection of a
point. So Φ(P) = P′, Φ(Q) = Q′, and so on.
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Parallel projection, order, and congruence.

So far we have seen that parallel projection establishes a correspondence
between the points of one line and the points of another. What about
the order of those points? Can points get shuffled up in the process of a
parallel projection? Well, ... no.

THM: PARALLEL PROJECTION AND ORDER
Let Φ : �→ �′ be a parallel projection. If A, B, and C are points on �
and B is between A and C, then B′ is between A′ and C′.

Proof. Because B is between A and C, A and C must be on opposite sides
of the line �BB′�. But:

�AA′� does not intersect �BB′�
so A′ has to be on the same side of
�BB′� as A.

�CC′� does not intersect �BB′�
so C′ has to be on the same side of
�BB′� as C.

That means A′ and C′ have to be on opposite sides of �BB′�, and so the
intersection of � BB′ � and A′C′, which is B′, must be between A′ and
C′.

C

B

A

CB
A
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That’s the story of how parallel projection and order interact. What about
congruence?

THM: PARALLEL PROJECTION AND CONGRUENCE
Let Φ : �→ �′ be a parallel projection. If a, b, A and B are all points
on � and if ab � AB, then a′b′ � A′B′.

Proof. There are actually several scenarios here, depending upon the po-
sitions of the segments ab and AB relative to �′. They could lie on the
same side of �′, or they could lie on opposite sides of �′, or one or both
could straddle �′, or one or both could have an endpoint on �′. You have
to handle each of those scenarios slightly differently, but I am only going
to address what I feel is the most iconic situation– the one where both
segments are on the same side of �′.

Case 1: � and �′ are parallel.
First let’s warm up with a simple case which I think helps illuminate the
more general case– it is the case where � and �′ are themselves parallel.
Notice all the parallel line segments:

That’s the story of how parallel projection and order interact. What about
congruence?

THM: PARALLEL PROJECTION AND CONGRUENCE
Let Φ : �→ �′ be a parallel projection. If a, b, A and B are all points
on � and if ab � AB, then a′b′ � A′B′.

Proof. There are actually several scenarios here, depending upon the po-
sitions of the segments ab and AB relative to �′. They could lie on the
same side of �′, or they could lie on opposite sides of �′, or one or both
could straddle �′, or one or both could have an endpoint on �′. You have
to handle each of those scenarios slightly differently, but I am only going
to address what I feel is the most iconic situation– the one where both
segments are on the same side of �′.

Case 1: � and �′ are parallel.
First let’s warm up with a simple case which I think helps illuminate the
more general case– it is the case where � and �′ are themselves parallel.
Notice all the parallel line segments:

A A A

B
B

BB
B

B

AAA

There are three positions for A and B  relative to the image line– both on the 
same side, one on the image line, or one on each side. Likewise, there are three 
positions for a and b. Therefore, in all, there are nine scenarios.
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aa′ is parallel to bb′ and ab is par-
allel to a′b′ so �aa′b′b is a paral-
lelogram;

AA′ is parallel to BB′ and AB is
parallel to A′B′ so �AA′B′B is also
a parallelogram.

Because the opposite sides of a parallelogram are congruent (exercise 1
at the start of the lesson), a′b′ � ab and AB � A′B′. Since ab � AB, that
means a′b′ � A′B′.

That’s the story of how parallel projection and order interact. What about
congruence?

THM: PARALLEL PROJECTION AND CONGRUENCE
Let Φ : �→ �′ be a parallel projection. If a, b, A and B are all points
on � and if ab � AB, then a′b′ � A′B′.

Proof. There are actually several scenarios here, depending upon the po-
sitions of the segments ab and AB relative to �′. They could lie on the
same side of �′, or they could lie on opposite sides of �′, or one or both
could straddle �′, or one or both could have an endpoint on �′. You have
to handle each of those scenarios slightly differently, but I am only going
to address what I feel is the most iconic situation– the one where both
segments are on the same side of �′.

Case 1: � and �′ are parallel.
First let’s warm up with a simple case which I think helps illuminate the
more general case– it is the case where � and �′ are themselves parallel.
Notice all the parallel line segments:

Case 1: when the two lines are parallel.

B

A

a

b

B

A

a

b
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Case 2: � and �′ are not parallel.
This is the far more likely scenario. In this case the two quadrilaterals
�aa′b′b and �AA′B′B will not be parallelograms. I want to use the same
approach here as in Case 1 though, so to do that we will need to build
some parallelograms into the problem. Because � and �′ are not parallel,
the segments aa′ and bb′ cannot be the same length (exercise 3 at the start
of this lesson), and the segments AA′ and BB′ cannot be the same length.
Let’s assume that aa′ is shorter than bb′ and that AA′ is shorter than BB′.
If this is not the case, then it is just a matter of switching some labels to
make it so.
Then
◦ there is a point c between b and b′ so that bc � aa′, and
◦ there is a point C between B and B′ so that BC � AA′.

This creates four shapes of interest– the two quadrilaterals �a′abc and
�A′ABC which are actually parallelograms (exercise 2), and the two trian-
gles �a′b′c and �A′B′C. The key here is to prove that �a′b′c ��A′B′C.
I want to use A·A·S to do that.

Case 2: � and �′ are not parallel.
This is the far more likely scenario. In this case the two quadrilaterals
�aa′b′b and �AA′B′B will not be parallelograms. I want to use the same
approach here as in Case 1 though, so to do that we will need to build
some parallelograms into the problem. Because � and �′ are not parallel,
the segments aa′ and bb′ cannot be the same length (exercise 3 at the start
of this lesson), and the segments AA′ and BB′ cannot be the same length.
Let’s assume that aa′ is shorter than bb′ and that AA′ is shorter than BB′.
If this is not the case, then it is just a matter of switching some labels to
make it so.
Then
◦ there is a point c between b and b′ so that bc � aa′, and
◦ there is a point C between B and B′ so that BC � AA′.

This creates four shapes of interest– the two quadrilaterals �a′abc and
�A′ABC which are actually parallelograms (exercise 2), and the two trian-
gles �a′b′c and �A′B′C. The key here is to prove that �a′b′c ��A′B′C.
I want to use A·A·S to do that.
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[A] ∠b′ � ∠B′.
The lines cb′ and CB′ are parallel (they are two of the projecting
lines) and they are crossed by the tranversal �′. By the converse
of the Alternate Interior Angle Theorem, that means ∠a′b′c and
∠A′B′C are congruent.

[A] ∠c � ∠C.
The opposite angles of the two parallelograms are congruent. There-
fore ∠a′cb �∠a′ab and ∠A′AB �∠A′CB. But aa′ and AA′ are par-
allel lines cut by the transversal �, so ∠a′ab � ∠A′AB. That means
that ∠a′cb � ∠A′CB, and so their supplements ∠a′cb′ and ∠A′CB′

are also congruent.

[S] a′c � A′C.
The opposite sides of the two parallelograms are congruent too.
Therefore a′c � ab and AB � A′C, and since ab � AB, that means
a′c � A′C.

By A·A·S, then, �a′b′c ��A′B′C. The corresponding sides a′b′ and A′B′

have to be congruent.
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Parallel projection and distance

That brings us to the question at the very heart of parallel projection. If
Φ is a parallel projection and A and B are two points on �, how do the
lengths |AB| and |A′B′| compare? In Case 1 of the last proof, the segments
AB and A′B′ ended up being congruent, but that was because � and �′ were
parallel. In general, AB and A′B′ do not have to be congruent. But (and this
is the key) in the process of parallel projecting from one line to another,
all distances are scaled by a constant multiple.

THM: PARALLEL PROJECTION AND DISTANCE
If Φ : � → �′ is a parallel projection, then there is a constant k such
that

|A′B′|= k|AB|

for all points A and B on �.

I want to talk about a few things before diving in after the formal proof.
The first is that the previous theorem on congruence gives us a way to
narrow the scope of the problem. Fix a point O on � and let r be one of the
two rays along � with O as its endpoint. The Segment Construction Axiom
says that every segment AB on � is congruent to a segment OP where P is
some point on r. We have just seen that parallel projection maps congruent
segments to congruent segments. So if Φ scales all segments of the form
OP by a factor of k, then it must scale all the segments of � by that same
factor.

30
º

30
º

30
º

30
º

30º
60º 90º 120º

k =
√

3 2 k =
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3k = 1
√

3 k = 2
√

3
Some parallel projections and their scaling constants.
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The second deals with parallel projecting end-to-end congruent copies
of a segment. For this, let me introduce another convenient notation con-
vention: for the rest of this argument, when I write a point with a subscript
Pd , the subscript d is the distance from that point to O. Now, pick a par-
ticular positive real value x, and let

k = |O′P′
x|/|OPx|,

so that Φ scales the segment OPx by a factor of k. Of course, eventually we
will have to show that Φ scales all segments by that same factor, but for
now let’s restrict our attention to the segments OPnx, where n is a positive
integer. Between O and Pnx are Px, P2x, . . . P(n−1)x in order:

O∗Px ∗P2x ∗ · · · ∗P(n−1)x ∗Pnx.

We have seen that parallel projection preserves the order of points, so

O′ ∗P′
x ∗P′

2x ∗ · · · ∗P′
(n−1)x ∗P′

nx.

Each segment PixP(i+1)x is congruent to OPx and consequently each paral-
lel projection P′

ixP′
(i+1)x is congruent to O′P′

x. Just add them all together

|O′P′
nx|= |O′P′

x|+ |P′
xP′

2x|+ |P′
2xP′

3x|+ · · ·+ |P′
(n−1)xP′

nx|

= kx+ kx+ kx+ · · ·+ kx (n times)
= k ·nx

and so Φ scales OPnx by a factor of k.

distance 
from O

distance 
from O´

0
kx

2kx
3kx

4kx

0
x

2x
3x

4x

O
P

2x

P
3x

P
4xPx

P2x
P3x

P4x

P
x

O
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Sadly, no matter what x is, the points Pnx account for an essentially
inconsequential portion of the set of all points of r. However, if OPx and
OPy were to have two different scaling factors we could use this end-to-
end copying to magnify the difference between them. The third thing I
would like to do, then, is to look at an example to see how this actually
works, and how this ultmately prevents there from being two different
scaling factors. In this example, let’s suppose that |O′P′

1| = 2, so that all
integer length segments on � are scaled by a factor of 2, and let’s take a
look at what this means for P3.45. Let k be the scaling factor for OP3.45 and
let’s see what the first few end-to-end copies of OP3.45 tell us about k.

2 2.41.6 1.8 2.2

3 < 3.45 < 4
O∗P3 ∗P3.45 ∗P4

O ∗P
3 ∗P

3.45 ∗P
4

6 < 3.45k < 8
1.74 < k < 2.32

6 < 6.9 < 7
O∗P6 ∗P6.9 ∗P7

O ∗P
6 ∗P

6.9 ∗P
7

12 < 6.9k < 14
1.74 < k < 2.0310 < 10.35 < 11

O∗P10 ∗P10.35 ∗P11

O ∗P
10 ∗P

10.35 ∗P
11

20 < 10.35k < 22
1.93 < k < 2.13

13 < 13.8 < 14
O∗P13 ∗P13.8 ∗P14

O ∗P
13 ∗P

13.8 ∗P
14

26 < 13.8k < 28
1.88 < k < 2.0317 < 17.25 < 18

O∗P17 ∗P17.25 ∗P18

O ∗P
17 ∗P

17.25 ∗P
18

34 < 17.25k < 36
1.97 < k < 2.09 20 < 20.7 < 21

O∗P20 ∗P20.7 ∗P21

O ∗P
20 ∗P

20.7 ∗P
21

40 < 20.7k < 42
1.93 < k < 2.03

1

3

5

2

4

6
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Proof. It is finally time to prove that parallel projection scales distance.
Let k = |O′P′

1| so that k is the scaling factor for the segment of length one
(and consequently all integer length segments). Now take some arbitrary
point Px on � and let k′ be the scaling factor for the segment OPx. We want
to show that k′ = k and to do that, I want to follow the same basic strategy
as in the example above– capture k′ in an increasingly narrow band around
k by looking at the parallel projection of Pnx as n increases.

�nx�< nx < �nx�
O∗P�nx� ∗Pnx ∗P�nx�

O′ ∗P′
�nx� ∗P′

nx ∗P′
�nx�

k�nx�< k′nx < k�nx�

k(nx−1)< k�nx�< k′nx < k�nx�< k(nx+1)

k(nx−1)< k′nx < k(nx+1)
k · (nx−1)/(nx)< k′ < k · (nx+1)/(nx)

As n increases, the two ratios (nx− 1)/(nx) and (nx+ 1)/(nx) both ap-
proach 1. In the limit as n goes to infinity, they are one. Since the above
inequalities have to be true for all n, the only possible value for k′ , then,
is k.

The floor function, f (x) = �x�, assigns to each real num-
ber x the largest integer which is less than or equal to it.

The ceiling function, f (x) = �x�, assigns to each real
number x the smallest integer which is greater than or
equal to it.

notation

* In this step, I have replaced one set of inequalities with another, less precise, 
set. The new inequalities are easier to manipulate mathematically though, and  
are still accurate enough to get the desired result.

*
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Exercises

1. Investigate the other possible cases in the proof that parallel projection
preserves order.

2. Suppose that Φ is a parallel projection from � to �′. If � and �′ intersect,
and that point of intersection is P, prove that Φ(P) = P.

3. Prove that if � and �′ are parallel, then the scaling factor of any parallel
projection between them must be one, but that if � and �′ are not paral-
lel, then there is a parallel projection with every possible scaling factor
k where 0 < k < ∞.

4. In the lesson 7, we constructed a distance function, and one of the
keys to that construction was locating the points on a ray which were a
distance of m/2n from its endpoint. In Euclidean geometry, there is a
construction which locates all the points on a ray which are any rational
distance m/n from its endpoint. Take two (non-opposite) rays r and r′
with a common endpoint O. Along r, lay out m congruent copies of
a segment of length one, ending at the point Pm. Along r′, lay out n
congruent copies of a segment of length one, ending at the point Qn.
Mark the point Q1 on r′ which is a distance one from O. Verify that
the line which passes through Q1 and is parallel to PmQn intersects r a
distance of m/n from O.
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In the lessons on neutral geometry, we spent a lot of effort to gain an
understanding of polygon congruence. In particular, I think we were pretty
thorough in our investigation of triangle and quadrilateral congruence. So
I sincerely hope that you haven’t forgotten what it means for two polygons
to be congruent:

1. all their corresponding sides must be congruent, and
2. all their corresponding interior angles must be congruent.

Remember as well that polygon congruence is an equivalence relation (it
is reflexive, symmetric, and transitive). It turns out that congruence is not
the only important equivalence relation between polygons, though, and
the purpose of this lesson is to investigate another: similarity.

Similarity is a less demanding relation than congruence. I think of con-
gruent polygons as exactly the same, just positioned differently. I think of
similar polygons as “scaled versions” of one another– the same shape, but
possibly different sizes. That’s not really a definition, though, so let’s get
to something a little more formal.

DEF: SIMILAR POLYGONS
Two n-sided polygons P1P2 . . .Pn and Q1Q2 . . .Qn are similar to one
another if they meet two sets of conditions

1. corresponding interior angles are congruent:

∠Pi � ∠Qi, 1 ≤ i ≤ n.

2. corresponding side lengths differ by the same constant multiple:

|PiPi+1|= k · |QiQi+1|, 1 ≤ i ≤ n.
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I will use the notation P1P2 . . .Pn ∼Q1Q2 . . .Qn to indicate similarity. There
are a few things worth noting here. First, if polygons are congruent, they
will be similar as well– the scaling constant k will be one in this case.
Second, similarity is an equivalence relation– I leave it to you to verify
that the three required conditions are met. Third, when you jump from
one polygon to another similar polygon, all the corresponding segments
lengths are scaled by the same amount. That behavior echoes the work we
did in the last lesson, and for good reason: parallel projection underlies
everything that we are going to do in this lesson.

An arrangement of similar triangles.

A spiralling stack 
of similar golden 
rectangles (see the 
exercises).
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Much of the time, when working with either parallel projection or simi-
larity, the actual scaling constant is just not that important. The only thing
that matters is that there is a scaling constant. Fortunately, the existence
of a scaling constant can be indicated without ever mentioning what it is.
The key to doing this is ratios. Consider a parallel projection from line �
to line ��. Let A, B, a, and b be points on � and let A�, B�, a� and b� be their
respective images on ��. The main result of the last lesson was that there
is a scaling constant k so that

|A�B�|= k · |AB| & |a�b�|= k · |ab|.

The ratios I am talking about are only a step away from this pair of equa-
tions.

Ratio 1: Solve for k in both equa-
tions and set them equal to each
other

|A�B�|
|AB| =

|a�b�|
|ab| .

Ratio 2: Starting from the first ra-
tio, multiply through by |AB| and
divide through by |a�b�|

|A�B�|
|a�b�| =

|AB|
|ab| .

a

b

B

A

a

b

B

A

= =

|AB|
|ab|

|AB|
|ab|

|AB|
|AB|

|ab|
|ab|

Two invariant ratios of a parallel projection.
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Triangle similarity theorems

I would now like to turn our attention to a few theorems that deal with sim-
ilarity of triangles. I like to think of these similarity theorems as degen-
erations of the triangle congruence theorems, where the strict condition
of side congruence, A�B� � AB, is replaced with the more flexible condi-
tion of constant scaling, |A�B�| = k|AB|. First up is the S·A·S similarity
theorem.

THM: S·A·S SIMILARITY
In triangles �ABC and �A�B�C�, if ∠A � ∠A� and if there is a con-
stant k so that

|A�B�|= k · |AB| & |A�C�|= k · |AC|,

then �ABC ∼�A�B�C�.

Proof. First of all, let me point out that just as with the parallel projection,
the second condition in the S·A·S similarity theorem can be recast in terms
of ratios:

{
|A�B�|= k|AB|
|A�C�|= k|AC|

⇐⇒ |A�B�|
|AB|

=
|A�C�|
|AC|

⇐⇒ |A�B�|
|A�C�|

=
|AB|
|AC|

.

With that said, what we need to do in this proof is to establish two more
angle congruences, that ∠B � ∠B� and ∠C � ∠C�, and one more ratio of
sides, that |B�C�|= k|BC|. Two parallel projections will form the backbone
of this proof. The first will establish the two angle congrunces while the
second will calculate the ratio of the third pair of sides.

Triangle similarity theorems

I would now like to turn our attention to a few theorems that deal with sim-
ilarity of triangles. I like to think of these similarity theorems as degen-
erations of the triangle congruence theorems, where the strict condition
of side congruence, A�B� � AB, is replaced with the more flexible condi-
tion of constant scaling, |A�B�| = k|AB|. First up is the S·A·S similarity
theorem.
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In triangles �ABC and �A�B�C�, if ∠A � ∠A� and if there is a con-
stant k so that

|A�B�|= k · |AB| & |A�C�|= k · |AC|,

then �ABC ∼�A�B�C�.

Proof. First of all, let me point out that just as with the parallel projection,
the second condition in the S·A·S similarity theorem can be recast in terms
of ratios:

{
|A�B�|= k|AB|
|A�C�|= k|AC|

⇐⇒ |A�B�|
|AB|

=
|A�C�|
|AC|

⇐⇒ |A�B�|
|A�C�|

=
|AB|
|AC|

.

With that said, what we need to do in this proof is to establish two more
angle congruences, that ∠B � ∠B� and ∠C � ∠C�, and one more ratio of
sides, that |B�C�|= k|BC|. Two parallel projections will form the backbone
of this proof. The first will establish the two angle congrunces while the
second will calculate the ratio of the third pair of sides.

B

C

A

k

k

B

C

A
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The first parallel projection. The primary purpose of the first projection
is to build a transitional triangle which is congruent to �A�B�C� but posi-
tioned on top of �ABC. Begin by locating the point B� on AB � so that
AB� � A�B�. We cannot know the exact location of B� relative to B on this
ray– that depends upon whether A�B� is shorter or longer than AB. For
this argument, assume that A�B� is shorter than AB, which will place B�

between A and B (the other case is not substantially different). Consider
the parallel projection

Φ1 : (�AB�)−→ (�AC�)

which takes B to C. Note that since A is the intersection of these two lines,
Φ1(A) =A. Label C� =Φ1(B�). Let’s see how the newly formed �AB�C�

compares with �A�B�C�. Compare the ratios

|AC�|
|AC|

1
=

|AB�|
|AB|

2
=

|A�B�|
|AB|

3
=

|A�C�|
|AC|

.

1. parallel projection
2. constructed congruence

3. given

If you look at the first and last entries in that string of equalities you will
see that |AC�| = |A�C�|. Put that together with what we already knew,
that AB� � A�B� and ∠A � ∠A�, and by S·A·S, we see that �A�B�C� and
�AB�C� are congruent. In particular, that means ∠B� � ∠B� and ∠C� �
∠C�. Now let’s turn back to see how �AB�C� relates to �ABC. In order
to locate C�, we used a projection which was parallel to �BC�. That of
course means � B�C� � and � BC � are parallel to one another, and so,
by the converse of the Alternate Interior Angle Theorem, ∠B� � ∠B and
∠C� � ∠C. Since angle congruence is transitive, we now have the two
required angle congruences, ∠B � ∠B� and ∠C � ∠C�.

C

B
B

C

AA

B

C
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The second parallel projection. Consider the parallel projection

Φ2 : (�AC�)−→ (�BC�)

which maps A to B. Again, since C is the intersection of those two lines,
Φ2(C) =C. The other point of interest this time is C�. Define P=Φ2(C�).
In doing so, we have effectively carved out a parallelogram BB�C�P. Re-
call that the opposite sides of a parallelogram are congruent– in particular,
B�C� � BP. Now consider the ratios that Φ2 provides

|B�C�|
|BC|

1
=

|B�C�|
|BC|

2
=

|BP|
|BC|

3
=

|AC�|
|AC|

4
=

|A�C�|
|AC| = k.

1. triangle congruence established above
2. opposite sides of a parallelogram

3. parallel projection
4. triangle congruence established above

Thus, |B�C�|= k|BC|, as needed.

The first parallel projection. The primary purpose of the first projection
is to build a transitional triangle which is congruent to �A�B�C� but posi-
tioned on top of �ABC. Begin by locating the point B� on AB � so that
AB� � A�B�. We cannot know the exact location of B� relative to B on this
ray– that depends upon whether A�B� is shorter or longer than AB. For
this argument, assume that A�B� is shorter than AB, which will place B�

between A and B (the other case is not substantially different). Consider
the parallel projection

Φ1 : (�AB�)−→ (�AC�)

which takes B to C. Note that since A is the intersection of these two lines,
Φ1(A) =A. Label C� =Φ1(B�). Let’s see how the newly formed �AB�C�

compares with �A�B�C�. Compare the ratios

|AC�|
|AC|

1
=

|AB�|
|AB|

2
=

|A�B�|
|AB|

3
=

|A�C�|
|AC|

.

1. parallel projection
2. constructed congruence

3. given

If you look at the first and last entries in that string of equalities you will
see that |AC�| = |A�C�|. Put that together with what we already knew,
that AB� � A�B� and ∠A � ∠A�, and by S·A·S, we see that �A�B�C� and
�AB�C� are congruent. In particular, that means ∠B� � ∠B� and ∠C� �
∠C�. Now let’s turn back to see how �AB�C� relates to �ABC. In order
to locate C�, we used a projection which was parallel to �BC�. That of
course means � B�C� � and � BC � are parallel to one another, and so,
by the converse of the Alternate Interior Angle Theorem, ∠B� � ∠B and
∠C� � ∠C. Since angle congruence is transitive, we now have the two
required angle congruences, ∠B � ∠B� and ∠C � ∠C�.

B

C
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B

C

P

C

B
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Back in the neutral geometry lessons, after S·A·S we next encountered
A·S·A and A·A·S. Unlike S·A·S, both of those theorems reference only
one pair of sides in the triangles. Let’s take a look at what happens when
you try to modify those congruence conditions into similarity conditions.

A·S·A Congruence A·S·A Similarity (?)

∠A � ∠A� ∠A � ∠A�

AB � A�B� |A�B�|= k · |AB|
∠B � ∠B� ∠B � ∠B�

A·A·S Congruence A·A·S Similarity (?)

∠A � ∠A� ∠A � ∠A�

∠B � ∠B� ∠B � ∠B�

BC � B�C� |B�C�|= k · |BC|

In each of these conversions, the condition on the one side is automati-
cally satisfied– there will always be a real value of k that makes the equa-
tion true. That is a hint that it may take only two angle congruences to
guarantee similarity.

THM: A · A SIMILARITY
In triangles �ABC and �A�B�C�, if ∠A � ∠A� and ∠B � ∠B�, then
�ABC ∼�A�B�C�.

Proof. We have plenty of information about the angles, so what we need
here is some information about ratios of sides. In particular, I want to
show that

|A�B�|
|AB|

=
|A�C�|
|AC|

.

Along with the given congruence ∠A � ∠A�, that will be enough to use
S·A·S similarity. As in the S·A·S similarity proof, I want to construct a
transition triangle: one that is positioned on top of �ABC but is congruent
to �A�B�C�. To do that, locate B� on AB� so that AB� � A�B�, and C� on
AC� so that AC� � A�C�. By S·A·S, �AB�C� and �A�B�C� are congruent.
Now take a look at all the congruent angles

∠B� � ∠B� � ∠B.

According to the Alternate Interior Angle Theorem, �B�C�� and �BC�
must be parallel. Therefore the parallel projection from �AB� to �AC�
which maps B to C and A to itself will also map B� to C�. That gives us
some ratios

|A�B�|
|AB|

1
=

|AB�|
|AB|

2
=

|AC�|
|AC|

3
=

|A�C�|
|AC| .

1. constructed congruence
2. parallel projection

3. constructed congruence

The first and last terms in that list of equalities give the ratio we need.
That, together with the known congruence ∠A�∠A�, is enough for S·A·S
similarity, so �ABC ∼�A�B�C�.

B

C

A

B

C

A
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Note that while A·A·A was not enough to guarantee congruence, thanks to
the result above, we now know that it is (more than) enough to guarantee
similarity. Finally, the last of the triangle similarity theorems is S·S·S
similarity (S·S·A, which just misses as a congruence theorem, is done in
again by the same counterexample).

THM: S·S·S SIMILARITY
In triangles �ABC and �A�B�C�, if there is a constant k so that

|A�B�|= k · |AB| |B�C�|= k · |BC| & |C�A�|= k · |CA|,

then �ABC ∼�A�B�C�.

I am going to leave the proof of this last similarity theorem as an exercise
for you.

Note that while A·A·A was not enough to guarantee congruence, thanks to
the result above, we now know that it is (more than) enough to guarantee
similarity. Finally, the last of the triangle similarity theorems is S·S·S
similarity (S·S·A, which just misses as a congruence theorem, is done in
again by the same counterexample).

THM: S·S·S SIMILARITY
In triangles �ABC and �A�B�C�, if there is a constant k so that

|A�B�|= k · |AB| |B�C�|= k · |BC| & |C�A�|= k · |CA|,

then �ABC ∼�A�B�C�.

I am going to leave the proof of this last similarity theorem as an exercise
for you.

The Pythagorean Theorem

Before we close this lesson, though, let’s meet one of the real celebrities
of the subject.

THM: THE PYTHAGOREAN THEOREM
Let �ABC be a right triangle whose right angle is at the vertex C.
Identify the lengths of each side as

a = |BC| b = |AC| c = |AB|.

Then c2 = a2 +b2.

B

C

A

B

C

A

k
k

k
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Proof. There are many, many proofs of this theorem. The one that I am
going to give involves dividing the triangle into two smaller triangles,
showing each of those is similar to the initial triangle, and then work-
ing with ratios. Let D be the foot of the perpendicular to AB through C.
The segment CD divides �ABC into two smaller triangles: �ACD and
�BCD. Let’s go ahead and label the lengths of the newly created sides of
those two triangles:

c1 = |AD| c2 = |BD| d = |CD|

and note that c = c1 + c2. Now �ADC shares ∠A with �ACB, and they
both have a right angle, so by the A·A similarity theorem, �ADC ∼
�ACB. Similarly, �BDC shares ∠B with �ACB, and they both have a
right angle as well, so again by A·A similarity, �BDC ∼ �ACB. From
these similarities, there are many ratios, but the two that we need are

a
c
=

c2

a
=⇒ a2 = c · c2 &

b
c
=

c1

b
=⇒ b2 = c · c1.

Now all you have to do is add those two equations together and simplify
to get the Pythagorean Theorem

a2 +b2 = c · c2 + c · c1 = c(c2 + c1) = c2.

D

A
b

c
a

B

C

c d1

c2

A proof of the Pythagorean Theorem via similarity.
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Exercises

1. Prove that similarity of polygons is an equivalence relation.

2. Prove the S·S·S triangle similarity theorem.

3. State and prove the S·A·S·A·S and A·S·A·S·A similarity theorems for
convex quadrilaterals.

The six trigonometric functions can be defined, for values of θ between
0 and 90◦, as ratios of pairs of sides of a right triangle with an interior
angle θ . If the length of the hypotenuse is h, the length of the leg
adjacent to θ is a, and the length of the leg opposite θ is o, then these
functions are defined as

sine: sin(θ) = o/h
cosine: cos(θ) = a/h
tangent: tan(θ) = o/a
cotangent: cot(θ) = a/o
secant: sec(θ) = h/a
cosecant: csc(θ) = h/o.

4. Verify that the six trigonometric functions are well-defined. That is,
show that it does not matter which right triangle with interior angle θ
you choose– these six ratios will not change.

5. Verify the Pythagorean identities (for values of θ between 0 and 90◦).

sin2 θ + cos2 θ = 1
1+ tan2θ = sec2θ

1+ cot2θ = csc2θ
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6. Verify the cofunction identities (for values of θ between 0 and 90◦).

sin(90◦ −θ) = cosθ
cos(90◦ −θ) = sinθ
tan(90◦ −θ) = cotθ
cot(90◦ −θ) = tanθ
sec(90◦ −θ) = cscθ
csc(90◦ −θ) = secθ

7. The geometric mean of two numbers a and b is defined to be
√

ab. Let
�ABC be a right triangle with right angle at C and let D be the point
on AB so that CD is perpendicular to AB (the same setup as in the proof
of the Pythagorean Theorem). Verify that |CD| is the geometric mean
of |AD| and |BD|.

8. Consider a rectangle �ABCD with |AB|< |BC|, and suppose that this
rectangle has the following special property: if a square �ABEF is
constructed inside �ABCD, then the remaining rectangle �ECDF is
similar to the original �ABCD. A rectangle with this property is called
a golden rectangle. Find the value of |BC|/|AB|, a value known as the
golden ratio.
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This is the first of two lessons dealing with circles. This lesson gives some
basic definitions and some elementary theorems, the most important of
which is the Inscribed Angle Theorem. In the next lesson, we will tackle
the important issue of circumference and see how that leads to the radian
angle measurement system.

Definitions

So you might be thinking “Lesson 16 and we are just now getting to cir-
cles... what was the hold-up?” In fact, we could have given a proper
definition for the term circle as far back as lesson 3. All that you really
need for a good definition is points, segments, and congruence. But once
you give the definition, what next? Most of what I want to cover with cir-
cles is specific to Euclidean geometry. I don’t know that many theorems
about circles in neutral geometry, and in the discussion thus far, the only
time I remember that the lack of circles made things awkward was when
we looked at cyclic polygons. In any case, now is the time, so

DEF: CIRCLE
For any point O and positive real number r, the circle with center O
and radius r is the set of points which are a distance r from O.

A few observations.

1. A circle is a set. Therefore, you should probably speak of the ele-
ments of that set as the points of the circle, but it is more common
to refer to these as points on the circle.

2. In the definition I have given, the radius is a number. We often
talk about the radius as a geometric entity though– as one of the
segments from the center to a point on the circle.

3. We tend to think of the center of a circle as a fundamental part of
it, but you should notice that the center of a circle is not actually a
point on the circle.

4. It is not that common to talk about circles as congruent or not con-
gruent. If you were to do it, though, you would say that two circles
are congruent if and only if they have the same radius.
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Before we get into anything really complicated, let’s get a few other re-
lated definitions out of the way.

DEF: CHORD AND DIAMETER
A segment with both endpoints on a circle is called a chord of that
circle. A chord which passes through the center of the circle is called
a diameter of that circle.

Just like the term radius, the term diameter plays two roles, a numerical
one and geometric one. The diameter in the numerical sense is just the
length of the diameter in the geometric sense.

DEF: CENTRAL ANGLE
An angle with its vertex at the center of a circle is called a central
angle of that circle.

We will see (in the next section) that a line intersects a circle at most
twice. Therefore, if AB is a chord of a circle, then all the points of that
circle other than A and B are on one side or the other of � AB �. Thus
� AB � separates those points into two sets. These sets are called arcs
of the circle. There are three types of arcs– semicircles, major arcs, and
minor arcs– depending upon where the chord crosses the circle.

DEF: SEMICIRCLE
Let AB be a diameter of a circle C. All the points of C which are
on one side of � AB�, together with the endpoints A and B, form a
semicircle.

3 diameters12 chords 4 central angles
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Each diameter divides the circle into two semicircles, overlapping at the
endpoints A and B.

DEF: MAJOR AND MINOR ARC
Let AB be a chord of a circle C which is not a diameter, and let O be
the center of this circle. All the points of C which are on the same
side of � AB � as O, together with the endpoints A and B, form
a major arc. All the points of C which are on the opposite side of
� AB � from O, together with the endpoints A and B, form a minor
arc.

Like the two semicircles defined by a diameter, the major and minor arcs
defined by a chord overlap only at the endpoints A and B. For arcs in
general, including diameters, I use the notation �AB. Most of the arcs we
look at will be minor arcs, so in the instances when I want to emphasize
that we are looking at a major arc, I will use the notation �AB.

There is a very simple, direct, and important relationship between arcs
and central angles. You may recall that in the lesson on polygons, I sug-
gested that two rays with a common endpoint define not one, but two
angles– a “proper” angle and a “reflex” angle. These proper and reflex
angles are related to the minor and major arcs as described in the next
theorem, whose proof I leave to you.

THM: CENTRAL ANGLES AND ARCS
Let AB be a chord of a circle with center O. The points of �AB are
A, B, and all the points in the interior of the proper angle ∠AOB. The
points of �AB are A, B, and all the points in the interior of the reflex
angle ∠AOB (that is, the points exterior to the proper angle).

minor arc semicircle major arc
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Intersections

Circles are different from the shapes we have been studying to this point
because they are not built out of lines or line segments. Circles do share
at least one characteristic with simple polygons though– they have an in-
terior and an exterior. For any circle C with center O and radius r, and for
any point P which is not C,

◦ if |OP|< r, then P is inside C;
◦ if |OP|> r, then P is outside C.

The set of points inside the circle is the interior and the set of points out-
side the circle is the exterior. Just like simple polygons, the circle separates
the interior and exterior from each other. To get a better sense of that, we
need to look at how circles intersect other basic geometric objects.

THM: A LINE AND A CIRCLE
A line will intersect a circle in 0, 1, or 2 points.

Proof. Let O be the center of a circle C of radius r, and let � be a line. It
is easy to find points on � that are very far from C, but are there any points
on � that are close to C? The easiest way to figure out how close � gets
to C is to look at the closest point on � to the center O. We saw (it was a
lemma for the proof of A·A·A·S·S in lesson 10) that the closest point to O
on � is the foot of the perpendicular– call this point Q.

Zero intersections: |OQ|> r.
All the other points of � are even farther from O, so none of the points on
� can be on C.

Q

O
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One intersection: |OQ|= r.
Of course Q is an intersection, but it is the only intersection because all
the other points on � are farther away from O.

Two intersections: |OQ|< r.
The line spends time both inside and outside the circle. We just need to
find where the line crosses in, and then back out of, the circle. The idea is
to relate a point’s distance from O to its distance from Q, and we can do
that with the Pythagorean Theorem. If P is any point on � other than Q,
then �OQP will be a right triangle with side lengths that are related by
the Pythagorean theorem

|OQ|2 + |QP|2 = |OP|2.

In order for P to be on the circle, |OP| must be exactly r. That means that
|PQ| must be exactly

√
r2 −|OQ|2. Since |OQ| < r, this expression is a

positive real number, and so there are exactly two points on �, one on each
side of Q, that are this distance from Q.

One intersection: |OQ|= r.
Of course Q is an intersection, but it is the only intersection because all
the other points on � are farther away from O.

Two intersections: |OQ|< r.
The line spends time both inside and outside the circle. We just need to
find where the line crosses in, and then back out of, the circle. The idea is
to relate a point’s distance from O to its distance from Q, and we can do
that with the Pythagorean Theorem. If P is any point on � other than Q,
then �OQP will be a right triangle with side lengths that are related by
the Pythagorean theorem

|OQ|2 + |QP|2 = |OP|2.

In order for P to be on the circle, |OP| must be exactly r. That means that
|PQ| must be exactly

√
r2 −|OQ|2. Since |OQ| < r, this expression is a

positive real number, and so there are exactly two points on �, one on each
side of Q, that are this distance from Q.

Q

O

Q

O
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A line that intersects a circle once (at the foot of the perpendicular) is
called a tangent line to the circle. A line that intersects a circle twice is
called a secant line of the circle. There is a important corollary that turns
this last theorem about lines into a related theorem about segments.

COR: A SEGMENT AND A CIRCLE
If point P is inside a circle, and point Q is outside it, then the segment
PQ intersects the circle.

Proof. Label the center of the circle O. From the last theorem, we know
that � PQ � intersects the circle twice, and that the two intersections
are separated by F , the foot of the perpendicular to PQ through O. The
important intersection here is the one that is on the same side of the foot
of the perpendicular as Q– call this point R. According to the Pythagorean
theorem (with triangles �OFR and �OFQ),

|FQ|=
√

|OQ|2 −|OF|2 & |FR|=
√

|OR|2 −|OF|2.

Since |OQ| > |OR|, |FQ| > |FR|, which places R between F and Q. We
don’t know whether P and Q are on the same side of F , though. If they
are on opposite sides of F , then P∗F ∗R∗Q, so R is between P and Q as
needed. If P and Q are on the same side of F , then we need to look at the
right triangles �OFP and �OFR. They tell us that

|FP|=
√
|OP|2 −|OF|2 & |FQ|=

√
|OQ|2 −|OF|2.

Since |OP|< |OR|, |FP|< |FR|, which places P between F and R. Finally,
if P is between F and R, and R is between F and Q, then R has to be
between P and Q.

QR

O

PF
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There is another important question of intersections, and that involves
the intersection of two circles. If two circles intersect, then it is highly
likely their two centers and the point of intersection will be the vertices of
a triangle (there is a chance the three could be colinear, and we will deal
with that separately). The lengths of all three sides of that triangle will be
known (the two radii and the distance between centers). So this question
is not so much one about circles, but whether triangles can be built with
three given side lengths. We have one very relevant result– the Triangle
Inequality says that if a, b, and c are the lengths of the side of a triangle,
then

|a−b|< c < a+b.

What about the converse, though? If a, b, and c are any positive reals sat-
isfying the Triangle Inequality conditions, can we put together a triangle
with sides of those lengths? As much as a digression as it is, we need to
answer this question before moving on.

THM: BUILDABLE TRIANGLES
Let a, b, and c be positive real numbers. Suppose that c is the largest
of them and that c < a+ b. Then there is a triangle with sides of
length a, b, and c.

Proof. Start off with a segment AB whose length is c. We need to place a
third point C so that it is a distance a from B and b from A. According to
S·S·S, there is only one such triangle “up to congruence”, so this may not
be too easy. What I am going to do, though, is to build this triangle out
of a couple of right triangles (so that I can use the Pythagorean theorem).
Mark D on AB � and label d = |AD|. Mark C on one of the rays with
endpoint D which is perpendicular to AB and label e = |CD|. Then both
�ACD and �BCD are right triangles. Furthermore, by sliding D and C
along their respective rays, we can make d and e any positive numbers.

A

C
B

d

a

c

e

D
b

d
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We need to see if it is possible to position the two so that |AC| = b and
|BC|= a.

To get |AC|= b, we will need d2 + e2 = b2.
To get |BC|= a, we will need (c−d)2 + e2 = a2.

It’s time for a little algebra to find d and e. According to the Pythagorean
Theorem,

b2 −d2 = e2 = a2 − (c−d)2

b2 −d2 = a2 − c2 +2cd −d2

b2 = a2 − c2 +2cd

(b2 −a2 + c2)/2c = d.

Since we initially required c > a, this will be a positive value. Now let’s
plug back in to find e.

e2 = b2 −d2 = b2 −
(

b2 −a2 + c2

2c

)2

.

Here is the essential part– because we will have to take a square root to
find e, the right hand side of this equation has to be positive– otherwise
the equation has no solution and the triangle cannot be built. Let’s go back
to see if the Triangle Inequality condition on the three sides will help:

c < a+b
c−b < a

(c−b)2 < a2

c2 −2bc+b2 < a2

c2 −a2 +b2 < 2bc

(c2 −a2 +b2)/2c < b

((c2 −a2 +b2)/2c)2 < b2

0 < b2 − ((c2 −a2 +b2)/2c)2

which is exactly what we want [of course, when I first did this calculation,
I worked in the other direction, from the answer to the condition]. As long
as c < a+b, then, a value for e can be found, and that means the triangle
can be built.
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Now let’s get back to the real issue at hand– that of the intersection of two
circles.

THM: A CIRCLE AND A CIRCLE
Two circles intersect at 0, 1, or 2 points.

Proof. Three factors come in to play here: the radius of each circle and
the distance between their centers. Label

r1, r2: the radii of the two circles, and
c, the distance between the centers.

Two intersections:
when |r1 − r2|< c < r1 + r2.
There are exactly two triangles, �O1XO2
and �O1YO2, one on each side of O1O2,
with sides of the required lengths. There-
fore there are exactly two intersections of
the two circles.

One intersection:
when c = |r1 − r2| or c = r1 + r2.
In these two limiting cases, the triangle de-
volves into a line segment and the two inter-
sections merge. In the first, either O1 ∗O2 ∗
X or X ∗O1 ∗O2, depending upon which ra-
dius is larger. In the second O1 ∗X ∗O2.

Zero intersections:
when c < |r1 − r2| or c > r1 + r2.
In this case, you just cannot form the needed
triangle (it would violate the Triangle In-
equality), so there cannot be any intersec-
tions. In the first case, one circles lies en-
tirely inside the other. In the second, they
are separated from one another.
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As I mentioned before, there is a one-to-
one correspondence between central an-
gles and arcs that matches the proper an-
gle ∠AOB with the minor arc �AB and
the reflex angle ∠AOB with the major arc
�AB. In the next lesson we are going to
look at the relationship between the size
of the central angle and the length of the
corresponding arc (which is the basis for
radian measure). In the meantime, I will
use the correspondence as a way to sim-
plify my illustrations– by using an arc to
indicate a central angle, I can keep the
picture from getting too crowded around
the center of the circle.

The Inscribed Angle Theorem

In this section we will prove the Inscribed Angle Theorem, a result which
is indispensible when working with circles. I suspect that this theorem is
the most elementary result of Euclidean geometry which is generally not
known to the average calculus student. Before stating the theorem, we
must define an inscribed angle, the subject of the theorem.

DEF: INSCRIBED ANGLE
If A, B, and C are all points on a circle, then ∠ABC is an inscribed
angle on that circle.

Given any inscribed angle ∠ABC, points
A and C are the endpoints of two arcs (ei-
ther a minor and a major arc or two semi-
circles). Excluding the endpoints, one
of those two arcs will be contained in
the interior of ∠ABC (a homework prob-
lem). We say, then, that ∠ABC is in-
scribed on that arc. The Inscribed Angle
Theorem describes the close relationship
between an inscribed angle and the cen-
tral angle on the same arc.

A B

Major arc: reflex ∠AOB
Minor arc: proper ∠AOB

Two inscribed angles
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THE INSCRIBED ANGLE THEOREM
If ∠BAC is an inscribed angle on a circle with center O, then

(∠ABC) =
1
2
(∠AOC).

Proof. This proof is a good lesson on the benefits of starting off with an
easy case. There are three parts to this proof, depending upon the location
of the vertex B relative to the lines OA and OC.

Part 1. When B is the intersection
of OC�op with the circle, or when
B is the intersection of OA �op

with the circle.

Even though we are only establishing the theorem for two very particular
locations of B, this part is the key that unlocks everything else. Now, while
I have given two possible locations for B, I am going to prove the result
for just the first one (where B is on OC�op). All you have to do to prove
the other part is to switch the letters A and C. Label ∠AOB as ∠1 and
∠AOC as ∠2. These angles are supplementary, so

(∠1)+ (∠2) = 180◦. (i)

The angle sum of �AOB is 180◦, but in that triangle ∠A and ∠B are
opposite congruent segments, so by the Isosceles Triangle Theorem they
are congruent. Therefore

2(∠B)+ (∠1) = 180◦, (ii)

and if we subtract equation (ii) from equation (i), we get (∠2)−2(∠B) =
0, so (∠AOC) = 2(∠ABC).

B A

C

O
2

1
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Part 2. When B is in the interior of
∠AOC, or when B is in the interior
of the angle formed by OA�op and
OC�op, or when A∗O∗C.

There are three scenarios here– in
the first the central angle is reflex,
in the second it is proper, and in
the third it is a straight angle– but
the proof is the same for all of them.
In each of these scenarios, the line
� OB � splits both the inscribed
and the central angles. In order to
identify these four angles, let me
label one more point: D is the sec-
ond intersection of � OB � with
the circle (so BD is a diameter of
the circle). Using angle addition in
conjunction with the previous re-
sults,

(∠AOC) = (∠AOD)+ (∠DOC)

= 2(∠ABD)+2(∠DBC)

= 2((∠ABD)+ (∠DBC))

= 2(∠ABC).

Part 3. When B is in the interior
of the angle formed by OA � and
OC �op, or when B is in the inte-
rior of the angle formed by OC �
and OA�op.

As in the last case, label D so that
BD is a diameter. The difference
this time is that we need to use an-
gle subtraction instead of angle ad-
dition. Since subtraction is a little
less symmetric than addition, the
two scenarios will differ slightly (in
terms of lettering). In the first sce-
nario

(∠AOC) = (∠AOD)− (∠DOC)

= 2(∠ABD)−2(∠DBC)

= 2((∠ABD)− (∠DBC))

= 2(∠ABC).

To get the second, you just need to
switch A and C.

B

D

A

C

O

B

D

A

C

O
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There are two important and immediate corollaries to this theorem. First,
because all inscribed angles on a given arc share the same central angle,

COR 1
All inscribed angles on a given arc are congruent.

Second, the special case where the central angle ∠AOC is a straight angle,
so that the inscribed ∠ABC is a right angle, is important enough to earn its
own name

THALES’ THEOREM
If C is a point on a circle with diameter AB (and C is neither A nor
B), then �ABC is a right triangle.

Applications of the Inscribed Angle Theorem

Using the Inscribed Angle Theorem, we can establish several nice rela-
tionships between chords, secants, and tangents associated with a circle. I
will look at two of these results to end this lesson and put some more in
the exercises.

There are two important and immediate corollaries to this theorem. First,
because all inscribed angles on a given arc share the same central angle,

COR 1
All inscribed angles on a given arc are congruent.

Second, the special case where the central angle ∠AOC is a straight angle,
so that the inscribed ∠ABC is a right angle, is important enough to earn its
own name

THALES’ THEOREM
If C is a point on a circle with diameter AB (and C is neither A nor
B), then �ABC is a right triangle.

Applications of the Inscribed Angle Theorem

Using the Inscribed Angle Theorem, we can establish several nice rela-
tionships between chords, secants, and tangents associated with a circle. I
will look at two of these results to end this lesson and put some more in
the exercises.

Five congruent angles inscribed on 
the same arc.

A right angle inscribed on a 
semicircle.
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THE CHORD-CHORD FORMULA
Let C be a circle with center O. Suppose that AC and BD are chords
of this circle, and suppose further that they intersect at a point P.
Label the angle of intersection, θ =∠APD � ∠BPC. Then

(θ) =
(∠AOD)+ (∠BOC)

2
.

Proof. The angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on the arc �CD
and ∠D is inscribed on the arc �AB. According to the Inscribed Angle
Theorem, they are half the size of the corresponding central angles, so

(θ) = 180◦ − 1
2(∠COD)− 1

2(∠AOB)
= 1

2 (360◦ − (∠COD)− (∠AOB)).

This is some progress, for at least now θ is related to central angles, but
alas, these are not the central angles in the formula. If we add all four
central angles around O, though,

(∠AOB)+ (∠BOC)+ (∠COD)+ (∠DOA)= 360◦

(∠BOC)+ (∠DOA) = 360◦ − (∠COD)− (∠AOB).

Now just substitute in, and you have the formula.

THE CHORD-CHORD FORMULA
Let C be a circle with center O. Suppose that AC and BD are chords
of this circle, and suppose further that they intersect at a point P.
Label the angle of intersection, θ =∠APD � ∠BPC. Then

(θ) =
(∠AOD)+ (∠BOC)

2
.

Proof. The angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on the arc �CD
and ∠D is inscribed on the arc �AB. According to the Inscribed Angle
Theorem, they are half the size of the corresponding central angles, so

(θ) = 180◦ − 1
2(∠COD)− 1

2(∠AOB)
= 1

2 (360◦ − (∠COD)− (∠AOB)).

This is some progress, for at least now θ is related to central angles, but
alas, these are not the central angles in the formula. If we add all four
central angles around O, though,

(∠AOB)+ (∠BOC)+ (∠COD)+ (∠DOA)= 360◦

(∠BOC)+ (∠DOA) = 360◦ − (∠COD)− (∠AOB).

Now just substitute in, and you have the formula.

A

P

B
C

D
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According to the Chord-Chord formula, as long as the intersection point
P is inside the circle, θ can be computed as the average of two central
angles. What would happen if P moved outside the circle? Of course
then we would not be talking about chords, since chords stop at the circle
boundary, but rather the secant lines containing them.

THE SECANT-SECANT FORMULA
Suppose that A, B, C, and D are points on a circle, arranged so that
�ABCD is a simple quadrilateral, and that the secant lines AB and
CD intersect at a point P which is outside the circle. Label the angle
of intersection, ∠APD, as θ . If P occurs on the same side of AD as B
and C, then

(θ) =
(∠AOD)− (∠BOC)

2
.

If P occurs on the same side of BC as A and D, then

(θ) =
(∠BOC)− (∠AOD)

2
.

Proof. There is obviously a great deal of symmetry between the two cases,
so let me just address the first. The same principles apply here as in the
last proof. Angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on arc � BD
and ∠D is inscribed on arc � AC. We need to use the Inscribed Angle
Theorem to relate these angles to central angles, and in this case, those
central angles overlap a bit, so we will need to break them down further,
but the rest is straightforward.

(θ) = 180◦ − 1
2(∠BOD)− 1

2(∠AOC)

= 1
2 (360◦ − (∠BOD)− (∠AOC))

= 1
2 (360◦ − (∠BOC)− (∠COD)− (∠AOB)− (∠BOC))

= 1
2 ([360◦ − (∠AOB)− (∠BOC)− (∠COD)]− (∠BOC))

= 1
2 ((∠AOD)− (∠BOC)).

According to the Chord-Chord formula, as long as the intersection point
P is inside the circle, θ can be computed as the average of two central
angles. What would happen if P moved outside the circle? Of course
then we would not be talking about chords, since chords stop at the circle
boundary, but rather the secant lines containing them.

THE SECANT-SECANT FORMULA
Suppose that A, B, C, and D are points on a circle, arranged so that
�ABCD is a simple quadrilateral, and that the secant lines AB and
CD intersect at a point P which is outside the circle. Label the angle
of intersection, ∠APD, as θ . If P occurs on the same side of AD as B
and C, then

(θ) =
(∠AOD)− (∠BOC)

2
.

If P occurs on the same side of BC as A and D, then

(θ) =
(∠BOC)− (∠AOD)

2
.

Proof. There is obviously a great deal of symmetry between the two cases,
so let me just address the first. The same principles apply here as in the
last proof. Angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on arc � BD
and ∠D is inscribed on arc � AC. We need to use the Inscribed Angle
Theorem to relate these angles to central angles, and in this case, those
central angles overlap a bit, so we will need to break them down further,
but the rest is straightforward.

(θ) = 180◦ − 1
2(∠BOD)− 1

2(∠AOC)

= 1
2 (360◦ − (∠BOD)− (∠AOC))

= 1
2 (360◦ − (∠BOC)− (∠COD)− (∠AOB)− (∠BOC))

= 1
2 ([360◦ − (∠AOB)− (∠BOC)− (∠COD)]− (∠BOC))

= 1
2 ((∠AOD)− (∠BOC)).

A

PC

B
D
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According to the Chord-Chord formula, as long as the intersection point
P is inside the circle, θ can be computed as the average of two central
angles. What would happen if P moved outside the circle? Of course
then we would not be talking about chords, since chords stop at the circle
boundary, but rather the secant lines containing them.

THE SECANT-SECANT FORMULA
Suppose that A, B, C, and D are points on a circle, arranged so that
�ABCD is a simple quadrilateral, and that the secant lines AB and
CD intersect at a point P which is outside the circle. Label the angle
of intersection, ∠APD, as θ . If P occurs on the same side of AD as B
and C, then

(θ) =
(∠AOD)− (∠BOC)

2
.

If P occurs on the same side of BC as A and D, then

(θ) =
(∠BOC)− (∠AOD)

2
.

Proof. There is obviously a great deal of symmetry between the two cases,
so let me just address the first. The same principles apply here as in the
last proof. Angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on arc � BD
and ∠D is inscribed on arc � AC. We need to use the Inscribed Angle
Theorem to relate these angles to central angles, and in this case, those
central angles overlap a bit, so we will need to break them down further,
but the rest is straightforward.

(θ) = 180◦ − 1
2(∠BOD)− 1

2(∠AOC)

= 1
2 (360◦ − (∠BOD)− (∠AOC))

= 1
2 (360◦ − (∠BOC)− (∠COD)− (∠AOB)− (∠BOC))

= 1
2 ([360◦ − (∠AOB)− (∠BOC)− (∠COD)]− (∠BOC))

= 1
2 ((∠AOD)− (∠BOC)).
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Exercises
1. Verify that the length of a diameter of a circle is twice the radius.

2. Prove that no line is entirely contained in any circle.

3. Prove that a circle is convex. That is, prove that if points P and Q are
inside a circle, then all the points on the segment PQ are inside the
circle.

4. Prove that for any circle there is a triangle entirely contained in it (all
the points of the triangle are inside the circle).

5. Prove that for any circle there is a triangle which entirely contains it
(all the points of the circle are in the interior of the triangle).

6. In the proof that two circles intersect at most twice, I have called both
(1) |a−b|< c < a+b, and (2) c ≥ a,b and c < a+b

the Triangle Inequality conditions. Verify that the two statements are
equivalent for any three positive real numbers.

7. Let ∠ABC be an inscribed angle on a circle. Prove that, excluding
the endpoints, exactly one of the two arcs �AC lies in the interior of
∠ABC.

8. Prove the converse of Thales’ theorem: if �ABC is a right triangle with
right angle at C, then C is on the circle with diameter AB.

9. Consider a simple quadrilateral which is inscribed on a circle (that is,
all four vertices are on the circle). Prove that the opposite angles of
this quadrilateral are supplementary.

10. Let C be a circle and P be a point outside of it. Prove that there are
exactly two lines which pass through P and are tangent to C. Let Q and
R be the points of tangency for the two lines. Prove that PQ and PR are
congruent.

11. The “Tangent-Tangent” formula. Let P be a point which is outside of
a circle C . Consider the two tangent lines to C which pass through P
and let A and B be the points of tangency between those lines and the
circle. Prove that

(∠APB) =
(∠1)− (∠2)

2
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where ∠1 is the reflex central angle corresponding to the major arc
� AB and ∠2 is the proper central angle corresponding to the minor
arc �AB.

12. Let AC and BD be two chords of a circle which intersect at a point P
inside that circle. Prove that

|AP| · |CP|= |BP| · |DP|.

References

I learned of the Chord-Chord, Secant-Secant, and Tangent-Tangent for-
mulas in the Wallace and West book Roads to Geometry[1]. They use
the names Two-Chord Angle Theorem, Two-Secant Angle Theorem, and
Two-Tangent Angle Theorem.

[1] Edward C. Wallace and Stephen F. West. Roads to Geometry. Pearson
Education, Inc., Upper Saddle River, New Jersey, 3rd edition, 2004.





 ...COMES AROUND

17 CIRCUMFERENCE.



214 LESSON 17

A theorem on perimeters

In the lesson on polygons, I defined the perimeter of a polygon P =
P1 · · ·Pn as

|P|=
n

∑
i=1

|PiPi+1|,

but I left it at that. In this lesson we are going to use perimeters of cyclic
polygons to find the circumference of the circle. Along the way, I want
to use the following result which compares the perimeters of two convex
polygons when one is contained in the other.

THM 1
If P and Q are convex polygons and all the points of P are on or
inside Q, then |P| ≤ |Q|.

Proof. Some of the edges of P may run along the edges of Q, but unless
P= Q, at least one edge of P must pass through the interior of Q. Let s be
one of those interior edges. The line containing s intersects Q twice– call
those intersections a and b– dividing Q into two smaller polygons which
share the side ab, one on the same side of s as P, the other on the opposite
side. Essentially we want to “shave off” the part of Q on the opposite side,
leaving behind only the polygon Q1 which consists of

◦ points of Q on the same side of s as P, and
◦ points on the segment ab.

a

s

b

P P

Q Q1

Shaving a polygon.
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There are two things to notice about Q1. First, Q1 and P have one more
coincident side (the side s) than Q and P had. Second, the portions of
Q and Q1 on the side of s with P are identical, so the segments making
up that part contribute the same amount to their respective perimeters.
On the other side, though, the path that Q takes from a to b is longer
than the direct route along the segment ab of Q1 (because of the Triangle
Inequality). Combining the two parts, that means |Q1| ≤ |Q|.

Now we can repeat this process with P and Q1, generating Q2 with even
smaller perimeter than Q1 and another coincident side with P. And again,
to get Q3. Eventually, though, after say m steps, we run out of sides that
pass through the interior, at which point P= Qm. Then

|P|= |Qm| ≤ |Qm−1| ≤ · · · |Q2| ≤ |Q1| ≤ |Q|.

1

3

6

4

2 5

One at a time, shave the sides of the outer polygon down to the inner one.
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Circumference

Geometers have drawn circles for a long time. I don’t think it is a big
surprise, then, that they would wonder about the relationship between the
distance around the circle (how far they have dragged their pencil) and the
radius of the circle. The purpose of this lesson is to answer that question.
Our final result, the formula C = 2πr, sits right next to the Pythagorean
Theorem in terms of star status, but I think it is a misunderstood celebrity.
So let me be clear about what this equation is not. It is not an equation
comparing two known quantities C and 2πr. Instead, this equation is the
way that we define the constant π . Nevertheless, the equation is saying
something about the relationship between C and r– it is saying that the
ratio of the two is a constant.

To define the circumference of a circle, I want to take an idea from
calculus– the idea of approximating a curve by straight line segments, and
then refining the approximation by increasing the number of segments. In
the case of a circle C, the approximating line segments will be the edges
of a simple cyclic polygon P inscribed in the circle. Conceptually, we
will want the circumference of C to be bigger than the perimeter of P. We
should also expect that by adding in additional vertices to P, we should be
able to get the perimeter of P as close as we want to the circumference of
C. All this suggests (to me at least) that to get the circumference of C, we
need to find out how large the perimeters of inscribed polygons can be.

DEF: CIRCUMFERENCE
The circumference of a circle C, written |C|, is

|C|= sup
{
|P|

∣∣∣P is a simple cyclic polygon inscribed in C
}
.

Circumference

Geometers have drawn circles for a long time. I don’t think it is a big
surprise, then, that they would wonder about the relationship between the
distance around the circle (how far they have dragged their pencil) and the
radius of the circle. The purpose of this lesson is to answer that question.
Our final result, the formula C = 2πr, sits right next to the Pythagorean
Theorem in terms of star status, but I think it is a misunderstood celebrity.
So let me be clear about what this equation is not. It is not an equation
comparing two known quantities C and 2πr. Instead, this equation is the
way that we define the constant π . Nevertheless, the equation is saying
something about the relationship between C and r– it is saying that the
ratio of the two is a constant.

To define the circumference of a circle, I want to take an idea from
calculus– the idea of approximating a curve by straight line segments, and
then refining the approximation by increasing the number of segments. In
the case of a circle C, the approximating line segments will be the edges
of a simple cyclic polygon P inscribed in the circle. Conceptually, we
will want the circumference of C to be bigger than the perimeter of P. We
should also expect that by adding in additional vertices to P, we should be
able to get the perimeter of P as close as we want to the circumference of
C. All this suggests (to me at least) that to get the circumference of C, we
need to find out how large the perimeters of inscribed polygons can be.

DEF: CIRCUMFERENCE
The circumference of a circle C, written |C|, is

|C|= sup
{
|P|

∣∣∣P is a simple cyclic polygon inscribed in C
}
.

Approximation of an arc by segments.
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There is nothing in the definition to guarantee that this supremum ex-
ists. It is conceivable that the lengths of these approximating perimeters
might just grow and grow with bound. One example of such degeneracy
is given the deceptively cute name of “the Koch snowflake.” Let me de-
scribe how it works. Take an equilateral triangle with sides of length one.
The perimeter of this triangle is, of course, 3. Now divide each of those
sides into thirds. On each middle third, build an equilateral triangle by
adding two more sides; then remove the the original side. You have made
a shape with 3 ·4 sides, each with a length 1/3, for a perimeter of 4. Now
iterate– divide each of those sides into thirds; build equilateral triangles
on each middle third, and remove the base. That will make 3 ·16 sides of
length 1/9, for a perimeter of 16/3. Then 3 · 64 sides of length 1/27 for a
perimeter of 64/9. Generally, after n iterations, there are 3 · 4n sides of
length 1/3n for a total perimeter of 4n/3n−1, and

lim
n→∞

4n

3n−1 = lim
n→∞

3
(

4
3

)n
= ∞.

The Koch snowflake, which is the limiting shape in this process, has in-
finite perimeter! The first thing we need to do, then, is to make sure that
circles are better behaved than this.

1 32

54

The first few steps in the construcion of the Koch snowflake.
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AN UPPER BOUND FOR CIRCUMFERENCE
If C is a circle of radius r, then |C| ≤ 8r.

Proof. The first step is to build a circum-
scribing square around C– the smallest pos-
sible square that still contains C. Begin by
choosing two perpendicular diameters d1 and
d2. Each will intersect C twice, for a total of
four intersections, P1, P2, P3, and P4. For each
i between one and four, let ti be the tangent
line to C at Pi. These tangents intersect to
form the circumscribing square. The length
of each side of the square is equal to the di-
ameter of C, so the perimeter of the square is
4 ·2r = 8r.

Now we turn to the theorem we proved to start this lesson. Each simple
cyclic polygon inscribed in C is a convex polygon contained in the cir-
cumscribing square. Therefore the perimeter of any such approximating
polygon is bounded above by 8r. Remember that we have defined |C| to
be the supremum of all of these approximating perimeters, so it cannot
exceed 8r either.

Now that we know that any circle does have a circumference, the next step
is to find a way to calculate it. The key to that is the next theorem.

CIRCUMFERENCE/RADIUS
The ratio of the circumference of a circle to its radius is a constant.

Proof. Let’s suppose that this ratio is not a constant, so that there are two
circles C1 and C2 with centers O1 and O2 and radii r1 and r2, but with
unequal ratios

|C1|/r1 > |C2|/r2.

As we have defined circumference, there are approximating cyclic poly-
gons to C1 whose perimeters are arbitrarily close to its circumference.
In particular, there has to be some approximating cyclic polygon P =
P1P2 . . .Pn for C1 so that

|P|/r1 > |C2|/r2.

P1

P3

P2

P4
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The heart of the contradiction is that we can build a cyclic polygon Q

on C2 which is similar to P (intuitively, we just need to scale P so that it
fits in the circle). The construction is as follows

1. Begin by placing a point Q1 on
circle C2.

2. Locate Q2 on C2 so that ∠P1O1P2
is congruent to ∠Q1O2Q2 (there are
two choices for this).

3. Locate Q3 on C2 and on the
opposite side of O2Q2 from Q1 so
that ∠P2O1P3 � ∠Q2O2Q3.

4. Continue placing points on C2
in this fashion until Qn has been
placed to form the polygon Q =
Q1Q2 . . .Qn.

Then

|O2Qi|
|O1Pi|

=
r2

r1
=

|O2Qi+1|
|O1Pi+1|

& ∠QiO2Qi+1 � ∠PiO1Pi+1,

so by S·A·S similarity, �QiO2Qi+1 ∼�PiO1Pi+1. That gives us the ratio
of the third sides of the triangle as |QiQi+1|/|PiPi+1| = r2/r1 and so we
can describe the perimeter of Q as

|Q|=
n

∑
i=1

|QiQi+1|=
n

∑
i=1

r2

r1
|PiPi+1|=

r2

r1

n

∑
i=1

|PiPi+1|=
r2

r1
|P|.

P1

P3

P2

Q2

Q3

Q4

Q5
Q6

Q1

P4

P5

P6

2

14
65

3

1
2 3

4
56
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Here’s the problem. That would mean that

|Q|
r2

=
|P|
r1

>
|C2|
r2

so |Q|> |C2| when the circumference of C2 is supposed to be greater than
the perimeter of any of the approximating cyclic polygons.

DEF: π
The constant π is the ratio of the circumference of a circle to its
diameter

π =
|C|
2r

.

The problem with this definition of circumference, and consequently this
definition of π , is that it depends upon a supremum, and supremums are
ungainly and difficult to maneuver. A limit is considerably more nimble.
Fortunately, this particular supremum can be reached via the perimeters
of a sequence of regular polygons as follows. Arrange n angles each mea-
suring 360◦/n around the center of any circle C. The rays of those angles
intersect C n times, and these points Pi are the vertices of a regular n-gon,
Pn = P1P2 . . .Pn. The tangent lines to C at the neighboring points Pi and
Pi+1 intersect at a point Qi. Taken together, these n points are the vertices
of another regular n-gon Qn = Q1Q2 . . .Qn. The polygon Pn is just one of
the many cyclic polygons inscribed in C so |Pn| ≤ |C|. The polygon Qn
circumscribes C, and every cyclic polygon inscribed on C lies inside Qn,
so |Qn| ≥ |C|.

P1

P3

P2

Q2

Q3 Q4

Q5

Q6Q1

P4

P5

P6

Regular inscribed and circumscribing hexagons.
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The lower bound prescribed by Pn.
Each OQi � is a perpendicular bi-
sector of PiPi+1, intersecting it at a
point Ri and dividing �OPiPi+1 in
two. By the H·L congruence the-
orem for right triangles, those two
parts, �ORiPi and �ORiPi+1, are
congruent. That means that Pn is
built from 2n segments of length
|PiRi|. Now

sin(360◦/2n) =
|PiRi|

r
=⇒ |PiRi|= r sin(360◦/2n)

so

|Pn|= 2nr sin(360◦/2n).

The upper bound prescribed by Qn.
Each OPi � is a perpendicular bi-
sector of Qi−1Qi, intersecting it at
Pi and dividing �OQi−1Qi in two.
By S·A·S, the two parts, �OPiQi−1
and �OPiQi, are congruent. That
means Qn is built from 2n segments
of length |PiQi|. Now

tan(360◦/2n) = |PiQi|/r
=⇒ |PiQi|= r tan(360◦/2n)

so

|Qn|= 2nr tan(360◦/2n).

Pi+1

Pi

Pi

Ri

Qi–1

Qi

O
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Let’s compare |Pn| and |Qn| as n increases (the key to this calculation is
that as x approaches zero, cos(x) approaches one):

lim
n→∞

|Qn|= lim
n→∞

2nr tan(360◦/2n)

= lim
n→∞

2nr sin(360◦/2n)
cos(360◦/2n)

=
limn→∞ 2nr sin(360◦/2n)

limn→∞ cos(360◦/2n)
= lim

n→∞
2nr sin(360◦/2n)/1

= lim
n→∞

|Pn|.

Since |C| is trapped between |Pn| and |Qn| for all n, and since these are
closing in upon the same number as n goes to infinity, |C| must also be
approaching this number. That gives a more comfortable equation for
circumference as

|C|= lim
n→∞

2nr sin(360◦/2n),

and since |C|= 2πr, we can disentangle a definition of π as

π = lim
n→∞

nsin(360◦/2n).

2.52.0 3.0 3.5 4.0 4.5 5.0 5.5

5.196

4.0002.828

2.598

3.6332.939

3.4643.000

3.3713.037

3.3143.061

π=3.14159265...

n=3

=4

=5

=6

=7

=8

|Pn| / 2r |Qn| / 2r

Upper and lower bounds for π.
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Lengths of arcs and radians.

It doesn’t take much modification to get a formula for a length of arc. The
360◦ in the formula for |C| is the measure of the central angle correspond-
ing to an arc that goes completely around the circle. To get the measure
of any other arc, we just need to replace the 360◦ with the measure of the
corresponding central angle.

LENGTHS OF CIRCULAR ARCS
If �AB is the arc of a circle with radius r, and if θ is the measure of
the central angle ∠AOB, then

|�AB|= π
180◦

θ · r.

Proof. To start, replace the 360◦ in the circumference formula with θ :

|�AB|= lim
n→∞

2nr sin(θ/2n) = 2r · lim
n→∞

nsin(θ/2n).

This limit is clearly related to the one that defines π . I want to absord
the difference between the two into the variable via the substitution n =
m ·θ/360◦. Note that as n approaches infinity, m will as well, so

|�AB|= 2r · lim
m→∞

m ·θ
360◦

sin
(

θ
2m ·θ/360◦

)

=
2rθ
360◦

· lim
m→∞

msin(360◦/2m)

=
θ

180◦
rπ.

θ

r

A

B

O
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There is one more thing to notice before the end of this lesson. This arc
length formula provides a most direct connection between angle measure
(of the central angle) and distance (along the arc). And yet, the π

180◦ factor
in that formula suggests that distance and the degree measurement system
are a little out of sync with one another. This can be fixed by modernizing
our method of angle measurement. The preferred angle measurement sys-
tem, and the one that I will use from here on out, is radian measurement.

DEF: RADIAN
One radian is π/180◦.

The measure of a straight angle is π radians. The measure of a right
angle is π/2 radians. One complete turn of the circle is 2π radians. If
θ = (∠AOB) is measured in radians, then

|�AB|= r ·θ .

There is one more thing to notice before the end of this lesson. This arc
length formula provides a most direct connection between angle measure
(of the central angle) and distance (along the arc). And yet, the π

180◦ factor
in that formula suggests that distance and the degree measurement system
are a little out of sync with one another. This can be fixed by modernizing
our method of angle measurement. The preferred angle measurement sys-
tem, and the one that I will use from here on out, is radian measurement.

DEF: RADIAN
One radian is π/180◦.

The measure of a straight angle is π radians. The measure of a right
angle is π/2 radians. One complete turn of the circle is 2π radians. If
θ = (∠AOB) is measured in radians, then

|�AB|= r ·θ .

1
One radian is approximately 57.296º.
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Exercises

1. Let A and B be points on a circle C with radius r. Let θ be the mea-
sure of the central angle corresponding to the minor arc (or semicircle)
�AB. What is the relationship (in the form of an equation) between θ ,
r, and |AB|?

2. Let AB be a diameter of a circle C, and let P be a point on AB. Let C1
be the circle with diameter AP and let C2 be the circle with diameter
BP. Show that the sum of the circumferences of C1 and C2 is equal to
the circumference of C (the shape formed by the three semicircles on
one side of AB is called an arbelos).

3. In the construction of the Koch snowflake, the middle third of each
segment is replaced with two-thirds of an equilateral triangle. Suppose,
instead, that middle third was replaced with three of the four sides of
a square. What is the perimeter of the n-th stage of this operation?
Would the limiting perimeter still be infinite?

4. This problem deals with the possibility of angle measurement systems
other than degrees or radians. Let A be the set of angles in the plane.
Consider a function

� : A→ (0,∞) : ∠A → (∠A)�

which satisfies the following properties

(1) if ∠A � ∠B, then (∠A)� = (∠B)�

(2) if D is in the interior of ∠ABC, then

(∠ABC)� = (∠ABD)�+(∠DBC)�.

Prove that the � measurement system is a constant multiple of the de-
gree measurement system (or, for that matter, the radian measurement
system). That is, prove that there is a k > 0 such that for all ∠A ∈A,

(∠A)� = k · (∠A).





18 THE BLANK CANVAS AWAITS 
EUCLIDEAN CONSTRUCTIONS
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This lesson is a diversion from our projected path, but I maintain that it
is a pleasant and worthwhile diversion. We get a break from the heavy
proofs, and we get a much more tactile approach to the subject. I have
found that compass and straight edge constructions serve as a wonderful
training ground for the rigors of mathematics without the tricky logical
pitfalls of formal proof. In my geometry classes, I often don’t have time
to prove many of the really neat Euclidean results that we will see in the
next few lessons, but I have found that I can use compass and straight edge
constructions to present the theorems in an sensible way.

Now kindly rewind all the way back to Lesson 1, when I talked briefly
about Euclid’s postulates. In particular, I want you to look at the first three

P1 To draw a straight line from any point to any point.
P2 To produce a finite straight line continuously in a straight

line.
P3 To describe a circle with any center and distance.

Back then, I interpreted these postulates as claims of existence (of lines
and circles). Consider instead a more literal reading: they are not claim-
ing the existence of objects, but rather telling us that we can make them.
This lesson is dedicated to doing just that: constructing geometric objects
using two classical tools, a compass and a straight edge. The compass
makes circles and arcs, and the straight edge makes segments, rays, and
lines. Together they make the kinds of shapes that Euclid promised in his
postulates.
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The straight edge

The straight edge is a simple tool– it is just something that can draw lines.
In all likelihood, your straight edge will be a ruler, and if so, you need
to be aware of the key distinction between a ruler and a straight edge.
Unlike a ruler, a straight edge has no markings (nor can you add any).
Therefore, you cannot measure distance with it. But a straight edge can
do the following :

– draw a segment between two points;
– draw a ray from a point through another point;
– draw a line through two points;
– extend a segment to either a ray or the line containing it;
– extend a ray to the line containing it.

The compass

Not to be confused with the ever-northward-pointing navigational com-
pass, the compass of geometry is a tool for creating a circle. More pre-
cisely, a compass can do the following:

◦ given two distinct points P and Q, draw the circle centered
at P which passes through Q;
◦ given points P and Q on a circle with a given center R, draw
the arc �PQ.

You could make a simple compass by tying a pencil to a piece of string,
but it would be pretty inaccurate. The metal compasses of my youth
(such as the one pictured) are more precise instruments, but alas double
as weaponry in the hands of some mischievous rascals. The plastic com-
passes that are now the norm in many schools are an adequate substitute
until they fall apart, usually about halfway through the lesson.

Let me give a warning about something a compass cannot do (at least
not “out of the box”). A common temptation is to try to use the compass
to transfer distance. That is, to draw a circle of a certain radius, lift up the
compass and move it to another location, then place it back down to draw
another circle with the same radius. That process effectively transfers a
distance (the radius) from one location to another, and so is a convenient
way to construct a congruent copy of one segment in another location.
It is a simple enough maneuver, but the problem is that according to the
classical rules of the game a compass does not have this transfer ability.
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The classical compass is “collapsing”, meaning that as soon as it is used to
create a circle, it falls apart (in this way, I guess the classical compass does
resemble those shoddy plastic ones). We will soon see that the two types
of compasses are not fundamentally different, and therefore that the non-
collapsing feature is actually only a convenience. Once we have shown
that, I will have no qualms about using a non-collapsing compass when
it will streamline the construction process. Until then, distance transfer
using a compass is off-limits.

The digital compass and straight edge

There are several good computer programs that will allow you to build
these constructions digitally (though I won’t formally endorse a particular
one). There are both advantages and disadvantages to the digital approach.
At the risk of sounding like a mystic, I believe that drawing lines and
circles on a real piece of paper with a real pencil links you to a long,
beautiful tradition in a way that no computer experience can. For more
complicated constructions, though, the paper and pencil approach gets
really messy. In addition, a construction on paper is static, while computer
constructions are dynamic– you can drag points around and watch the rest
of the construction adjust accordingly. Often that dynamism really reveals
the power of the theorems in a way that no single static image ever could. I
would recommend that you try to make a few of the simpler constructions
the old-fashioned way, with pencil and paper. And I would recommend
that you try a few of the more complicated constructions with the aid of a
computer.

A little advice

1. It is easier to draw than to erase.

2. Lines are infinite, but your use for them may not be– try not to draw
more of the line than is needed. Similarly, if you only need a small arc of
a circle, there is little point in drawing the whole thing.

3. To the extent that you can plan ahead, you can build your construction
so that it is neither too big nor too small. The Euclidean plane is infinite,
but your piece of paper is not. At the other extreme, your real world
compass likely will not function well below a certain radius.
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The perpendicular bisector

1 Begin with a segment AB.

2 With the compass construct two
circles: one centered at A which
passes through B and one cen-
tered at B which passes through
A. These circles intersect twice, at
C and D, once on each side of AB.

3 Use the straight edge to draw the
line �CD �. That line is the per-

pendicular bisector of AB, and its
intersection P with AB is the mid-
point of AB.

Perhaps some justification of the
last statement is in order. Observe
the following.

4 That �ABC and �ABD are
equilateral, and since they share
a side, are congruent.

1 3

2 4

C

D

C

D

A

B

A

B

P
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5 That �ACD is isosceles, so
the angles opposite its congruent
sides, ∠ACD and ∠ADC, are con-
gruent.

6 S·A·S: That �ACP and �ADP
are congruent. This means ∠APC
is congruent to its own supple-
ment, and so is a right angle. That

handles the first part of the claim:
CD is perpendicular to AB.

7 Continuing, ∠APC and ∠BPC
are right angles. By A·A·S, �APC
and �BPC are congruent and so
AP � BP. That means P has to be
the midpoint of AB.

5 7

6

C

D

C C

D
A A

B

A

P

P
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The bisector of an angle

1 Begin with an angle whose ver-
tex is O.

2 Draw a circle centered at O, and
mark where it intersects the rays
that form the angle as A and B.

3 Draw two circles– one centered
at A passing through B, and one
centered at B passing through A.

4 Label their intersection as P.

1 3

2 4

A

B

O

PA

B
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5 Draw the ray OP �. It is the
bisector of ∠AOB.

6 The justification is easier this
time. You see,

AP � AB � BP

so by S·S·S, �OAP � �OBP.
Now match up the congruent inte-
rior angles, and ∠AOP � ∠BOP.

5

6

P

A

B

O

P
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The perpendicular to a line �
through a point P.

Case 1: if P is not on �

1 Mark a point A on �.

2 Draw the circle centered at P and
passing through A.

3 If this circle intersects � only

once (at P), then � is tangent to the
circle and AP is the perpendicular
to � through P (highly unlikely).
Otherwise, label the second inter-
section B.

4 Use the previous construction to
find the perpendicular bisector to
AB. This is the line we want.

P

A

B

1 3

2 4
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Case 2: if P is on �

5 Mark a point A on � other than P.

6 Draw the circle centered at P
passing through A.

7 Mark the second intersection of
this circle with � as B.

8 Use the previous construction to
find the perpendicular bisector to
AB. This is the line we want.

Again, there may be some ques-
tion about why these constructions
work. This time I am going to
leave the proof to you.

A A

P P

B

5

6 8

7
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Once you know how to construct perpendicular lines, constructing par-
allels is straightforward: starting from any line, construct a perpendicular,
and then a perpendicular to that. According to the Alternate Interior An-
gle Theorem, the result will be parallel to the initial line. Such a construc-
tion requires quite a few steps, though, and drawing parallels feels like it
should be a fairly simple procedure. As a matter of fact, there is a quicker
way, but it requires a non-collapsing compass. So it is now time to look
into the issue of collapsing versus non-collapsing compasses.

Collapsing v. non-collapsing

The apparent difference between a collapsing and a non-collapsing com-
pass is that with a non-collapsing compass, we can draw a circle, move
the compass to another location, and draw another circle of the same size.
In effect, the non-collapsing compass becomes a mechanism for relaying
information about size from one location in the plane to another. As I
mentioned at the start of this lesson, the official rulebook does not permit
a compass to retain and transfer that kind of information. The good news
is that, in spite of this added feature, a non-collapsing compass is not any
more powerful than a collapsing one. Everything that can be constructed
with a non-collapsing compass can also be constructed with a collapsing
one. The reason is simple: a collapsing compass can also transfer a circle
from one location to another– it just takes a few more steps.

Once you know how to construct perpendicular lines, constructing par-
allels is straightforward: starting from any line, construct a perpendicular,
and then a perpendicular to that. According to the Alternate Interior An-
gle Theorem, the result will be parallel to the initial line. Such a construc-
tion requires quite a few steps, though, and drawing parallels feels like it
should be a fairly simple procedure. As a matter of fact, there is a quicker
way, but it requires a non-collapsing compass. So it is now time to look
into the issue of collapsing versus non-collapsing compasses.

Collapsing v. non-collapsing

The apparent difference between a collapsing and a non-collapsing com-
pass is that with a non-collapsing compass, we can draw a circle, move
the compass to another location, and draw another circle of the same size.
In effect, the non-collapsing compass becomes a mechanism for relaying
information about size from one location in the plane to another. As I
mentioned at the start of this lesson, the official rulebook does not permit
a compass to retain and transfer that kind of information. The good news
is that, in spite of this added feature, a non-collapsing compass is not any
more powerful than a collapsing one. Everything that can be constructed
with a non-collapsing compass can also be constructed with a collapsing
one. The reason is simple: a collapsing compass can also transfer a circle
from one location to another– it just takes a few more steps.
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1 Begin with a circle C with center
A. Suppose we wish to draw an-
other circle of the same size, this
time centered at a point B.

2 Construct the line �AB�.

3 Construct two lines perpendicu-
lar to �AB�: �A through A and �B
through B.

4 Now �A intersects C twice: iden-
tify one point of intersection as P.

A

B

P

B

A

1 3

2 4
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5 Construct the line �P which
passes through P and is perpen-
dicular to �A.

6 This line intersects �B. Identify
the intersection of �P and �B as Q.

7 Now A, B, P, and Q are the four

corners of a rectangle. The op-
posite sides AP and BP must be
congruent. So finally,

8 Construct the circle with center
B which passes through Q. This
circle has the same radius as C.

Q

7

6

5

8

P
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This means that a collapsing compass can do all the same things a non-
collapsing compass can. From now on, let’s assume that our compass has
the non-collapsing capability.

Transferring segments

Given a segment AB and a ray r whose endpoint is C, it is easy to find
the point D on r so that CD � AB. Just construct the circle centered at
A with radius AB, and then (since the compass is non-collapsing) move
the compass to construct a circle centered at C with the same radius. The
intersection of this circle and r is D.

Transferring angles

Transferring a given angle to a new location is a little more complicated.
Suppose that we are given an angle with vertex P and a ray r with endpoint
Q, and that we want to build congruent copies of ∠P off of r (there are
two– one on each side of r).

1 Draw a circle with center P, and
label its intersections with the two
rays of ∠P as A and B.

2 Using the non-collapsing com-

pass, transfer this circle to one that
is centered at Q. Call it C and label
its intersection with r as C.

P B

A

Q

C

1 2
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3 Draw another circle, this time
one centered at A which passes
through B. Then transfer it to one
centered at C. The resulting cir-
cle will intersect C twice, once on
each side of r. Label the intersec-
tion points as D1 and D2.

4 By S·S·S, all three of the
triangles, �PAB, �PD1C, and
�PD2C are congruent. Therefore

∠D1QC � ∠P �∠D2QC.

The parallel to a line through
a point

1 With a non-collapsing compass
and angle transfer, we can now
draw parallels the “easy” way.
Start with a line �, and a point P
which is not on that line.

2 Mark a point Q on �.

D1

D2

D1

C

Q

P

D2

P

Q

3 1

24
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3 Construct the ray QP�.

4 This ray and � form two angles,
one on each side of QP�. Choose
one of these two angles and call it
θ .

5 Transfer this angle to another
congruent angle θ′ which comes
off of the ray PQ�. There are two

such angles, one on each side of
the ray, but for the purposes of this
construction, we want the one on
the opposite side of PQ� from θ .

6 Now PQ � is one of the rays
defining θ ′. Extend the other ray
to the line containing it: call this
line �′. By the Alternate Interior
Angle Theorem, �′ is parallel to �.

3 5

64

P

Q
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A rational multiple of a seg-
ment

Given a segment OP, we can con-
struct a segment whose length is
any rational multiple m/n of |OP|.

1 Along OP�, lay down m congru-
ent copies of OP, end-to-end, to
create a segment of length m|OP|.
Label the endpoint of this segment
as Pm.

2 Draw another ray with endpoint

O (other than OP � or OP �op),
and label a point on it Q.

3 Along OQ�, lay down n congru-
ent copies of OQ, end-to-end, to
create a segment of length n|OQ|.
Label the endpoint of this segment
as Qn.

4 Draw � PmQn � and construct
the line through Q that is parallel
to �PmQn�.

1 3

2 4

ex: A segment of length 5/3·|OP|

P5

PO

O

P5

Q3

P

Q

P5

Q3

P

Q

P5

P

Q
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5 It intersects OP�. Label the in-
tersection as P�.

6 I claim that OP� is the segment
we want: that

|OP|� = m/n · |OP|.

To see why, observe that O, P�,
and Pn are all parallel projections

from O, Q, and Qm, respectively.
Therefore,

|OP�|
|OPm|

=
|OQ|
|OQn|

|OP�|
m · |OP| =

1
n

|OP�|= m
n
|OP|.

To round out this lesson I would like to look at one of the central ques-
tions in the classical theory of constructions: given a circle, is it possible
to construct a regular n-gon inscribed in it? This question has now been
answered: it turns out that the answer is yes for some values of n, but no
for others. In fact, a regular n-gon can be constructed if and only if n is
a power of 2, or a product of a power of 2 and distinct Fermat primes (a
Fermat prime is a prime of the form 22n

+ 1, and the only known Fermat
primes are 3, 5, 17, 257, and 65537). A proof of this result falls outside
the scope of this book, but I would like to look at a few of the small values
of n where the construction is possible. In all cases, the key is to construct
a central angle at O which measures 2π/n.

5 6

P5

Q3 Q3

P

Q

P P5P

Q

P
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An equilateral triangle that is
inscribed in a given circle

In this case, we need to construct
a central angle of 2π/3, and this
can be done by constructing the
supplementary angle of π/3.

1 Given a circle C with center O,
mark a point A on it.

2 Draw the diameter through A,
and mark the other endpoint of it
as B.

3 Construct the perpendicular bi-
sector to OB. Mark the intersec-
tions of that line with C as C and D.

4 The triangles �BOC and �BOD
are equilateral, so

(∠BOC) = (∠BOD) = π/3

and so the two supplementary an-
gles ∠AOC and ∠AOD each mea-
sure 2π/3. Construct the segments
AC and AD to complete the equi-
lateral triangle �ACD.

1 3

2 4

O A

O A AB

OB

C

D

OB

C

D
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A square inscribed in a given
circle

1 This is even easier, since the cen-
tral angle needs to measure π/2–
a right angle.

2 Given a circle C with center O,
mark a point A on it.

3 Draw the diameter through A and
mark the other endpoint as B.

4 Construct the perpendicular bi-
sector to AB and mark the intersec-
tions with C as C and D. The four
points A, B, C, and D are the ver-
tices of the square. Just connect
the dots to get the square itself.

1 3

2 4

O A

OB A

B A

C

D
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A regular pentagon inscribed in a given circle

This one is considerably trickier. The central angle we are going to need
is 2π/5 (which is 72◦), an angle that you see a lot less frequently than
the 2π/3 and the π/2 of the previous constructions. Before diving into
the construction, then, let’s take a little time to investigate the geometry of
an angle measuring 2π/5. Let me show you a configuration of isosceles
triangles that answers a lot of questions.

In this illustration AB � AC and BC � BD. Since �ABC ∼ �BCD, we
have a way to solve for x,

1− x
x

=
x
1

=⇒ 1− x = x2 =⇒ x2 + x−1 = 0

and with the quadratic formula, x = (−1±
√

5)/2. Of these solutions, x
has to be the positive value since it represents a distance. The line from
A to the midpoint of BC divides �ABC into two right triangles, and from
them we can read off that

cos(2π/5) =
x/2
1

=
−1+

√
5

4
.

This cosine value is the key to the construction of the regular pentagon.

[note: I am going with this construction because it seems pretty intuitive,
but it is not the most efficient construction. Also, I am going to inscribe
this pentagon in a circle of radius one to make the calculations a little
easier– the same construction works in a circle of any radius though.]

A

D

C

B

x

x

x/21–x

1

1

72º72º

36º
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1 Given a circle C with center O
and radius one. Mark a point A on
C.

Objective I. Construct a segment
of length

√
5/4.

2 Construct the line which passes
through A and is perpendicular to

�OA�. Call this line �.

3 Use the compass to mark a point
B on � that is a distance |OA| from
A.

4 Construct the midpoint of AB,
and call that point C.

O A

B

C

1 3

42
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5 Draw the segment OC. Note that
by the Pythagorean Theorem,

|OC|=
√

|OA|2 + |AC|2

=
√

1+(1/2)2

=
√

5/2.

Locate the midpoint of OC (which
is a distance

√
5/4 from O). Call

this point D.

Objective II. Construct a segment
of length 1/4.

6 Extend OA until it reaches the
other side of C (the other endpoint
of the diameter). Label this point
E .

7 Find the midpoint F of OE , and
then find the midpoint G of OF .
Then |OE| = 1, |OF| = 1/2 and
|OG|= 1/4.

D

O

C

E

F G

5 7

6
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Objective III. Construct a segment
of length (−1+

√
5)/4.

8 Draw the circle centered at O
that passes through D. Mark its
intersection with OE as H . Then
GH is a segment whose length is
(−1+

√
5)/4.

9 Use segment transfer to place a
congruent copy of GH along the
ray OA�, with one endpoint at O.
Label the other endpoint I.

Objective IV. Mark a vertex of the
pentagon.

10 We will use A as one vertex of
the pentagon. For the next, con-
struct the line perpendicular to OA
which passes through I.

11 Mark one of the intersections
of this perpendicular with C as J.

H G

D

H G O

O A

I

I

J

8 10

119
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12 Now look at ∠O in the right tri-
angle �OIJ

cos(∠O) =
|OI|
|OJ|

=
(−1+

√
5)/4

1
.

According to our previous calcu-
lation, that means (∠OIJ)= 2π/5.

Objective V. The pentagon itself.

13 Segment AJ is one of the sides
of the pentagon. Now just transfer
congruent copies of that segment
around the circle to get the other
four sides of the pentagon.

J

IO

J

A

12 13
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Exercises

1. Given a segment AB, construct a segment of length (7/3)|AB|.

2. In a given circle, construct a regular (i) octagon, (ii) dodecagon, (iii)
decagon.

3. Given a circle C and a point A outside the circle, construct the lines
through A that are tangent to C.

4. Foreshadowing. (i) Given a triangle, construct the perpendicular bisec-
tors to the three sides. (ii) Given a triangle, construct the three angle
bisectors.

We haven’t discussed area yet, but if you are willing to do some things
out of order, here are a few area-based constructions.

5. Given a square whose area is A, construct a square whose area is 2A.

6. Given a rectangle, construct a square with the same area.

7. Given a triangle, construct a rectangle with the same area.

References

Famously, it is impossible to trisect an angle with compass and straight
edge. The proof of this impossibility requires a little Galois Theory, but
for the reader who has seen abstract algebra, is quite accessible. Proofs
are often given in abstract algebra books– I like Durbin’s approach in his
Modern Algebra book [1](probably because it was the first one I saw).

[1] John R. Durbin. Modern Algebra: An Introduction. John Wiley and
Sons, Inc., New York, 3rd edition, 1992.
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Start with three (or more) points. There is a small chance that those points
all lie on the same line– that they are colinear. In all likelihood, though,
they are not. And so, should we find a configuration of points that are
consistently colinear, well, that could be a sign of something interesting.
Likewise, with three (or more) lines, the greatest likelihood is that each
pair of lines interect, but that none of the intersections coincide. It is
unusual for two lines to be parallel, and it is unusual for three or more
lines to intersect at the same point.

DEF: CONCURRENCE
When three (or more) lines all intersect at the same point, the lines
are said to be concurrent. The intersection point is called the point of
concurrence.

In this lesson we are going to look at a few (four) concurrences of lines
associated with a triangle. Geometers have catalogued thousands of these
concurrences, so this is just the tip of a very substantial iceberg. [1]

The circumcenter

In the last lesson, I gave the construction of the perpendicular bisector of
a segment, but I am not sure that I ever properly defined it (oops). Let me
fix that now.

DEF: PERPENDICULAR BISECTOR
The perpendicular bisector of a segment AB is the line which is per-
pendicular to AB and passes through its midpoint.

Parallelism Intersection Concurrence
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Our first concurrence deals with the perpendicular bisectors of the three
sides of a triangle, but in order to properly understand that concurrence,
we need another characterization of the points of the perpendicular bisec-
tor.

LEMMA
A point X is on the perpendicular bisector to AB if and only if

|AX |= |BX |.

Proof. There’s not much to this
proof. It is really just a simple ap-
plication of some triangle congru-
ence theorems. First, suppose that
X is a point on the perpendicular
bisector to AB and let M be the
midpoint of AB. Then

S : AM � BM
A : ∠AMX � ∠BMX
S : MX = MX ,

and so �AMX and �BMX are
congruent. This means that |AX |=
|BX |.

Conversely, suppose that |AX | =
|BX |, and again let M be the mid-
point of AB. Then

S : AM � BM
S : MX = MX
S : AX � BX .

and so �AMX and �BMX are
congruent. In particular, this
means that ∠AMX � ∠BMX .
Those two angles are supplements,
though, and so they must be right
angles. Hence X is on the line
through M that forms a right angle
with AB– it is on the perpendicular
bisector.

B

B
X

X
M

M

A

A

S·S·SS·A·S
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Now we are ready for the first concurrence.

THE CIRCUMCENTER
The perpendicular bisectors to the three sides of a triangle �ABC
intersect at a single point. This point of concurrence is called the
circumcenter of the triangle.

Proof. The first thing to notice is that no two sides of the triangle can be
parallel. Therefore, none of the perpendicular bisectors can be parallel–
they all intersect each other. Let P be the intersection point of the per-
pendicular bisectors to AB and BC. Since P is on the perpendicular bisec-
tor to AB, |PA| = |PB|. Since P is on the perpendicular bisector to BC,
|PB| = |PC|. Therefore, |PA| = |PC|, and so P is on the perpendicular
bisector to AC.

An important side note: P is equidistant from A, B and C. That means
that there is a circle centered at P which passes through A, B, and C. This
circle is called the circumcircle of �ABC. In fact, it is the only circle
which passes through all three of A, B, and C (which sounds like a good
exercise).Now we are ready for the first concurrence.

THE CIRCUMCENTER
The perpendicular bisectors to the three sides of a triangle �ABC
intersect at a single point. This point of concurrence is called the
circumcenter of the triangle.

Proof. The first thing to notice is that no two sides of the triangle can be
parallel. Therefore, none of the perpendicular bisectors can be parallel–
they all intersect each other. Let P be the intersection point of the per-
pendicular bisectors to AB and BC. Since P is on the perpendicular bisec-
tor to AB, |PA| = |PB|. Since P is on the perpendicular bisector to BC,
|PB| = |PC|. Therefore, |PA| = |PC|, and so P is on the perpendicular
bisector to AC.

An important side note: P is equidistant from A, B and C. That means
that there is a circle centered at P which passes through A, B, and C. This
circle is called the circumcircle of �ABC. In fact, it is the only circle
which passes through all three of A, B, and C (which sounds like a good
exercise).

C

B

A

P
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The orthocenter

Most people will be familiar with the altitudes of a triangle from area
calculations in elementary geometry. Properly defined,

DEF: ALTITUDE
An altitude of a triangle is a line which passes through a vertex and
is perpendicular to the opposite side.

You should notice that an altitude of a triangle does not have to pass
through the interior of the triangle at all. If the triangle is acute then all
three altitudes will cross the triangle interior, but if the triangle is right,
two of the altitudes will lie along the legs, and if the triangle is obtuse,
two of the altitudes will only touch the triangle at their respective vertices.
In any case, though, the altitude from the largest angle will cross through
the interior of the triangle.

THE ORTHOCENTER
The three altitudes of a triangle �ABC intersect at a single point.
This point of concurrence is called the orthocenter of the triangle.The orthocenter

Most people will be familiar with the altitudes of a triangle from area
calculations in elementary geometry. Properly defined,

DEF: ALTITUDE
An altitude of a triangle is a line which passes through a vertex and
is perpendicular to the opposite side.

You should notice that an altitude of a triangle does not have to pass
through the interior of the triangle at all. If the triangle is acute then all
three altitudes will cross the triangle interior, but if the triangle is right,
two of the altitudes will lie along the legs, and if the triangle is obtuse,
two of the altitudes will only touch the triangle at their respective vertices.
In any case, though, the altitude from the largest angle will cross through
the interior of the triangle.

THE ORTHOCENTER
The three altitudes of a triangle �ABC intersect at a single point.
This point of concurrence is called the orthocenter of the triangle.

Altitudes for an acute, right, and obtuse triangle.
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Proof. The key to this proof is that the altitudes of �ABC also serve as
the perpendicular bisectors of another (larger) triangle. That takes us back
to what we have just shown– that the perpendicular bisectors of a triangle
are concurrent. First, we have to build that larger triangle. Draw three
lines

�1 which passes through A and is parallel to BC,
�2 which passes through B and is parallel to AC,
�3 which passes through C and is parallel to AB.

Each pair of those lines intersect (they cannot be parallel since the sides
of �ABC are not parallel), for a total of three intersections

�1 ∩ �2 = c �2 ∩ �3 = a �3 ∩ �1 = b.

The triangle �abc is the “larger triangle”. Now we need to show that an
altitude of �ABC is a perpendicular bisector of �abc. The argument is
the same for each altitude (other than letter shuffling), so let’s just focus
on the altitude through A: call it αA. I claim that αA is the perpendicu-
lar bisector to bc. There are, of course, two conditions to show: (1) that
αA ⊥ bc and (2) that their intersection, A, is the midpoint of bc.

(1) The first is easy thanks to the simple interplay between parallel and
perpendicular lines in Euclidean geometry.

bc � BC & BC ⊥ αA =⇒ bc ⊥ αA.

Proof. The key to this proof is that the altitudes of �ABC also serve as
the perpendicular bisectors of another (larger) triangle. That takes us back
to what we have just shown– that the perpendicular bisectors of a triangle
are concurrent. First, we have to build that larger triangle. Draw three
lines

�1 which passes through A and is parallel to BC,
�2 which passes through B and is parallel to AC,
�3 which passes through C and is parallel to AB.

Each pair of those lines intersect (they cannot be parallel since the sides
of �ABC are not parallel), for a total of three intersections

�1 ∩ �2 = c �2 ∩ �3 = a �3 ∩ �1 = b.

The triangle �abc is the “larger triangle”. Now we need to show that an
altitude of �ABC is a perpendicular bisector of �abc. The argument is
the same for each altitude (other than letter shuffling), so let’s just focus
on the altitude through A: call it αA. I claim that αA is the perpendicu-
lar bisector to bc. There are, of course, two conditions to show: (1) that
αA ⊥ bc and (2) that their intersection, A, is the midpoint of bc.

(1) The first is easy thanks to the simple interplay between parallel and
perpendicular lines in Euclidean geometry.

bc � BC & BC ⊥ αA =⇒ bc ⊥ αA.
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(2) To get at the second, we are going to have to leverage some of the
congruent triangles that we have created.

A : AC � ac =⇒ ∠cBA � ∠BAC
S : AB = AB
A : BC � bc =⇒ ∠cAB � ∠ABC

∴ �ABc ��BAC.

A : AB � ab =⇒ ∠BAC � ∠bCA
S : AC = AC
A : BC � bc =⇒ ∠BCA � ∠bAC

∴ �ABC ��CbA.

A : AC � ac =⇒ ∠cBA � ∠BAC
S : AB = AB
A : BC � bc =⇒ ∠cAB � ∠ABC

∴ �ABc ��BAC.

A : AB � ab =⇒ ∠BAC � ∠bCA
S : AC = AC
A : BC � bc =⇒ ∠BCA � ∠bAC

∴ �ABC ��CbA.

Therefore Ac � BC � Ab, placing A
at the midpoint of bc and making αA
the perpendicular bisector to bc. Like-
wise, the altitude through B is the per-
pendicular bisector to ac and the al-
titude through C is the perpendicular
bisector to ab. As the three perpen-
dicular bisectors of �abc, these lines
must intersect at a single point.
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The centroid

MEDIAN
A median of a triangle is a line segment from a vertex to the midpoint
of the opposite side.

THE CENTROID
The three medians of a triangle intersect at a single point. This point
of concurrence is called the centroid of the triangle.

Proof. On �ABC, label the midpoints of the three edges,

a, the midpoint of BC,
b, the midpoint of AC,
c, the midpoint of AB,

so that Aa, Bb, and Cc are the medians. The key to this proof is that we
can pin down the location of the intersection of any two medians– it will
always be found two-thirds of the way down the median from the vertex.
To understand why this is, we are going to have to look at a sequence of
three parallel projections.

The three medians of a triangle
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1. Label the intersection of Aa and Bb
as P. Extend a line from c which is
parallel to Bb. Label its intersec-
tion with Aa as Q, and its intersec-
tion with AC as c�. The first paral-
lel projection, from AB to AC, as-
sociates the points

A �→ A B �→ b c �→ c�.

Since Ac � cB, this means Ac� �
c�b.

2. Extend a line from a which is par-
allel to Bb. Label its intersection
with AC as a�. The second paral-
lel projection, from BC to AC, as-
sociates the points

C �→C B �→ b a �→ a�.

Since Ca � aB, this means Ca� �
a�b.

3. Now b divides AC into two congru-
ent segments, and a� and c� evenly
subdivide them. In all, a�, b, and
c� split AC into four congruent seg-
ments. The third parallel projec-
tion is from AC back onto Aa:

A �→ A c� �→ Q b �→ P a� �→ a.

Since Ac� � c�b � ba�, this means
AQ � QP � Pa.
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The incenter

This lesson began with bisectors of the sides of a triangle. It seems fitting
to end it with the bisectors of the interior angles of a triangle.

THE INCENTER
The bisectors of the three interior angles of a triangle intersect at a
single point. This point of concurrence is called the incenter of the
triangle.

Therefore P, the intersection of Bb and Aa, will be found on Aa exactly
two-thirds of the way down the median Aa from the vertex A. Now the
letters in this argument are entirely arbitrary– with the right permutation
of letters, we could show that any pair of medians will intersect at that
two-thirds mark. Therefore, Cc will also intersect Aa at P, and so the
three medians concur.

Students who have taken calculus may already be familiar with the cen-
troid (well, probably not my students, since I desperately avoid that sec-
tion of the book, but students who have more conscientious and responsi-
ble teachers). In calculus, the centroid of a planar shape D can be thought
of as its balancing point, and its coordinates can be calculated as

1∫∫
D 1dxdy

(∫∫

D
xdxdy,

∫∫

D
ydxdy

)
.

It is worth noting (and an exercise for students who have done calculus)
that in the case of triangles, the calculus and geometric definitions do co-
incide.

Angle bisectors

1 1

2
2

3
3
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Proof. Take two of the angle bisectors, say the bisectors of ∠A and ∠B,
and label their intersection as P. We need to show that CP� bisects ∠C.
The key to this proof is that P is actually equidistant from the three sides of
�ABC. From P, drop perpendiculars to each of the three sides of �ABC.
Label the feet of those perpendiculars: a on BC, b on AC, and c on AB.

Then

A : ∠PbA � ∠PcA
A : ∠bAP � ∠cAP
S : AP = AP

so �AcP is congruent to �AbP
and in particular bP � cP.

Again,

A : ∠PaB �∠PcB
A : ∠aBP � ∠cBP
S : BP = BP

and so �BaP is congruent to
�BcP and in particular cP � aP.

Now notice that the two right trian-
gles �PaC and �PbC have con-
gruent legs aP and bP and share
the same hypotenuse PC. Accord-
ing to the H·L congruence theorem
for right triangles, they have to be
congruent. Thus, ∠aCP � ∠bCP,
and so CP� is the bisector of ∠C.

Notice that P is the same distance from each of the three feet a, b, and
c. That means that there is a circle centered at P which is tangent to each
of the three sides of the triangle. This is called the inscribed circle, or
incircle of the triangle. It is discussed further in the exercises.

Proof. Take two of the angle bisectors, say the bisectors of ∠A and ∠B,
and label their intersection as P. We need to show that CP� bisects ∠C.
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Again,

A : ∠PaB �∠PcB
A : ∠aBP � ∠cBP
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incircle of the triangle. It is discussed further in the exercises.

Proof. Take two of the angle bisectors, say the bisectors of ∠A and ∠B,
and label their intersection as P. We need to show that CP� bisects ∠C.
The key to this proof is that P is actually equidistant from the three sides of
�ABC. From P, drop perpendiculars to each of the three sides of �ABC.
Label the feet of those perpendiculars: a on BC, b on AC, and c on AB.

Then

A : ∠PbA � ∠PcA
A : ∠bAP � ∠cAP
S : AP = AP

so �AcP is congruent to �AbP
and in particular bP � cP.

Again,

A : ∠PaB �∠PcB
A : ∠aBP � ∠cBP
S : BP = BP

and so �BaP is congruent to
�BcP and in particular cP � aP.

Now notice that the two right trian-
gles �PaC and �PbC have con-
gruent legs aP and bP and share
the same hypotenuse PC. Accord-
ing to the H·L congruence theorem
for right triangles, they have to be
congruent. Thus, ∠aCP � ∠bCP,
and so CP� is the bisector of ∠C.

Notice that P is the same distance from each of the three feet a, b, and
c. That means that there is a circle centered at P which is tangent to each
of the three sides of the triangle. This is called the inscribed circle, or
incircle of the triangle. It is discussed further in the exercises.
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Ci circumcenter concurrence of perpendicular bisectors
O orthocenter concurrence of altitudes
Ce centroid concurrence of medians
I incenter concurrence of angle bisectors

Proof. Take two of the angle bisectors, say the bisectors of ∠A and ∠B,
and label their intersection as P. We need to show that CP� bisects ∠C.
The key to this proof is that P is actually equidistant from the three sides of
�ABC. From P, drop perpendiculars to each of the three sides of �ABC.
Label the feet of those perpendiculars: a on BC, b on AC, and c on AB.

Then

A : ∠PbA � ∠PcA
A : ∠bAP � ∠cAP
S : AP = AP

so �AcP is congruent to �AbP
and in particular bP � cP.

Again,

A : ∠PaB �∠PcB
A : ∠aBP � ∠cBP
S : BP = BP

and so �BaP is congruent to
�BcP and in particular cP � aP.

Now notice that the two right trian-
gles �PaC and �PbC have con-
gruent legs aP and bP and share
the same hypotenuse PC. Accord-
ing to the H·L congruence theorem
for right triangles, they have to be
congruent. Thus, ∠aCP � ∠bCP,
and so CP� is the bisector of ∠C.

Notice that P is the same distance from each of the three feet a, b, and
c. That means that there is a circle centered at P which is tangent to each
of the three sides of the triangle. This is called the inscribed circle, or
incircle of the triangle. It is discussed further in the exercises.
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Exercises

1. Using only compass and straight edge, construct the circumcenter, or-
thocenter, centroid, and incenter of a given triangle.

2. Using only compass and straight edge, construct the circumcircle and
incircle of a given triangle.

3. Let A, B, and C be three non-colinear points. Show that the circumcir-
cle to �ABC is the only circle passing through all three points A, B,
and C.

4. Let A, B and C be three non-colinear points. Show that the incircle is
the unique circle which is contained in �ABC and tangent to each of
the three sides.

5. Show that the calculus definition and the geometry definition of the
centroid of a triangle are the same.

6. Under what circumstances does the circumcenter of a triangle lie out-
side the triangle? What about the orthocenter?

7. Under what circumstances do the orthocenter and circumcenter coin-
cide? What about the orthocenter and centroid? What about the cir-
cumcenter and centroid?

8. For any triangle �ABC, there is an associated triangle called the orthic
triangle whose three vertices are the feet of the altitudes of �ABC.
Prove that the orthocenter of �ABC is the incenter of its orthic triangle.
[Hint: look for cyclic quadrilaterals and recall that the opposite angles
of a cyclic quadrilateral are supplementary.]

9. Suppose that �ABC and �abc are similar triangles, with a scaling con-
stant k, so that |AB|/|ab| = k. Let P be a center of �ABC (circumcen-
ter, orthocenter, centroid, or incenter) and let p be the corresponding
center of �abc. (1) Show that |AP|/|ap|= k. (2) Let D denote the dis-
tance from P to AB and let d denote the distance from p to ab. Show
that D/d = k.
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The Euler line

I wrapped up the last lesson with illustrations of three triangles and their
centers, but I wonder if you noticed something in those illustrations? In
each one, it certainly appears that the circumcenter, orthocenter, and cen-
troid are colinear. Well, guess what– this is no coincidence.

THM: THE EULER LINE
The circumcenter, orthocenter and centroid of a triangle are colinear,
on a line called the Euler line.

Proof. First, the labels. On �ABC, label

P: the circumcenter
Q: the orthocenter
R: the centroid
M: the midpoint of BC
�P: the perpendicular bisector to BC
�Q: the altitude through A
�R: the line containing the median AM

A dynamic sketch of all these points and lines will definitely give you a
better sense of how they interact. Moving the vertices A, B, and C creates
a rather intricate dance of P, Q and R. One of the most readily apparent
features of this construction is that both �P and �Q are perpendicular to
BC, and that means they cannot intersect unless they coincide. If you do
have a sketch to play with, you will see that they can coincide.
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each one, it certainly appears that the circumcenter, orthocenter, and cen-
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This is a good place to start the investigation.

�P = �Q
⇐⇒ �R intersects BC at a right angle
⇐⇒ �AMB is congruent to �AMC
⇐⇒ AB � AC

So in an isosceles triangle with congruent sides AB and AC, all three of P
and Q and R will lie on the line �P = �Q = �R. It is still possible to line up
P, Q and R along the median AM without having �P, �Q and �R coincide.
That’s because �P intersects AM at M and �Q intersects AM at A, and it
turns out that it is possible to place P at M and Q at A.

M is the circumcenter
⇐⇒ BC is a diameter of the circumcircle
⇐⇒ ∠A is a right angle (Thales’ theorem)
⇐⇒ AB and AC are both altitudes of �ABC
⇐⇒ A is the orthocenter

So if �ABC is a right triangle whose right angle is at vertex A, then again
the median AM contains P, Q, and R.

Aligning an altitude and a perpendicular bisector.

A

B M C

Putting the circumcenter and orthocenter on a median.

A=Q

M=P
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In all other scenarios, P and Q will not be found on the median, and this
is where things get interesting. At the heart of this proof are two triangles,
�AQR and �MPR. We must show they are similar.

S: We saw in the last lesson that the centroid is located two thirds of
the way down the median AM from A, so |AR|= 2|MR|.

A: ∠QAR � ∠PMR, since they are alternate interior angles between
the two parallel lines �P and �Q.

S: Q, the orthocenter of �ABC, is also the circumcenter of another
triangle �abc. This triangle is similar to �ABC, but twice as big.
That means that the distance from Q, the circumcenter of �abc to
side bc is double the distance from P, the circumcenter of �ABC, to
side BC (it was an exercise at the end of the last lesson to show that
distances from centers are scaled proportionally by a similarity– if
you skipped that exercise then, you should do it now, at least for this
one case). In short, |AQ|= 2|MP|.

By S·A·S similarity, then, �AQR ∼�MPR. That means ∠PRM is con-
gruent to ∠QRA. The supplement of ∠PRA is ∠PRM, so ∠PRM must
also be the supplement of ∠QRA. Therefore P, Q, and R are colinear.

c A

B
C

b

a

The second S.
One triangle’s altitudes 
are another triangle’s 
perpendicular bisectors.

2y
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The nine point circle

While only three points are needed to define a unique circle, the next result
lists nine points associated with any triangle that are always on one circle.
Six of the points were identified by Feuerbach (and for this reason the
circle sometimes bears his name). Several more beyond the traditional
nine have been found since. If you are interested in the development of
this theorem, there is a brief history in Geometry Revisited by Coxeter and
Greitzer [1].

THM: THE NINE POINT CIRCLE
For any triangle, the following nine points all lie on the same circle:
(1) the feet of the three altitudes, (2) the midpoints of the three sides,
and (3) the midpoints of the three segments connecting the orthocen-
ter to the each vertex. This circle is the nine point circle associated
with that triangle.

This is a relatively long proof, and I would ask that you make sure you are
aware of two key results that will play pivotal roles along the way.

1. Thales’ Theorem: A triangle �ABC has a right angle at C
if and only if C is on the circle with diameter AB.

2. The diagonals of a parallelogram bisect one another.
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Proof. Given the triangle �A1A2A3 with orthocenter R, label the follow-
ing nine points:

Li, the foot of the altitude which passes through Ai,
Mi, the midpoint of the side that is opposite Ai,
Ni, the midpoint of the segment AiR.

The proof that I give here is based upon a key fact that is not mentioned
in the statement of the theorem– that the segments MiNi are diameters of
the nine point circle. We will take C, the circle with diameter M1N1 and
show that the remaining seven points are all on it. Allow me a moment to
outline the strategy. First, we will show that the four angles

∠M1M2N1 ∠M1N2N1 ∠M1M3N1 ∠M1N3N1

are right angles. By Thales’ Theorem, that will place each of the points
M2, M3, N2, and N3 on C. Second, we will show that M2N2 and M3N3 are
in fact diameters of C. Third and finally, we will show that each ∠MiLiNi
is a right angle, thereby placing the Li on C.

Lines that are parallel.
We need to prove several sets of lines are parallel to one another. The
key in each case is S·A·S triangle similarity, and the argument for that
similarity is the same each time. Let me just show you with the first one,
and then I will leave out the details on all that follow.

L1

L3

L2

M1

M2
M3

N

R

1

A1

A2 A3

N2 N3
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Observe in triangles �A3M1M2 and �A3A2A1 that

|A3M2|= 1
2 |A3A1| ∠A3 = ∠A3 |A3M1|= 1

2 |A3A2|.

By the S·A·S similarity theorem, then, they are similar. In particular, the
corresponding angles ∠M2 and ∠A1 in those triangles are congruent. Ac-
cording to the Alternate Interior Angle Theorem, M1M2 and A1A2 must be
parallel. Let’s employ that same argument many more times.

�A3M1M2 ∼�A3A2A1

=⇒ M1M2 � A1A2

�RN1N2 ∼�RA1A2

=⇒ N1N2 � A1A2

�A1N1M2 ∼�A1RA3

=⇒ N1M2 � A3R

�A2M1N2 ∼�A2A3R
=⇒ M1N2 � A3R

�A2M1M3 ∼�A2A3A1

=⇒ M1M3 � A1A3

�RN1N3 ∼�RA1A3

=⇒ N1N3 � A1A3

�A1M3N1 ∼�A1A2R
=⇒ M3N1 � A2R

�A3M1N3 ∼�A3A2R
=⇒ M1N3 � A2R

�A3M1M2 ∼�A3A2A1

=⇒ M1M2 � A1A2

�RN1N2 ∼�RA1A2

=⇒ N1N2 � A1A2

�A1N1M2 ∼�A1RA3

=⇒ N1M2 � A3R

�A2M1N2 ∼�A2A3R
=⇒ M1N2 � A3R

�A2M1M3 ∼�A2A3A1

=⇒ M1M3 � A1A3

�RN1N3 ∼�RA1A3

=⇒ N1N3 � A1A3

�A1M3N1 ∼�A1A2R
=⇒ M3N1 � A2R

�A3M1N3 ∼�A3A2R
=⇒ M1N3 � A2R
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Angles that are right.

Now A3R is a portion of the alti-
tude perpendicular to A1A2. That
means the first set of parallel lines
are all perpendicular to the sec-
ond set of parallel lines. Therefore
M1M2 and M2N1 are perpendicu-
lar, so ∠M1M2N1 is a right angle;
and N1N2 and N2M1 are perpendic-
ular, so ∠M1N2N1 is a right angle.
By Thales’ Theorem, both M2 and
N2 are on C.

Similarly, segment A2R is perpen-
dicular to A1A3 (an altitude and
a base), so M1M3 and M3N1 are
perpendicular, and so ∠M1M3N1
is a right angle. Likewise, N1N3
and N3M1 are perpendicular, so
∠M1N3N1 is a right angle. Again
Thales’ Theorem tells us that M3
and N3 are on C.

Segments that are diameters.
We have all the M’s and N’s placed on C now, but we aren’t done with
them just yet. Remeber that M1N1 is a diameter of C. From that, it is just
a quick hop to show that L1 is also on C. It would be nice to do the same
for L2 and L3, but in order to do that we will have to know that M2N2 and
M3N3 are also diameters. Based upon our work above,

M1M2 ‖ N1N2 & M1N2 ‖ M2N1

M1

M2 M3

N1

N2
M1

N1

N3

A3 A2

R R

L1

L3

L2

M1

M2 M3

N1

N2
M1

N1

N3
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That makes �M1M2N1N2 a parallelogram (in fact it is a rectangle). Its
two diagonals, M1N1 and M2N2 must bisect each other. In other words,
M2N2 crosses M1N1 at its midpoint. Well, the midpoint of M1N1 is the
center of C. That means that M2N2 passes through the center of C, and
that makes it a diameter. The same argument works for M3N3. The paral-
lelogram is �M1M3N1N3 with bisecting diagonals M1N1 and M3N3.

More angles that are right.
All three of M1N1, M2N2, and M3N3 are diameters of C. All three of
∠M1L1N1, ∠M2L2N2 and M3L3N3 are formed by the intersection of an al-
titude and a base, and so are right angles. Therefore, by Thales’ Theorem,
all three of L1, L2 and L3 are on C.

The center of the nine point circle

The third result of this lesson ties together the previous two.

THM
The center of the nine point circle is on the Euler line.
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Proof. This proof nicely weaves together a lot of what we have developed
over the last two lessons. On �ABC, label the circumcenter P and the
orthocenter Q. Then �PQ� is the Euler line. Label the center of the nine
point circle as O. Our last proof hinged upon a diameter of the nine point
circle. Let’s recycle some of that– if M is the midpoint of BC and N is the
midpoint of QA, then MN is a diameter of the nine point circle. Now this
proof really boils down to a single triangle congruence– we need to show
that �ONQ and �OMP are congruent.

S: ON �OM. The center O of the nine point circle bisects the diameter
MN.

A: ∠M �∠N. These are alternate interior angles between two parallel
lines, the altitude and bisector perpendicular to BC.

S: NQ � MP. In the Euler line proof we saw that |AQ|= 2|MP|. Well,
|NQ|= 1

2 |AQ|, so |NQ|= |MP|.

By S·A·S, the triangles �ONQ and �OMP are congruent, and in partic-
ular ∠QON � ∠POM. Since ∠NOP is supplementary to ∠POM, it must
also be supplementary to ∠QON. Therefore Q, O, and P are colinear, and
so O is on the Euler line.

M
B C
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Q

N

P
O
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Exercises

1. Consider a triangle �ABC. Let D and E be the feet of the altitudes on
the sides AC and BC. Prove that there is a circle which passes through
the points A, B, D, and E .

2. Under what conditions does the incenter lie on the Euler line?

3. Consider an isosceles triangle �ABC with AB � AC. Let D be a point
on the arc between B and C of the circumscribing circle. Show that DA
bisects the angle ∠BDC.

4. Let P be a point on the circumcircle of triangle �ABC. Let L be the foot
of the perpendicular from P to AB, M be the foot of the perpendicular
from P to AC, and N be the foot of the perpendicular from P to BC.
Show that L, M, and N are collinear. This line is called a Simson line.
Hint: look for cyclic quadrilaterals and use the fact that opposite angles
in a cyclic quadrilateral are congruent.
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Excenters and excircles

In the first lesson on concurrence, we saw that the bisectors of the inte-
rior angles of a triangle concur at the incenter. If you did the exercise in
the last lesson dealing with the orthic triangle then you may have noticed
something else– that the sides of the original triangle are the bisectors of
the exterior angles of the orthic triangle. I want to lead off this last les-
son on concurrence with another result that connects interior and exterior
angle bisectors.

THM: EXCENTERS
The exterior angle bisectors at two vertices of a triangle and the inte-
rior angle bisector at the third vertex of that triangle intersect at one
point.
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FCFC

FBFB

FA

PP

A

Proof. Let �B and �C be the lines bisecting the exterior angles at vertices
B and C of �ABC. They must intersect. Label the point of intersection
as P. Now we need to show that the interior angle bisector at A must also
cross through P, but we are going to have to label a few more points to get
there. Let FA, FB, and FC be the feet of the perpendiculars through P to
each of the sides BC, AC, and AB, respectively. Then, by A·A·S,

�PFAC ��PFBC �PFAB ��PFCB.

Therefore PFA � PFB � PFC. Here you may notice a parallel with the
previous discussion of the incenter– P, like the incenter, is equidistant
from the lines containing the three sides of the triangle. By H·L right
triangle congruence, �PFCA � �PFBA. In particular, ∠PAFC � ∠PAFB
and so P is on the bisector of angle A.

There are three such points of concurrence. They are called the excen-
ters of the triangle. Since each is equidistant from the three lines contain-
ing the sides of the triangle, each is the center of a circle tangent to those
three lines. Those circles are called the excircles of the triangle.
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Ceva’s Theorem

By now, you should have seen enough concurrence theorems and enough
of their proofs to have some sense of how they work. Most of them ulti-
mately turn on a few hidden triangles that are congruent or similar. Take,
for example, the concurrence of the medians. The proof of that concur-
rence required a 2 : 1 ratio of triangles. What about other triples of seg-
ments that connect the vertices of a triangle to their respective opposite
sides? What we need is a computation that will discriminate between
triples of segments that do concur and triples of segments that do not.

Let’s experiment. Here is a triangle �ABC with sides of length four,
five, and six.

|AB|= 4 |BC|= 5 |AC|= 6.

As an easy initial case, let’s say that one of the three segments, say Cc,
is a median (in other words, that c is the midpoint of AB). Now work
backwards. Say that the triple of segments in question are concurrent.
That concurrence could happen anywhere along Cc, so I have chosen five
points Pi to serve as our sample points of concurrence. Once those points
of concurrence have been chosen, that determines the other two segments–
one passes through A and Pi, the other through B and Pi. I am interested in
where those segments cut the sides of �ABC. Label:

bi: the intersection of BPi and AC
ai: the intersection of APi and BC
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Here are the measurements (two decimal place accuracy):

i : 1 2 3 4 5

|Abi| 1.71 3.00 4.00 4.80 5.45
|Cbi| 4.29 3.00 2.00 1.20 0.55

|Bai| 1.43 2.50 3.33 4.00 4.55
|Cai| 3.57 2.50 1.67 1.00 0.45

Out of all of that it may be difficult to see a useful pattern, but compare
the ratios of the sides |Abi|/|Cbi| and |Bai|/|Cai| (after all, similarity is all
about ratios).

i : 1 2 3 4 5

|Abi|/|Cbi| 0.40 1.00 2.00 4.00 10.00
|Bai|/|Cai| 0.40 1.00 2.00 4.00 10.00

They are the same! Let’s not jump the gun though– what if Cc isn’t a
median? For instance, let’s reposition c so that it is a distance of one from
A and three from B.
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i : 1 2 3 4 5

|Abi| 1.26 2.40 3.43 4.36 5.22
|Cbi| 4.74 3.60 2.57 1.64 0.78

|Bai| 2.22 3.33 4.00 4.45 4.76
|Cai| 2.78 1.67 1.00 0.55 0.24

|Abi|/|Cbi| 0.27 0.67 1.33 2.67 6.67
|Bai|/|Cai| 0.80 2.00 4.00 8.02 20.12

The ratios are not the same. Look carefully, though– the ratios |Bai|/|Cai|
are always three times the corresponding ratios |Abi|/|Cbi| (other than a
bit of round-off error). Interestingly, that is the same as the ratio |Bc|/|Ac|.
Let’s do one more example, with |Ac|= 1.5 and |Bc|= 2.5.

i : 1 2 3 4 5

|Abi| 1.45 2.67 3.69 4.57 5.33
|Cbi| 4.55 3.33 2.31 1.43 0.67

|Bai| 1.74 2.86 3.64 4.21 4.65
|Cai| 3.26 2.14 1.36 0.79 0.35

|Abi|/|Cbi| 0.32 0.80 1.60 3.20 8.00
|Bai|/|Cai| 0.53 1.33 2.66 5.34 13.33
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|Abi| 1.45 2.67 3.69 4.57 5.33
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C ab

Once again, the ratios |Abi|/|Cbi| all hover about 1.67, right at the ratio
|Bc|/|Ac|. What we have stumbled across is called Ceva’s Theorem, but it
is typically given a bit more symmetrical presentation.

CEVA’S THEOREM
Three segments Aa, Bb, and Cc, that connect the vertices of �ABC
to their respective opposite sides, are concurrent if and only if

|Ab|
|bC|

· |Ca|
|aB|

· |Bc|
|cA|

= 1.

Proof. =⇒ Similar triangles anchor this proof. To get to those similar
triangles, though, we need to extend the illustration a bit. Assume that Aa,
Bb, and Cc concur at a point P. Draw out the line which passes through
C and is parallel to AB; then extend Aa and Bb so that they intersect this
line. Mark those intersection points as a� and b� respectively. We need to
look at four pairs of similar triangles.

Once again, the ratios |Abi|/|Cbi| all hover about 1.67, right at the ratio
|Bc|/|Ac|. What we have stumbled across is called Ceva’s Theorem, but it
is typically given a bit more symmetrical presentation.

CEVA’S THEOREM
Three segments Aa, Bb, and Cc, that connect the vertices of �ABC
to their respective opposite sides, are concurrent if and only if

|Ab|
|bC|

· |Ca|
|aB|

· |Bc|
|cA|

= 1.

Proof. =⇒ Similar triangles anchor this proof. To get to those similar
triangles, though, we need to extend the illustration a bit. Assume that Aa,
Bb, and Cc concur at a point P. Draw out the line which passes through
C and is parallel to AB; then extend Aa and Bb so that they intersect this
line. Mark those intersection points as a� and b� respectively. We need to
look at four pairs of similar triangles.
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A

b a

c B

C

P

ab

3.�BcP ∼�b�CP

|CP|
|cP| =

|b�C|
|Bc|

4.�ABb ∼�Cb�b

|b�C|
|AB| =

|bC|
|Ab|

|b�C|= |AB| · |bC|
|Ab|

1.�AcP ∼�a�CP

|CP|
|cP| =

|a�C|
|Ac|

2.�ABa ∼�a�Ca

|a�C|
|AB| =

|aC|
|aB|

|a�C|= |AB| · |aC|
|aB|

They are:

Plug the second equation into the first

|CP|
|cP|

=
|AB| · |aC|
|aB| · |Ac|

and the fourth into the third
|CP|
|cP| =

|AB| · |bC|
|Ab| · |BC|

Set these two equations equal and simplify

|AB| · |aC|
|aB| · |Ac|

=
|AB| · |bC|
|Ab| · |BC|

=⇒ |Ab|
|bC|

· |Ca|
|aB|

· |Bc|
|cA|

= 1.
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A

b a

c B

C ab

P

P

Q

Q

4.�ABb ∼�Cb�b

|b�C|
|AB| =

|bC|
|Ab|

|b�C|= |AB| · |bC|
|Ab|

1.�AcP ∼�a�CP

|CP|
|cP| =

|a�C|
|Ac|

2.�ABa ∼�a�Ca

|a�C|
|AB| =

|aC|
|aB|

|a�C|= |AB| · |aC|
|aB|

3.�BcQ ∼�b�CQ

|CQ|
|cQ| =

|b�C|
|Bc|

⇐= A similar tactic works for the other direction. For this part, we are
going to assume the equation

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| = 1,

and show that Aa, Bb, and Cc are concurrent. Label

P: the intersection of Aa and Cc
Q: the intersection of Bb and Cc.

In order for all three segments to concur, P and Q will actually have to
be the same point. We can show that they are by computing the ratios
|AP|/|aP| and |AQ|/|aQ| and seeing that they are equal. That will mean
that P and Q have to be the same distance down the segment Aa from A,
and thus guarantee that they are the same. Again with the similar triangles:
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P

0
–1

–2
–3

–4
–5

1
2

3
4

5
+

Signed distance from P. The sign is determined by a choice of direction.

Plug the second equation into the first

|CP|
|cP| =

|aC| · |AB|
|aB| · |Ac|

and the fourth equation into the third

|CQ|
|cQ|

=
|AB| · |bC|
|Ab| · |Bc|

Now divide and simplify

|CP|
|cP|

/
|CQ|
|cQ|

=
|aC| · |AB| · |Ab| · |Bc|
|aB| · |Ac| · |AB| · |bC|

=
|Ab|
|bC|

· |Ca|
|aB|

· |Bc|
|cA|

= 1.

Therefore |AP|/|aP|= |AQ|/|aQ|, so P = Q.

Ceva’s Theorem is great for concurrences inside the triangle, but we have
seen that concurrences can happen outside the triangle as well (such as
the orthocenter of an obtuse triangle). Will this calculation still tell us
about those concurrences? Well, not quite. If the three lines concur, then
the calculation will still be one, but now the calculation can mislead– it is
possible to calculate one when the lines do not concur. If you look back
at the proof, you can see the problem. If P and Q are on the opposite
side of a, then the ratios |AP|/|aP| and |AQ|/|aQ| could be the same even
though P �= Q. There is a way to repair this, though. The key is “signed
distance”. We assign to each of the three lines containing a side of the
triangle a direction (saying this way is positive, this way is negative). For
two points A and B on one of those lines, the signed distance is defined as

[AB] =

{
|AB| if the ray AB� points in the positive direction
−|AB| if the ray AB� points in the negative direction.
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This simple modification is all that is needed to extend Ceva’s Theorem

CEVA’S THEOREM (EXTENDED VERSION)
Three lines Aa, Bb, and Cc, that connect the vertices of �ABC to the
lines containing their respective opposite sides, are concurrent if and
only if

[Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

= 1.

Menelaus’s Theorem

Ceva’s Theorem is one of a pair– the other half is its projective dual,
Menelaus’s Theorem. We are not going to look at projective geometry
in this book, but one of its key underlying concepts is that at the level
of incidence, there is a duality between points and lines. For some very
fundamental results, this duality allows the roles of the two to be inter-
changed.

MENELAUS’S THEOREM
For a triangle �ABC, and points a on �BC�, b on �AC�, and c on
�AB�, a, b, and c are colinear if and only if

[Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

=−1.
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B C

b

a

c

P

A

B C

b

a

c

P

A

Proof. =⇒ Suppose that a, b, and c all lie along a line �. The requirement
that a, b, and c all be distinct prohibits any of the three intersections from
occurring at a vertex. According to Pasch’s Lemma, then, � will intersect
two sides of the triangle, or it will miss all three sides entirely. Either way,
it has to miss one of the sides. Let’s say that missed side is BC. There are
two ways this can happen:

1. � intersects line BC on the opposite side of B from C
2. � intersects line BC on the opposite side of C from B

The two scenarios will play out very similarly, so let’s just look at the
second one. Draw the line through C parallel to �. Label its intersection
with AB as P. That sets up some useful parallel projections.

From AB to AC:

A �→ A c �→ b P �→C.

Comparing ratios,

|cP|
|bC|

=
|Ac|
|Ab|

and so

|cP|= |Ac|
|Ab|

· |bC|.

From AB to BC:

B �→ B c �→ a P �→C.

Comparing ratios,

|cP|
|aC|

=
|Bc|
|Ba|

and so

|cP|= |Bc|
|Ba|

· |aC|.
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B C

b
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c

A

B C

b

a

c
A

++

+ +

++

Just divide the second |cP| by the first |cP| to get

1 =
|cP|
|cP| =

|Ab| · |aC| · |Bc|
|Ac| · |bC| · |Ba| =

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| .

That’s close, but we are after an equation that calls for signed distance. So
orient the three lines of the triangle so that AC�, CB�, and BA� all point
in the positive direction (any other orientation will flip pairs of signs that
will cancel each other out). With this orientation, if � intersects two sides
of the triangle, then all the signed distances involved are positive except
[Ca] = −|Ca|. If � misses all three sides of the triangle, then three of the
signed distances are positive, but three are not:

[Ab] =−|Ab| [Ca] =−|Ca| [cA] =−|cA|.

Either way, an odd number of signs are changed, so

[Ab]
[bC]

[Ca]
[aB]

[Bc]
[cA]

=−1.

⇐= Let’s turn the argument around to prove the converse. Suppose that

[Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

=−1.
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B C

b

c

P

A

B C a

c

Q

A

Draw the line from C that is paral-
lel to bc and label its intersection
with AB as P. There is a parallel
projection from AB to AC so that

A �→ A c �→ b P �→C

and therefore

|cP|
|Ac|

=
|Cb|
|bA|

.

Draw the line from C that is paral-
lel to ac, and label its intersection
with AB as Q. There is a parallel
projection from AB to BC so that

B �→ B c �→ a Q �→C

and therefore

|cQ|
|cB|

=
|Ca|
|Ba|

Now solve those equations for |cP| and |cQ|, and divide to get

[cQ]

[cP]
=

[bA] · [Ca] · [cB]
[Cb] · [Ac] · [Ba]

=− [Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

=−(−1) = 1.

Both P and Q are the same distance from c along cC. That means they
must be the same.
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The Nagel point

Back to excircles for one more concurrence, and this time we will use
Ceva’s Theorem to prove it.

THE NAGEL POINT
If CA, CB, and CC are the three excircles of a triangle �ABC so that
CA is in the interior of ∠A, CB is in the interior of ∠B, and CC is in
the interior of ∠C; and if FA is the intersection of CA with BC, FB is
the intersection of CB with AC, and FC is the intersection of CC with
AB; then the three segments AFA, BFB, and CFC are concurrent. This
point of concurrence is called the Nagel point.

Proof. This is actually pretty easy thanks to Ceva’s Theorem. The key
is similar triangles. Label PA, the center of excircle CA, PB, the center of
excircle CB, and PC, the center of excircles, CC. By A·A triangle similarity,

�PAFAC ∼�PBFBC
�PBFBA ∼�PCFCA
�PCFCB ∼�PAFAB.
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FC

PC

B

A

C FA

PA

FB

PB

Ceva’s Theorem promises concurrence if we can show that

|AFC|
|FCB| ·

|BFA|
|FAC| ·

|CFB|
|FBA| = 1.

Those triangle similarities give some useful ratios to that end:

|AFC|
|AFB|

=
|PCFC|
|PBFB|

|BFA|
|BFC|

=
|PAFA|
|PCFC|

|CFB|
|CFA|

=
|PBFB|
|PAFA|

.

So

|AFC|
|FCB|

|BFA|
|FAC|

|CFB|
|FBA|

=
|AFC|
|AFB|

|BFA|
|BFC|

|CFB|
|CFA|

=
|PCFC|
|PBFB|

|PAFA|
|PCFC|

|PBFB|
|PAFA|

= 1.

By Ceva’s Theorem, the three segments are concurrent.
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Exercises

1. Use Ceva’s Theorem to prove that the medians of a triangle are con-
current.

2. Use Ceva’s Theorem to prove that the orthocenters of a triangle are
concurrent.

3. Give a compass and straight-edge construction of the three excircles
and the nine-point circle of a given triangle. If your construction is
accurate enough, you should notice that the excircles are all tangent to
the nine-point circle (a result commonly called Feuerbach’s Theorem).





22 TRILINEAR COORDINATES
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This is my last lesson under the heading of “Euclidean geometry”. If you
look back to the start, we have built a fairly impressive structure from
modest beginnings. Throughout it all, I have aspired to a synthetic ap-
proach to the subject, which is to say that I have avoided attaching a coor-
dinate system to the plane, with all the powerful analytic techniques that
come by doing so. I feel that it is in the classical spirit of the subject to
try to maintain this synthetic stance for as long as possible. But as we
now move into the more modern development of the subject, it is time to
shift positions. As a result, much of the rest of this work will take on a
decidedly different flavor. With this lesson, I hope to capture the inflection
point of that shift in stance, from the synthetic to the analytic.

Trilinear coordinates

In this lesson, we will look at trilinear coordinates, a coordinate system
that is closely tied to the concurrence results of the last few lessons. Es-
sentially, trilinear coordinates are defined by measuring signed distances
from the sides of a given triangle.

DEF: THE SIGNED DISTANCE TO A SIDE OF A TRIANGLE
Given a side s of a triangle �ABC and a point P, let |P,s| denote the
(minimum) distance from P to the line containing s. Then define the
signed distance from P to s as

[P,s] =

{
|P,s| if P is on the same side of s as the triangle

−|P,s| if P is on the opposite side of s from the triangle

[P, BC] = PX
[Q, BC] = − QY

P

Q

A

B

Y

C

X
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From these signed distances, every triangle creates a kind of coordinate
system in which a point P in the plane is assigned three coordinates

α = [P,BC] β = [P,AC] γ = [P,AB].

This information is consolidated into the notation P = [α : β : γ ]. There
is an important thing to notice about this system of coordinates: while ev-
ery point corresponds to a triple of real numbers, not every triple of real
numbers corresponds to a point. For instance, when �ABC is equilateral
with sides of length one, there is no point with coordinates [2 : 2 : 2]. For-
tunately, there is a way around this limitation, via an equivalence relation.

AN EQUIVALENCE RELATION ON COORDINATES
Two sets of trilinear coordinates [a : b : c] and [a� : b� : c�] are equiva-
lent, written [a : b : c]∼ [a� : b� : c�], if there is a real number k �= 0 so
that

a� = ka b� = kb c� = kc.

Consider again that equilateral triangle
�ABC with sides of length one. Okay,
there is no point which is a distance of
two from each side. But [2 : 2 : 2] is
equivalent to [

√
3/6 :

√
3/6 :

√
3/6], and

there is a point which is a distance of√
3/6 from each side– the center of the

triangle. That brings us to the definition
of trilinear coordinates.

DEF: TRILINEAR COORDINATES
The trilinear coordinates of a point P with respect to a triangle �ABC
is the equivalence class of triples [kα : kβ : kγ ] (with k �= 0) where

α = [P,BC] β = [P,AC] γ = [P,AB].

The coordinates corresponding to the actual signed distances, when k = 1,
are called the exact trilinear coordinates of P.

1

1/2

√3/2

√3/6
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Because each coordinate is actually an equivalence class, there is an im-
mediately useful relationship between trilinear coordinates in similar tri-
angles. Suppose that �ABC and �A�B�C� are similar, with a scaling con-
stant k so that

|A�B�|= k|AB| |B�C�|= k|BC| |C�A�|= k|CA|.

Suppose that P and P� are points that are positioned similarly with respect
to those triangles (so that |A�P�| = k|AP|, |B�P�| = k|BP|, and |C�P�| =
k|CP|). Then the coordinates of P as determined by �ABC will be equiv-
alent to the coordinates of P� as determined by �A�B�C�.

With that in mind, let’s get back to the question of whether every equiva-
lence class of triples of real numbers corresponds to a point. Straight out
of the gate, the answer is no– the coordinates [0 : 0 : 0] do not correspond
to any point. As it turns out, that is the exception.

THM: THE RANGE OF THE TRILINEARS
Given a triangle �ABC and real numbers x, y, and z, not all zero,
there is a point whose trilinear coordinates with respect to �ABC are
[x : y : z].

Proof. There are essentially two cases: one where all three of x, y, and z
have the same sign, and one where they do not. I will look at the first case
in detail. The second differs at just one crucial step, so I will leave the
details of that case to you. In both cases, my approach is a constructive
one, but it does take a rather indirect path. Instead of trying to find a point
inside �ABC with the correct coordinates, I will start with a point P, and
then build a new triangle �abc around it.

Because each coordinate is actually an equivalence class, there is an im-
mediately useful relationship between trilinear coordinates in similar tri-
angles. Suppose that �ABC and �A�B�C� are similar, with a scaling con-
stant k so that

|A�B�|= k|AB| |B�C�|= k|BC| |C�A�|= k|CA|.

Suppose that P and P� are points that are positioned similarly with respect
to those triangles (so that |A�P�| = k|AP|, |B�P�| = k|BP|, and |C�P�| =
k|CP|). Then the coordinates of P as determined by �ABC will be equiv-
alent to the coordinates of P� as determined by �A�B�C�.

With that in mind, let’s get back to the question of whether every equiva-
lence class of triples of real numbers corresponds to a point. Straight out
of the gate, the answer is no– the coordinates [0 : 0 : 0] do not correspond
to any point. As it turns out, that is the exception.

THM: THE RANGE OF THE TRILINEARS
Given a triangle �ABC and real numbers x, y, and z, not all zero,
there is a point whose trilinear coordinates with respect to �ABC are
[x : y : z].

Proof. There are essentially two cases: one where all three of x, y, and z
have the same sign, and one where they do not. I will look at the first case
in detail. The second differs at just one crucial step, so I will leave the
details of that case to you. In both cases, my approach is a constructive
one, but it does take a rather indirect path. Instead of trying to find a point
inside �ABC with the correct coordinates, I will start with a point P, and
then build a new triangle �abc around it.

A

B C CB

A

P
P

CB

A

P

Exact trilinear coordinates of similarly positioned points in similar triangles.

[2:1:2] [1:0.5:1][1.5:0.75:1.5]
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That new triangle will

1. be similar to the original �ABC, and

2. be positioned so that the trilinear coordinates of P with respect to
�abc are [x : y : z].

Then the similarly positioned point in �ABC will have to have those same
coordinates relative to �ABC.

Case 1. [+ : + : +]∼ [− : − : −]
Consider the situation where all three numbers x, y, and z are greater than
or equal to zero (of course, they cannot all be zero, since a point cannot
be on all three sides of a triangle). This also handles the case where all
three coordinates are negative, since [x : y : z] ∼ [−x : −y : −z]. Mark a
point Fx which is a distance x away from P. On opposite sides of the ray
PFx �, draw out two more rays to form angles measuring π − (∠B) and
π− (∠C). On the first ray, mark the point Fz which is a distance z from P.
On the second, mark the point Fy which is a distance y from P. Let

�x be the line through Fx that is perpendicular to PFx,
�y be the line through Fy that is perpendicular to PFy,
�z be the line through Fz that is perpendicular to PFz.

Label their points of intersection as

a = �y ∩ �z b = �x ∩ �z c = �x ∩ �y.

x

y
z

x

yz

A

CB

a

b c
Fx

Fy

Fz
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Clearly, the trilinear coordinates of P relative to �abc are [x : y : z]. To
see that �abc and �ABC are similar, let’s compare their interior angles.
The quadrilateral PFxbFz has right angles at vertex Fx and Fz and an angle
measuring π− (∠B) at vertex P. Since the angle sum of a quadrilateral is
2π , that means (∠b) = (∠B), so they are congruent. By a similar argu-
ment, ∠c and ∠C must be congruent. By A·A similarity, then, �ABC and
�abc are similar.

Case 2. [+ : − : −]∼ [− : + : +]
Other than some letter shuffling, this also handles scenarios of the form
[− : + : −], [+ : − : +], [− : − : +], and [+ : + : −]. Use the same con-
struction as in the previous case, but with one important change: in the
previous construction, we needed

(∠FzPFx) = π− (∠B) & (∠FyPFx) = π− (∠C).

This time we are going to want

(∠FzPFx) = (∠B) & (∠FyPFx) = (∠C).

The construction still forms a triangle �abc that is similar to �ABC, but
now P lies outside of it. Depending upon the location of a relative to
the line �x, the signed distances from P to BC, AC, and AB, respectively
are either x, y, and z, or −x, −y and −z. Either way, since [x : y : z] is
equivalent to [−x : −y : −z], P has the correct coordinates.

A

CB

a

b c
Fx

Fz

*

*
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x

y
z

a

b c

x

yz

a

bc

Case 2. 
(l) exact trilinears 
with form [–:+:+]
(r) exact trilinears 
with form [+:–:–]

Trilinear coordinates of a few points, normalized so that the sum of the magni-
tudes of the coordinates is 100, and rounded to the nearest integer.

[36 : 36 : –28]

[28 : 48 : –24]

[12 : 70 : –18]

[–13 : 81 : –5]

[51 : 23 : –25]

[45 : 35 : –19]

[34 : 59 : –8]

[0 : 84 : 16]

[74 : 14 : –12]
A

B C

[62 : 28 : 10]

[22 : 39 : 39]

[–16 : 36 : 48]

[81 : –16 : 2]

[65 : –13 : 23]

[40 : –8 : 53]

[0 : 0 : 100]
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Trilinears of the classical centers

The classical triangle centers that we have studied in the last few lessons
tend to have elegant trilinear coordinates. The rest of this lesson is ded-
icated to finding a few of them. The easiest of these, of course, is the
incenter. Since it is equidistant from each of the three sides of the trian-
gle, its trilinear coordinates are [1 : 1 : 1]. The others will require a little
bit more work. These formulas are valid for all triangles, but if �ABC
is obtuse, then one of its angles is obtuse, and thus far we have only re-
ally discussed the trigonometry of acute angles. For that reason, in these
proofs I will restrict my attention to acute triangles. Of course, you have
surely seen the unit circle extension of the trigonometric functions to all
angle measures, so I encourage you to complete the proof by considering
triangles that are not acute.

TRILINEARS OF THE CIRCUMCENTER
The trilinear coordinates of the circumcenter of �ABC are

[cos A : cosB : cosC].

Proof. First the labels. Label the circumcenter P. Recall that the circum-
center is the intersection of the perpendicular bisectors of the three sides
of the triangle. Let’s take just one of those: the perpendicular bisector to
BC. It intersects BC at its midpoint– call that point X . Now we can cal-
culate the first exact trilinear coordinate in just a few steps, which I will
justify below.

[P,BC] =
1�
|PX | =

2�
|PB|cos(∠BPX) =

3�
|PB|cos(∠BAC).

1. The minimum distance from P to BC is
along the perpendicular– so |P,BC| =
|P,X |. We have assumed that �ABC is
acute. That places P inside the trian-
gle, on the same side of BC as A, which
means that the signed distance [P,BC]
is positive. Therefore

[P,BC] = |P,BC|= |PX |.

A

B C

P

X

1
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2. Look at ∠BPX in the triangle �BPX :

cos(∠BPX) =
|PX |
|PB|

=⇒ |PX |= |PB|cos(∠BPX).

3. Segment PX splits �BPC into two pieces,
�BPX and �CPX , which are congru-
ent by S·A·S. Thus PX evenly divides
the angle ∠BPC into two congruent pieces,
and so

(∠BPX) = 1
2(∠BPC).

Recall that the circumcenter is the cen-
ter of the circle which passes through
all three vertices A, B, and C. With
respect to that circle, ∠BAC is an in-
scribed angle, and ∠BPC is the corre-
sponding central angle. According to
the Inscribed Angle Theorem,

(∠BAC) = 1
2(∠BPC).

That means that (∠BPX) = (∠BAC).
With that same argument we can find the signed distances to the other two
sides as well.

[P,AC] = |PC|cos(∠ABC) & [P,AB] = |PA|cos(∠BCA)

Gather that information together to get the exact trilinear coordinates of
the circumcenter

P = [|PB|cos(∠A) : |PC|cos(∠B) : |PA|cos(∠C)].

Finally, observe that PA, PB, and PC are all the same length– they are radii
of the circumcircle. Therefore, we can factor out that constant to get an
equivalent representation

P = [cos(∠A) : cos(∠B) : cos(∠C)].

B

P

X

2

A3

B C

P

X
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TRILINEARS OF THE ORTHOCENTER
The trilinear coordinates of the orthocenter of �ABC are

[cosBcosC : cosAcosC : cosAcosB].

Proof. Label the orthocenter Q. Recall that it is the intersection of the
three altitudes of the triangle. Label the feet of those altitudes

FA: the foot of the altitude through A,
FB: the foot of the altitude through B, and
FC: the foot of the altitude through C.

Now think back to the way we proved that the altitudes concur in lesson
19– it was by showing that they are the perpendicular bisectors of a larger
triangle �abc, where

bc passed through A and was parallel to BC,
ac passed through B and was parallel to AC, and
ab passed through C and was parallel to AB.

We are going to need that triangle again. Here is the essential calculation,
with commentary explaining the steps below.

[Q,BC]
1�
= |QFA|

2�
= |QB|cos(∠FAQB)

3�
= |QB|cos(∠C)

=
4�
|Qa|cos(∠aQB)cos(∠C) =

5�
|Qa|cos(∠B)cos(∠C)

TRILINEARS OF THE ORTHOCENTER
The trilinear coordinates of the orthocenter of �ABC are

[cosBcosC : cosAcosC : cosAcosB].

Proof. Label the orthocenter Q. Recall that it is the intersection of the
three altitudes of the triangle. Label the feet of those altitudes

FA: the foot of the altitude through A,
FB: the foot of the altitude through B, and
FC: the foot of the altitude through C.

Now think back to the way we proved that the altitudes concur in lesson
19– it was by showing that they are the perpendicular bisectors of a larger
triangle �abc, where

bc passed through A and was parallel to BC,
ac passed through B and was parallel to AC, and
ab passed through C and was parallel to AB.

We are going to need that triangle again. Here is the essential calculation,
with commentary explaining the steps below.

[Q,BC]
1�
= |QFA|

2�
= |QB|cos(∠FAQB)

3�
= |QB|cos(∠C)

=
4�
|Qa|cos(∠aQB)cos(∠C) =

5�
|Qa|cos(∠B)cos(∠C)

A

Q

a

c b

B CFA

FB
FC
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1. The distance from Q to BC is measured
along the perpendicular, so |Q,BC| =
|QFA|, but since we assumed our trian-
gle is acute, Q will be inside �ABC and
that means the signed distance [Q,BC]
is positive. So

[Q,BC] = |Q,BC|= |QFA|.

2. Look at the right triangle �FAQB. In
it,

cos(∠FAQB) =
|QFA|
|QB|

=⇒ |QFA|= |QB|cos(∠FAQB).

3. By A·A, �FAQB∼�FBCB (they share
the angle at B and both have a right an-
gle). Therefore

∠FAQB � ∠FBCB.

4. Look at the right triangle �aQB. In it,

cos(∠aQB) =
|QB|
|Qa|

=⇒ |QB|= |Qa|cos(∠aQB).

5. The orthocenter Q of �ABC is actually
the circumcenter of the larger triangle
�abc. The angle ∠abc is an inscribed
angle in the circumcircle whose corre-
sponding central angle is ∠aQc. By the
Inscribed Angle Theorem, then,

(∠abc) = 1
2(∠aQc).

The segment QB bisects ∠aQc though,
so

(∠aQB) = 1
2(∠aQc).

That means ∠aQB � ∠abc, which is,
in turn congruent to ∠B in the original
triangle.

Q

B

a

c b

5

Q

B

a4

Q

B CFA

FB

2, 3

Q

B

A

CFA

1
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Through similar calculations,

[Q,AC] = |Qb|cos(∠A)cos(∠C)

[Q,AB] = |Qc|cos(∠A)cos(∠B).

That gives the exact trilinear coordinates for the orthocenter as

Q= [|Qa|cos(∠B)cos(∠C) : |Qb|cos(∠A)cos(∠C) : |Qc|cos(∠A)cos(∠B)]

Of course Qa, Qb and Qc are all the same length, though, since they are
radii of the circumcircle of �abc. Factoring out that constant gives an
equivalent set of coordinates

Q = [cos(∠B)cos(∠C) : cos(∠A)cos(∠C) : cos(∠A)cos(∠B)].

TRILINEARS OF THE CENTROID
The trilinear coordinates of the centroid of �ABC are

[|AB| · |AC| : |BA| · |BC| : |CA| · |CB|].

Proof. First the labels:

F: the foot of the altitude through A;
M: the midpoint of the side BC;
R: the centroid of �ABC (the intersection of the medians);
F �: the foot of the perpendicular through R to the side BC.

In addition, just for convenience write a = |BC|, b = |AC|, and c = |AB|.

A

B CF M

R

F
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The last few results relied upon some essential property of the center in
question– for the circumcenter it was the fact that it is equidistant from the
three vertices; for the orthocenter, that it is the circumcenter of a larger tri-
angle. This argument also draws upon such a property– that the centroid
is located 2/3 of the way down a median from the vertex. Let’s look at
[R,BC] which is one of the signed distances needed for the trilinear coor-
dinates.

[R,BC] =
1�
|RF �| =

2�
1
3 |AF| =

3�
1
3csin(∠B) = 1

3bsin(∠C)

1. Unlike the circumcenter and orthocen-
ter, the median is always in the interior
of the triangle, even when the triangle
is right or obtuse. Therefore the signed
distance [R,BC] is the positive distance
|R,BC|. Since RF � is the perpendicu-
lar to BC that passes through R, |RF�|
measures that distance.

2. This is the key step. Between the me-
dian AM and the parallel lines AF and
RF � there are two triangles, �AFM and
�RF �M. These triangles are similar by
A·A (they share the angle at M and the
right angles at F and F� are congru-
ent). Furthermore, because R is located
2/3 of the way down the median from
the vertex, |RM|= 1

3 |AM|. The legs of
those triangles must be in the same ra-
tio, so |RF �|= 1

3 |AF|.
3. The goal is to relate |AF| to the sides

and angles of the original triangle, and
we can now easily do that in two ways.
In the right triangle �AFB,

sin(∠B)=
|AF|

c
=⇒ |AF|= csin(∠B),

and in the right triangle �AFC,

sin(∠C)=
|AF|

b
=⇒ |AF|= bsin(∠C).

A

B CF M

R

F

2

A

B C

R

F

1

A

B

bc

CF

3
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Similarly, we can calculate the distances to the other two sides as

[R,AC] = 1
3asin(∠C) = 1

3csin(∠A)
[R,AB] = 1

3bsin(∠A) = 1
3 asin(∠B)

and so the exact trilinear coordinates of the centroid can be written as

R =
[ 1

3csin(∠B) : 1
3asin(∠C) : 1

3bsin(∠A)
]
.

There is still a little more work to get to the more symmetric form pre-
sented in the theorem. Note from the calculation in step (3) above, that,

csin(∠B) = bsin(∠C) =⇒ sin(∠B)
b

=
sin(∠C)

c

Likewise, the ratio sin(∠A)/a also has that same value (this is the “law of
sines”). Therefore we can multiply by the value 3b/sin(∠B) in the first
coordinate, 3c/sin(∠C) in the second coordinate, and 3a/sin(∠A) in the
third coordinate, and since they are all equal, the result is an equivalent set
of trilinear coordinates for the centroid R = [bc : ca : ab].

To close out this lesson, and as well this section of the book, I want
to make passing reference to another triangular coordinate system called
barycentric coordinates. The trilinear coordinates that we have just stud-
ied put the incenter at the center of the triangle in the sense that it is the one
point where are three coordinates are equal. With barycentric coordinates,
that centermost point is the centroid. This is useful because if the triangle
is a flat plate with a uniform density, then the centroid marks the location
of the center of mass (the balance point). The barycentric coordinates of
another point, then, give information about how to redistribute the mass
of the plate so that that point is the balance point. Barycentric coordinates
are usually presented in conjunction with the trilinear coordinates as the
two are closely related. I am not going to do that though because I think
we need to talk about area first, and area is still a ways away.
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Exercises

1. (On the existence of similarly-positioned points) Suppose that �ABC
and �A�B�C� are similar, with scaling constant k, so that

|AB|= k|AB| |B�C�|= k|BC| |C�A�|= k|CA|.

Given any point P, show that there exists a unique point P so that

[A�P�] = k[AP] [B�P�] = k[BP] [C�P�] = k[CP].

2. (On the uniqueness of trilinear coordinate representations) For a given
triangle �ABC, is it possible for two distinct points P and Q to have
the same trilinear coordinates?

3. What are the trilinear coordinates of the three excenters of a triangle?

4. Show that the trilinear coordinates of the center of the nine-point circle
of �ABC are

[cos((∠B)− (∠C)) : cos((∠C)− (∠A)) : cos((∠A)− (∠B))].

This one is a little tricky, so here is a hint if you are not sure where to
start. Suppose that ∠B is larger than ∠C. Label

O: the center of the nine-point circle,
P: the circumcenter,
M: the midpoint of BC, and
X : the foot of the perpendicular from O to BC.

The key is to show that the angle ∠POX is congruent to ∠B and that
∠POM is congruent to ∠C. That will mean (∠MOX) = (∠B)− (∠C).
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3 EUCLIDEAN TRANSFORMATIONS   

In the third part of this book, we will look at Euclidean geometry from
a different perspective, that of Euclidean transformations. It is a point
of view that has been most closely associated with Felix Klein– that the
way to study some property (such as congruence) is to study the maps
that preserve it. The first lesson sets the scene with a quick development
of analytic geometry. Then it is on to Euclidean isometries– bijections
of the Euclidean plane which preserve distance. Over several lessons we
will study these isometries, and ultimately we will classify all Euclidean
isometries into four types: reflections, rotations, translations, and glide
reflections. Then it is time to loosen the restriction a bit to consider bi-
jections which preserve congruence, but not necessarily distance. Finally,
we will look at inversion, a type of bijection of the punctured plane (the
Euclidean plane minus a point). As luck would have it, inversion provides
a convenient bridge into non-Euclidean geometry.
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This lesson is just a quick development of analytic geometry and trigonom-
etry in the language of Euclidean geometry. I feel an obligation to provide
the connection between traditional Euclidean geometry (as I have devel-
oped it in these lessons) and more contemporary analytic geometry, but
you should already be comfortable with this material, so feel free to skim
through it.

Analytic geometry

At the heart of analytic geometry, there is a correspondence between points
and coordinates, ordered pairs of real numbers. The Cartesian approach
to that correspondence is a familiar one, but let me quickly run through
it. Begin with two perpendicular lines (the choice is arbitrary). These are
the x- and y-axes. Their intersection is the origin O. We will want to mea-
sure signed distances from O along these axes, and that means we have to
assign a positive direction to each axis. From a geometric point of view,
the choice of those directions is arbitrary, but there is an established con-
vention as follows. Once directions have been chosen, each axis will be
divided into two rays that share O as their common vertex: a positive axis
consisting of points whose signed distance from O is positive, and a neg-
ative axis consisting of points whose signed distance from O is negative.
The convention is that the axes are assigned positive directions so that
the positive y-axis is a 90◦ counterclockwise turn from the positive x-axis.
Now here’s the catch: the geometry itself provides no way to distinguish
which direction is the counterclockwise direction. So this is a convention
that must be passed along by way of illustrations (and clocks).

counterclockwise

+

O

––

+
y x
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A point P on the x-axis is assigned the coordinates (p,0), where p is
the signed distance from O to P. A point Q on the y-axis is assigned
the coordinates (0,q) where q is the signed distance from O to Q. Most
points will not lie on either axis. For these points, we must consider their
projections onto the axes. If R is such a point, then we draw the two
lines that pass through R and are perpendicular to the two axes. If the
points where these perpendiculars cross the axes have coordinates (a,0)
and (0,b), then the coordinates of R are (a,b). With this correspondence,
every point corresponds to a unique coordinate pair, and every coordinate
pair corresponds to a unique point.

The next step is to figure out how to calculate the distance between points
in terms of their coordinates. This is pretty much essential for everything
else that we are going to do. Let’s begin with two special cases.

LEM: VERTICAL DISTANCE
For points that share an x-
coordinate, P1 = (x,y1) and
P2 = (x,y2),

|P1P2|= |y1 − y2|.

HORIZONTAL DISTANCE
For points that share a y-
coordinate, P3 = (x3,y) and
P4 = (x4,y),

|P3P4|= |x3 − x4|.

O

(a,0)

R: (a,b)

(0,b)
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Proof. I will just prove the first statement. Label two more points, Q1 =
(0,y1) and Q2 = (0,y2). The resulting quadrilateral P1P2Q2Q1 is a rectan-
gle, so its opposite sides P1P2 and Q1Q2 have to be the same length.

This is where we make the direct connection between coordinates and
distance– the coordinates along each axis were chosen to reflect their
signed distance from the origin O. To be thorough, though, there are sev-
eral cases to consider:

O∗Q1 ∗Q2 : |Q1Q2|= |OQ2|− |OQ1|= y2 − y1 = |y1 − y2|
O∗Q2 ∗Q1 : |Q1Q2|= |OQ1|− |OQ2|= y1 − y2 = |y1 − y2|
Q1 ∗O∗Q2 : |Q1Q2|= |OQ1|+ |OQ2|=−y1 + y2 = |y1 − y2|
Q2 ∗O∗Q1 : |Q1Q2|= |OQ2|+ |OQ1|=−y2 + y1 = |y1 − y2|
Q1 ∗Q2 ∗O : |Q1Q2|= |OQ1|− |OQ2|=−y1 − (−y2) = |y1 − y2|
Q2 ∗Q1 ∗O : |Q1Q2|= |OQ2|− |OQ1|=−y2 − (−y1) = |y1 − y2|

No matter the case, |P1P2|= |Q1Q2|= |y1 − y2|.

The general distance formula is now an easy consequence of the Pythagorean
Theorem.

O

P1 P2

Q2Q1
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THM: THE DISTANCE FORMULA
For any two points P = (x1,y1) and Q = (x2,y2),

|PQ|=
√

(x1 − x2)2 +(y1 − y2)2.

Proof. If P and Q share either x-coordinates or y-coordinates, then this
formula reduces down to the special case in the previous lemma (because√

a2 = |a|). If not, mark one more point: R = (x2,y1).

Then |PR|= |x1 − x2|, and |RQ|= |y1 − y2|, and �PRQ is a right triangle.
By the Pythagorean theorem,

|PQ|2 = |PR|2 + |QR|2 = (x1 − x2)
2 +(y1 − y2)

2

Now take the square root to get the formula.

COR: THE EQUATION OF A CIRCLE
The equation of a circle C with center at P = (h,k) and radius r is

(x−h)2 +(y− k)2 = r2.

Proof. By definition, the points of C are all those points that are a distance
of r from P. Therefore (x,y) is on C if and only if

√
(x−h)2 +(y− k)2 = r.

Square both sides of the equation to get the standard form.

R = (x2, y1)

Q = (x2, y2)

P = (x1, y1)
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Moving along, lines are next. Intuitively, the key is the idea that a line
describes the shortest path between points. That is captured more formally
in the triangle inequality, which you should recall states that |AB|+ |BC| ≥
|AC|, but that the equality only happens when A∗B∗C.

PARAMETRIC FORM FOR THE EQUATION OF A LINE
Given two distinct points P1 = (x1,y1) and P2 = (x2,y2) on a line �,
a third point P = (x,y) lies on � if and only if its coordinates can be
written in the form

x = x1 + t(x2 − x1) & y = y1 + t(y2 − y1)

for some t ∈ R.

Proof. The different possible orderings of P, P1, and P2 on the line create
several scenarios

Let me just take the middle case, where t is between 0 and 1 and P is be-
tween P1 and P2. It is representative of the other two cases.

=⇒ Show that if P = (x1 + t(x2 − x1),y1 + t(y2 − y1)) for some value of
t between 0 and 1, then P is between P1 and P2.

We can directly calculate |P1P| and |PP2|:

|P1P|= [(x− x1)
2 +(y− y1)

2]1/2

= [(x1 + t(x2 − x1)− x1)
2 +(y1 + t(y2 − y1)− y1)

2]1/2

= [(tx2 − tx1)
2 +(ty2 − ty1)

2]1/2

= t[(x2 − x1)
2 +(y2 − y1)

2]1/2

= t|P1P2|.

P1

P2

P
P1

P2P
P1

P2
P

1 2 3
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|PP2|= [(x2 − x)2 +(y2 − y)2]1/2

= [(x2 − (x1 + t(x2 − x1)))
2 +(y2 − (y1 + t(y2 − y1)))

2]1/2

= [((1− t)x2 − (1− t)x1)
2 +((1− t)y2 − (1− t)y1)

2]1/2

= (1− t)[(x2 − x1)
2 +(y2 − y1)

2]1/2

= (1− t)|P1P2|.

According to the Triangle Inequality, then, P is between P1 and P2, since

|P1P|+ |PP2|= t|P1P2|+(1− t)|P1P2|= |P1P2|.

⇐= Show that if P is between P1 and P2, then the coordinates of P can be
written in the parametric form (x1 + t(x2 − x1),y1 + t(y2 − y1)) for some
value of t between 0 and 1.

Point P is the only point in the plane which is a distance d1 = |P1P| from
P1 and a distance d2 = |PP2| from P2. Because of that uniqueness, we
just need to find a point in parametric form that is also those respective
distances from P1 and P2. The point that we are looking for is the one
where t = d1/(d1 +d2). The two calculations, that the distance from this
point to P1 is d1, and that the distance from this point to P2 is d2, are both
straightforward, so I will leave them to you.

P1

P2

P

d1

d2
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From the parametric form it is easy to get to standard form, and from there
to point-slope form, slope-intercept form, and so on. The latter steps are
standard fare for a pre-calculus course, so I will only go one step further.

STANDARD FORM FOR THE EQUATION OF A LINE
The coordinates (x,y) of the points of a line all satisfy an equation of
the form Ax+By =C where A, B, and C are real numbers.

Proof. Suppose that (x1,y1) and (x2,y2) are distinct points on the line. As
we saw in the last theorem, the other points on the line have coordinates
(x,y) that satisfy the equations

{
x = x1 + t(x2 − x1)

y = y1 + t(y2 − y1).

Now it is just a matter of combining the equations to eliminate the param-
eter t. {

x− x1 = t(x2 − x1)

y− y1 = t(y2 − y1).

At this point, you could divide the second equation by the first. That
eliminates the t variable and also serves as a definition of the slope of a
line (in particular, it shows that the slope is constant). But it also presents
a potential “divide by zero” scenario, so instead let’s multiply:

{
(x− x1)(y2 − y1) = t(x2 − x1)(y2 − y1)

(y− y1)(x2 − x1) = t(y2 − y1)(x2 − x1).

Set the two equations equal and simplify

(x− x1)(y2 − y1) = (y− y1)(x2 − x1)

x(y2 − y1)− x1(y2 − y1) = y(x2 − x1)− y1(x2 − x1)

x(y2 − y1)− y(x2 − x1) = x1(y2 − y1)− y1(x2 − x1).

This equation has the proper form, with

A = y2 − y1 B =−(x2 − x1) & C = x1(y2 − y1)− y1(x2 − x1).

Finally, it should be noted that any three real numbers A, B, C do describe
a line, so long as A and B are not both zero.
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The unit circle approach to trigonometry

At the end of the lesson on similarity, in the exercises, we defined the six
trigonometric functions. At that time, we defined them in terms of the
angles of a right triangle, which means that they were restricted to values
in the interval (0,π/2). As you know, there is also a “unit circle approach”
that extends these definitions beyond that narrow window. You have seen
this before, so I will be as brief as I can be. A point with two positive
coordinates (x,y) on the unit circle corresponds to a right triangle whose
vertices are (0,0), (x,0) and (x,y). If θ is the measure of the angle at the
origin, then cosθ = x and sinθ = y (because the hypotenuse has length
one). Now just continue that: any ray from the origin forms an angle
θ measured in the counterclockwise direction from the x-axis. That ray
intersects the unit circle at a point (x,y) and we define

cos(θ) = x sin(θ) = y.

Allowing for both proper and reflex angles, that extends the domains of
sine and cosine to [0,2π), but we can go farther. Informally, we need to
allow the ray to spin around the circle more than once (for θ values greater
than 2π) or in the counterclockwise direction (for negative θ ). Formally,
this can be done by imposing periodicity:

cos(θ +2nπ) = cos(θ) sin(θ +2nπ) = sin(θ) ∀n ∈N.

x2 + y2 = 1

(cosθ , sinθ)
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Use an isosceles and equilateral triangle to find sine and cosine values for π/3, 
π/4, and π/6. Use the symmetry of the circle to extend outside of quadrant I.
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The other four trigonometric functions (tangent, cotangent, secant, cose-
cant) are defined similarly as the ratios

tan(θ) = y/x cot(θ) = x/y sec(θ) = 1/x csc(θ) = 1/y.

There are a lot of relationships between the trigonometric functions, some
easy and some subtle. Let’s get the easy ones out of the way. From the
very definitions of the functions, we get the reciprocal identities

secθ =
1

cosθ
cscθ =

1
sinθ

cotθ =
1

tanθ
,

and identities that relate tangent and cotangent to sine and cosine

tanθ =
sinθ
cosθ

cotθ =
cosθ
sinθ

.

From the equation of the circle x2 + y2 = 1, we get the Pythagorean iden-
tities:

sin2θ + cos2θ = 1 tan2θ +1 = sec2θ 1+ cot2 θ = csc2θ .

By comparing angles taken in the counterclockwise and clockwise direc-
tions, we see that cosine and secant are even functions (where f (−x) =
f (x)) and that the other four are odd functions (where f (−x) =− f (x)).

Beyond these, there is a second tier of identities– double angle, half angle,
power reduction, etc – that are not so immediately clear. They can all be
derived from two big identities, the addition formulas for sine and cosine,
but the proofs of those two formulas require a more careful look at the
geometry of the unit circle. To close out this lesson, I will prove the two
addition formulas.

ADDITION RULE FOR COSINE

cos(α+β ) = cosα cosβ − sinα sinβ

Proof. The key to the proof is to compare two distances which we know
to be the same– one distance expressed in terms of the angle α + β , the
other in terms of the individual angles α and β . The real trick to this is to
make the right choice of distances. In particular, you have to be careful so
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that you don’t get stuck with a sin(α+β ) term in the first calculation. On
the unit circle, label the following points:

P0 = (1,0)
Pα = (cosα ,sinα)
P−β = (cos(−β ),sin(−β ))

= (cosβ ,−sinβ )
Pα+β = (cos(α+β ),sin(α+β ))

If O is the origin, then the triangles �OP0Pα+β and �OP−βPα are con-
gruent (S·A·S: in each triangle, two of the sides are radii, and the angle
between them measures α+β ). That means that the two segments P0Pα+β
and P−βPα have to be congruent, and so we can compare their lengths (it
is actually easier to work with the squares of those lengths). Through-
out these calculations, we make repeated use of the Pythagorean Identity
sin2 x+ cos2 x = 1.

|P0Pα+β |2 = (cos(α+β )−1)2 +(sin(α+β )−0)2

= cos(α+β )2 −2cos(α+β )+1+ sin2(α+β )

= 2−2cos(α+β ).

|P−βPα |2 = (cosα− cosβ )2 +(sinα+ sinβ )2

= cos2α−2cosα cosβ + cos2β

+ sin2α+2sinα sinβ + sin2β

= 2−2cosα cosβ +2sinα sinβ .

Set these two expressions equal to each other, subtract 2 and divide by -2
to get the desired formula

cos(α+β ) = cosα cosβ − sinα sinβ .

Pα
Pα+β

P– β

P0

that you don’t get stuck with a sin(α+β ) term in the first calculation. On
the unit circle, label the following points:

P0 = (1,0)
Pα = (cosα ,sinα)
P−β = (cos(−β ),sin(−β ))

= (cosβ ,−sinβ )
Pα+β = (cos(α+β ),sin(α+β ))
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ADDITION RULE FOR SINE

sin(α+β ) = sinα cosβ + cosα sinβ

Proof. For this proof, one approach would be to use the cofunction iden-
tity sin(x) = cos(π/2−x) followed by the addition rule for cosine that we
just derived. That is pretty easy, but you would have to verify the cofunc-
tion identity first. That too is easy for x values between 0 and π/2, but
gets to be a nuisance once you have to consider all the other possible val-
ues of x. I think it is easier to do something like the last proof– compare
some distances and then do a little algebra. On the unit circle, label the
following points

P0 = (1,0)
Pα = (cosα ,sinα)
Pβ = (cosβ ,sinβ )
Pα+β = (cos(α+β ),sin(α+β )).

By S·A·S, the segments PαPα+β and P0Pβ are congruent. Let’s compare
those two distances. Here we go (note the use of the addition rule for
cosine midway through the first distance calculation).

|PαPα+β |2 = (cos(α+β )− cos(α))2 +(sin(α+β )− sin(α))2

= cos2(α+β )−2cosα cos(α+β )+ cos2α

+ sin2(α+β )−2sinα sin(α+β )+ sin2α

= 2−2cosα cos(α+β )−2sinα sin(α+β )

= 2−2cosα(cosα cosβ − sinα sinβ )−2sinα sin(α+β )

= 2−2cos2α cosβ +2sinα cosα sinβ −2sinα sin(α+β )

Pα

Pα+β

P0

Pβ
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and

|P0Pβ |2 = (cosβ −1)2 +(sinβ −0)2

= cos2β −2cosβ +1+ sin2β

= 2−2cosβ .

Now set these two expressions equal, subtract 2 from both sides and divide
through by -2 to get

cos2α cosβ − sinα cosα sinβ + sinα sin(α+β ) = cosβ .

In this equation solve for the sin(α+β ) term

sinα sin(α+β ) = cosβ − cos2α cosβ + sinα cosα sinβ
= cosβ (1− cos2α)+ sinα cosα sinβ
= cosβ sin2α+ sinα cosα sinβ
= sinα(sinα cosβ + cosα sinβ ).

As long as sinα is not zero, we can divide both sides by that, and what’s
left over is what we want. What if sinα is zero? Well, that happens when
α is any multiple of π , and those cases are easy enough to handle on their
own. On the left side, adding nπ corresponds to a half-turn or a whole
turn around the unit circle, so

sin(nπ+β ) =

{
sinβ if n is even
−sinβ if n is odd.

Compare that to the right side

sin(nπ)cosβ + cos(nπ)sinβ = 0 · cosβ + cos(nπ)sinβ

=

{
sinβ if n is even
−sinβ if n is odd

They are the same.
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Exercises

1. Prove the midpoint formula. Let P = (a,b) and Q = (c,d). Verify that
the coordinates of the midpoint of PQ are

(
a+ c

2
,
b+d

2

)
.

2. Show that the points on the circle with center (h,k) and radius r can be
described by the parametric equations

{
x(θ) = h+ r cosθ
y(θ) = k+ r sinθ

.

3. Let �1 and �2 be perpendicular lines, neither of which is a vertical line.
Show that the slopes of �1 and �2 are negative reciprocals of one an-
other.

4. Verify that the triangle with vertices at (0,0), (2a,0), and (a,a
√

3) is
equilateral.

5. Find the equation of the circle which passes through the three points:
(0,0), (4,2) and (2,6).

6. Let �ABC be the triangle with vertices at the coordinates A = (0,0),
B = (1,0), C = (a,b). Find the coordinates of its circumcenter, ortho-
center, and centroid (in terms of a and b).

7. All of the special values on the unit circle can be written in the form
nπ/12, but not all values of that form are represented. Find the coor-
dinates on the unit circle for the angles θ = π/12, 5π/12, 7π/12, and
11π/12.
The remaining exercises verify some common trigonometric identities
that we will need to for later calculations. You don’t need to do them
all– I really just want to have all of these identities together in one
place.
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8. Use the addition formulas to derive the cofunction identities.

sin
(π

2
−θ

)
= cosθ cos

(π
2
−θ

)
= sinθ

tan
(π

2
−θ

)
= cotθ cot

(π
2
−θ

)
= tanθ

sec
(π

2
−θ

)
= cscθ csc

(π
2
−θ

)
= secθ

9. Use the addition formulas to derive the double angle formulas

sin(2θ) = 2sinθ cosθ

cos(2θ) = cos2 θ − sin2θ

= 2cos2θ −1
= 1−2sin2 θ

tan(2θ) =
2tanθ

1− tan2θ

10. Use the double angle formulas for cosine to derive the power-reduction
formulas

sin2 θ =
1− cos(2θ)

2

cos2 θ =
1+ cos(2θ)

2

tan2 θ =
1− cos(2θ)
1+ cos(2θ)

11. Use the power-reduction formulas to derive the half-angle formulas

sin
θ
2
=±

√
1− cosθ

2

cos
θ
2
=±

√
1+ cosθ

2

tan
θ
2
=

1− cosθ
sinθ

=
sinθ

1+ cosθ
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12. Verify the product-to-sum formulas

sinα sinβ =
1
2
[cos(α−β )− cos(α+β )]

cosα cosβ =
1
2
[cos(α+β )+ cos(α−β )]

sinα cosβ =
1
2
[sin(α+β )+ sin(α−β )]

13. Verify the sum-to-product formulas

sinα+ sinβ = 2sin
(
α+β

2

)
cos

(
α−β

2

)

sinα− sinβ = 2cos
(
α+β

2

)
sin

(
α−β

2

)

cosα+ cosβ = 2cos
(
α+β

2

)
cos

(
α−β

2

)

cosα− cosβ =−2sin
(
α+β

2

)
sin

(
α−β

2

)
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One of the prevailing philosophies of modern mathematics is that in order
to study something, you need to study the types of maps that preserve it–
that is, the types of maps that leave it invariant. For instance, in group
theory we study group homomorphisms because they preserve the group
operation (in the sense that f (a ·b) = f (a) · f (b)). In Euclidean geometry
there are several structures that might be worth preserving– incidence, or-
der, congruence– but in the next few lessons our focus will be on mappings
that preserve distance.

Definitions

Let’s start with a review of some basic terminology associated with maps
from one set to another.

DEF: ONE-TO-ONE, ONTO, AND BIJECTIVE MAPPINGS
A map f : X →Y is:
· one-to-one if f (x) = f (y) =⇒ x = y;
· onto if for every y ∈ Y there is an x ∈ X such that f (x) = y;
· bijective if it is both one-to-one and onto.

× ×
× ×

1-1
onto
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Under the right circumstances, two mappings may be chained together:
the composition of f : X →Y and g : Y → Z is

g◦ f : X → Z : g◦ f (x) = g( f (x)).

This type of composition is usually not commutative– in fact, f ◦ g may
not even be defined. It is associative, though, and that is a very essential
property. For any space X the map

id : X → X : id(x) = x

is called the identity map. Two maps f : X →Y and g : Y → X are inverses
of one another if f ◦ g is the identity map on Y and g ◦ f is the identity
map on X . In order for a map to have an inverse, it must be bijective (and
conversely, any bijection is invertible).

DEF: AUTOMORPHISM
An automorphism is a bijective mapping f from a space to itself.

We are interested in automorphisms of the Euclidean plane, but not just
any automorphisms. We want the ones that do not distort the distances
between points. These are called Euclidean isometries.

x

X Y Z

f g

f f−1

X Y X
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DEF: ISOMETRY
Let E denote the set of points of the Euclidean plane. A Euclidean
isometry is an automorphism f : E → E that preserves the distance
between points: for all A, B in E, | f (A) f (B)|= |AB|.

I will leave the proof of the following basic properties of isometries to you.
If you are familiar with the concept of a group, these properties mean that
the set of Euclidean isometries is a group.

LEM: BASIC PROPERTIES OF ISOMETRIES
The composition of two isometries is an isometry. The identity map
is an isometry. The inverse of an isometry is an isometry.

Recall that everything we have done in Euclidean geometry floats on five
undefined terms: point, line, on, between, and congruence. An isometry
is defined in terms of its behavior on points, but the distance preservation
condition has implications for the remaining undefined terms as well.

LEM: ISOMETRIES AND CONGRUENCE
An isometry preserves both segment and angle congruence. That is,

AB � A�B� =⇒ f (A) f (B)� f (A�) f (B�)

∠ABC �∠A�B�C� =⇒ ∠ f (A) f (B) f (C)� ∠ f (A�) f (B�) f (C�)
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Proof. The segment congruence part is easy, because isometries preserve
distance and hence segment length, and it is those lengths that determine
whether or not segments are congruent: if AB � A�B�, then

| f (A) f (B)|= |AB|= |A�B�|= | f (A�) f (B�)|

and so f (A) f (B)� f (A�) f (B�). The angle congruence part is not that hard
either, but we will need to use a few of the triangle congruence theorems.
Relocate, if necessary, A� and C� on their respective rays so that BA �
B�A� and BC � B�C�. By S·A·S, the triangles �ABC and �A�B�C� are
congruent. The corresponding sides of these two triangles are congruent,
and from the first part of the proof, the congruences are transferred by f :

AB � A�B� =⇒ f (A) f (B)� f (A�) f (B�)

BC � B�C� =⇒ f (B) f (C) � f (B�) f (C�)

CA �C�A� =⇒ f (C) f (A) � f (C�) f (A�)

By S·S·S, triangles � f (A) f (B) f (C) and � f (A) f (B) f (C) are congruent,
and so the corresponding angles ∠ f (A) f (B) f (C) and ∠ f (A�) f (B�) f (C�)
are congruent.

f (A)

B

B
A

A

f (B)

f (B )

f (A )

f (A)
f (C)

B

C

B

C

A

A

f (B)

f (B )

f (A )

f (C )

, S·S·S, S·A·S
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If you were paying attention in the last proof, you may have noticed that
it could easily be tweaked to say a bit more: an isometry doesn’t preserve
just distance– it also preserves angle measure, in the sense that

(∠ABC) = (∠ f (A) f (B) f (C)).

This is useful. In fact, we will use it in the last proof of this lesson.

LEM: ISOMETRIES, INCIDENCE AND ORDER
If A, B, and C are collinear, in the order A∗B∗C, and f is an isometry,
then f (A), f (B), and f (C) are collinear, in the order f (A) ∗ f (B) ∗
f (C).

Proof. Suppose A∗B∗C. Then, by segment addition

|AC|= |AB|+ |BC|.

Distance is invariant under f , so we can make the substitutions

| f (A) f (B)|= |AB|, | f (B) f (C)| = |BC|, | f (A) f (C)| = |AC|,

to get
| f (A) f (C)| = | f (A) f (B)|+ | f (B) f (C)|.

This is the degenerate case of the Triangle Inequality: the only way this
equation can be true is if f (A), f (B), and f (C) are collinear, and that f (B)
is between f (A) and f (C).

f(A)

f(C)
B

C

A
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In the last result we were talking about three points, but by extension, this
means that all the points on a line are mapped again to collinear points. In
other words, an isometry, which is defined as a bijection of points, is also a
bijection of the lines of the geometry. Further, an isometry maps segments
to segments, rays to rays, angles to angles, and circles to circles. Well,
here’s an opportunity to simplify notation. When I apply an isometry f to
a segment AB, for example, instead of writing f (A) f (B), I will go with the
more streamlined f (AB). For an angle ∠ABC, instead of ∠ f (A) f (B) f (C),
I will write f (∠ABC). And so on.

Fixed points

The overarching goal of the next few lessons is to classify all Euclidean
isometries. It turns out that one of the keys to this is fixed points.

DEF: FIXED POINT
A point P is a fixed point of an isometry f if f (P) = P.

The first big step towards a classification is to answer the following ques-
tion:

Given isometries f1 and f2, which may be described in very different
ways, how do we figure out if they are really the same?

Showing that they are not the same is usually easy– you just need to find
one point P where f1(P) �= f2(P). Showing that they are the same seems
like a more difficult task. At the most basic level, isometries are functions
of the Euclidean plane. Without any additional structure, the only way to
show two functions are equal is to show that they agree on the value of
all points. This is because the behavior of an arbitrary function is quite
unconstrained. Fortunately, the bijection and distance-preserving proper-
ties of an isometry impose significant constraints on its behavior. Those
constraints mean that we can determine whether or not two isometries are
the same by looking at just a few points.
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THM: TWO FIXED POINTS
If an isometry f fixes two distinct points A and B, then it fixes all the
points of the line �AB�.

Proof. Let C be a third point on this line. Label its distances from A as d1
and from B as d2. The key here is that C is the only point that is a distance
d1 from A and a distance d2 from B (I think this is intuitively clear, but for
a more formal point of view, you can look back at our investigation of the
possible intersections of circles in Lesson 16). Now hit these three points
with the isometry f . Distances stay the same, so f (C) is still a distance d1
from f (A) = A, and f (C) is still a distance d2 from f (B) = B. That means
that f (C) must be C.

THM: THREE (NON-COLLINEAR) FIXED POINTS
If an isometry f fixes three non-collinear points A, B, and C, then it
fixes all points (it is the identity isometry).

Proof. By the last result, f must fix all the points on each of the lines
� AB �, � AC �, and � BC �. Now suppose that D is a point that is not
on any of those lines. We need to show that D is a fixed point as well.
Choose a point M that is between A and B. It is fixed by f . According to
Pasch’s lemma, the line � DM � must intersect at least one other side of
�ABC. Call this intersection N. It too is fixed by f . Therefore D is on a
line �MN� with two fixed points. According to the previous result, it is
a fixed point.

f(C) must still be on both of these circles.

A

C

A A

B
B

C

C

B

d1

d1 d1

d2 d2

d2
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Now we can answer the question I posed at the start of this section: how
much do we need to know about two isometries before we can say they
are the same?

THM: THREE NON-COLLINEAR POINTS ARE ENOUGH
If two isometries f1 and f2 agree on three non-collinear points, then
they are equal.

Proof. Suppose that A, B, and C are three non-collinear points, and that

f1(A) = f2(A) f1(B) = f2(B) f1(C) = f2(C).

Applying f−1
2 to both sides of each of these equations,

f−1
2 ◦ f1(A) = f−1

2 ◦ f2(A) = id(A) = A,

f−1
2 ◦ f1(B) = f−1

2 ◦ f2(B) = id(B) = B,

f−1
2 ◦ f1(C) = f−1

2 ◦ f2(C) = id(C) =C.

Therefore f−1
2 ◦ f1 has three non-collinear fixed points– it must be the

identity, and so

f−1
2 ◦ f1 = id

f2 ◦ f−1
2 ◦ f1 = f2 ◦ id

id ◦ f1 = f2

f1 = f2.

A line through D intersecting two fixed lines.

A

MN

C
B

D
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The analytic viewpoint

To wrap up this lesson, let’s look at isometries from the analytical point
of view. Any isometry defines a function on the coordinate pairs. As we
have seen, isometries themselves are fairly structured, so it makes sense,
then, that the functions they define on the coordinate pairs would have to
be similarly inflexible. That is indeed the case.

GENERAL FORM FOR AN ISOMETRY
Any Euclidean isometry T has analytic equations that can be written
in one of two matrix forms

(1) T
(

x
y

)
=

(
h
k

)
+

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)

(2) T
(

x
y

)
=

(
h
k

)
+

(
cosθ sinθ
sinθ −cosθ

)(
x
y

)

where h, k, and θ are real numbers.

Proof. Let T be an isometry. Ultimately, we want to know about T (x,y),
but it will take a few steps to get there, starting with the origin, moving to
the point (x,0), and then finally to (x,y).

The origin (0,0). This is the easy one. Since the origin is our first point
of consideration, there are no limitations on where it goes (we don’t know
it yet, but there are isometries that take any point to any other point of
the plane). Set h and k by looking at what happens to the origin: set
(h,k) = T (0,0).

(0,0) (x,0)

(h,k)

T(x,0)|x|

|x|
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The point (x,0). An isometry preserves distances, and the distance from
(x,0) to the origin is |x|. Applying the isometry to both of those points, the
distance from T (x,0) to (h,k) also has to be |x|. In other words, T (x,0)
is on the circle with center (h,k) and radius |x|. If you did the exercise
in the last lesson on parametrizing circles (or if you have worked with
parametrized circles in calculus), then you know this means that T (x,0)
has to have the form

(h+ |x|cosθ , k+ |x|sinθ)

for some value of θ . In fact (and I will leave it to you to figure out why),
the absolute value signs around the x are not needed.

The point (x,y). Likewise, since the distance from (x,0) to (x,y) is |y|,
T (x,y) has to be on the circle centered at T (x,0) with radius |y|. That
means its coordinates can be written in the form

(h+ xcosθ + |y|cosφ , k+ xsinθ + |y|sinφ)

for some value of φ . The possibilities are more limited than that, though:
the three points (0,0), (x,0) and (x,y) form a right angle at (x,0). Since
an isometry preserves angle measures, the images of these three points
must also form a right angle. This can only happen if φ = θ + π/2 or
φ = θ − φ/2. As before, the absolute value signs around the y can be
dropped and that gets us to:

(
h+ xcosθ + ycos

(
θ ± π

2

)
, k+ xsinθ + ysin

(
θ ± π

2

))
.

(0,0) (x,0)

(h,k)

T(x,0)

T(x,y)
(x,y)

|x|

|x||y|
|y|
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Now use the addition formulas for sine and cosine

cos(θ ±π/2) = cosθ cos(±π/2)− sinθ sin(±π/2) =∓sinθ
sin(θ ±π/2) = sinθ cos(±π/2)+ cosθ sin(±π/2) =±cosθ

and the coordinates for T (x,y) take on the form

(1) T (x,y) = (h+ xcosθ − ysinθ ,k+ xsinθ + ycosθ)
(2) T (x,y) = (h+ xcosθ + ysinθ ,k+ xsinθ − ycosθ).

Written in matrix form, these are

(1) T
(

x
y

)
=

(
h
k

)
+

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)

(2) T
(

x
y

)
=

(
h
k

)
+

(
cosθ sinθ
sinθ −cosθ

)(
x
y

)
.



345ISOMETRIES

Exercises

1. Let T be an isometry and let r be a ray with endpoint O. Prove that
T (r) is also a ray, with endpoint T (0).

2. Verify that if �1 and �2 are parallel lines and T is an isometry, then
T (�1) and T (�2) will be parallel.

3. Let T be an isometry and let A and B be two points that are on the same
side of a line �. Prove that T (A) and T (B) are on the same side of T (�).

4. Let T be an isometry and let D be a point in the interior of angle ∠ABC.
Prove that T (D) is a point in the interior of T (∠ABC).

5. Let M be the midpoint of a segment AB, and let T be an isometry so
that T (A) = B and T (B) = A. Prove that M is a fixed point of this
isometry.

6. Given a proper angle ∠ABC and an isometry T such that

(1) T (BA�) = BC� & (2) T (BC�) = BA�,

show that T fixes all the points of the angle bisector of ∠ABC.

7. In the final theorem of this lesson I showed that every isometry can be
written in one of two forms. Prove the converse, that any mapping of
that form is an isometry.
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This lesson introduces the first type of isometry– reflection across a line.
As it turns out, reflections are the building blocks for all isometries. In
this lesson we will see why, in a theorem that I don’t believe has a formal
name, but that I call the “Three Reflections Theorem”. This theorem pro-
vides the strategy that we will use over the next few lessons to classify all
isometries.

DEF: REFLECTION ACROSS A LINE
Define the reflection s across a line � as follows. For any point P on
�, set s(P) = P. For any point P that is not on �, there is a unique line
passing through P that is perpendicular to �. On this line, there is one
other point that is the same distance from � as P– it is on the opposite
side of � from P. Set s(P) to be this point.

Of course, the first agenda item is to verify that a reflection really is an
isometry.

P

s(P)
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THM
A reflection is an isometry.

Proof. It is easy to see that any reflection s is a bijection. Just look at
the composition s ◦ s: the swap of points done by the first application of
s is immediately undone by the second application of s, so that s2 = id.
Therefore s is its own inverse, and in order for a mapping to have an
inverse, it must be a bijection.

The other step is to show that s preserves distances– that |s(PQ)|= |PQ|
for any points P and Q. The only thing that makes this part difficult is that
there are so many possible positions of P and Q relative to each other and
to �, the line of reflection:

I. P and Q are both on �.

II. One of P and Q is on �, while the other is not.
1. the line �PQ� is perpendicular to �

2. the line �PQ� is not perpendicular to �

III. Neither P nor Q is on �.
1. the line �PQ� is perpendicular to �

i. P and Q are on the same side of �

ii. P and Q are on opposite sides of �
2. the line �PQ� is not perpendicular to �

i. P and Q are on the same side of �
ii. P and Q are on opposite sides of �

I II.1 III.1.i III.2.i

II.2 III.1.ii III.2.ii
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At this point, none of these cases should cause any trouble. Let me look
at just one, Case III.2.i, which is, I feel, the archetypal case in this proof.
To verify this case, first label two more points (both fixed by s).

FP: the foot of the perpendicular to � through P, and
FQ: the foot of the perpendicular to � through Q.

From the very definition of a reflection,

PFP � s(PFP) & QFQ � s(QFQ)

and the angles at FP and FQ are right angles. Of course FPFQ is congruent
to itself, so by S·A·S·A·S, the quadrilaterals PFPFQQ and s(PFPFQQ) are
congruent, and therefore PQ and s(PQ) are the same length.

We saw in the last lesson that if an isometry fixes two points, it must fix
all the points on the line through those points. Of course, every reflection
fixes all the points of a line. A good question to ask, then, is how common
is this “line-fixing” behavior? Not that common, as it turns out, and so
this is a useful characterization of a reflection.

s(P)

s(Q)

FQ

FP

P Q
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THM
If an isometry fixes all the points of a line, but is not the identity, then
it must be a reflection.

Proof. Let f be an isometry that fixes all the points on a line � but that is
not the identity. Let s be the reflection across that line. We already know
that f and s agree on all the points of �, so we just need to show that they
agree on one point that isn’t on �. Take two points A and B on �, and a
third point C that is not on �. Since an isometry preserves distance, and
since both A and B are fixed

AC � f (AC)� A f (C)

=⇒ f (C) is on the circle with center A and radius |AC|, and
BC � f (BC)� B f (C)

=⇒ f (C) is on the circle with center B and radius |BC|.

We are triangulating in on the location of f (C): it has to be at an intersec-
tion of these two circles, and there are only two such intersections (distinct
circles intersect at most twice). Furthermore, one of those intersections is
C itself, and if f (C) =C, then f would fix three non-collinear points and
would have to be the identity. We excluded that possibility at the outset,
so f (C) has to be the other intersection of the circles. For all the same rea-
sons, s(C) must also be that second intersection. Therefore f (C) = s(C),
the two isometries agree on three non-collinear points, A, B, and C, and so
they must be equal.

A

C

B
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THE THREE REFLECTIONS THEOREM
Any isometry can be written as a reflection, as a composition of two
reflections, or as a composition of three reflections.

Proof. Let A, B, and C be three non-collinear points and let T be an isom-
etry. We saw in the last lesson that when isometries agree on three non-
collinear points, they have to be the same. That is how we will proceed.
We just need to find a composition of up to three reflections s3 ◦ s2 ◦ s1
that agrees with T on each of A, B, and C. There are three steps to this.
At each step we want to get one of the three points into the right position,
without moving any of the previously set points.

Step One. With the first isometry, s1, we are going to get A into position.
If A = T (A), let s1 be the identity isometry. If A �= T (A), let s1 be the
reflection across the perpendicular bisector of AT(A). Either way, s1(A) =
T (A).

A

B

C

An isometry T

T(A)

T(C)

T(B)

A

B

C

The first reflection
s1(B)

s1(C)

T(A)

T(C)

T(B)
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Step Two. With the second isometry, s2, we put B into position. In order
to do this, we need to look at where s1(B) ended up after step one. It is
possible (but unlikely) that s1(B) ended up on the line T (�AB�). If that
is the case, then because

|s1(AB)|= |AB|= |T (AB)|,

there are only two possible spots for s1(B), one on either side of T (A).
If s1(B) is on the same side of T (A) as T (B), then s1(B) = T (B) already,
so we can just let s2 be the identity isometry. If s1(B) is on the opposite
side of T (A) from T (B), then let s2 be the reflection across the line that
passes through T (A) and is perpendicular to s1(B)T (B). That reflection
fixes T (A) and maps s1(B) to T (B).

The more likely possibility is that s1(B) is not on T (� AB �). In that
case, let s2 be the reflection across the bisector of ∠s1(B)T (A)T (B). Then
T (A) is on the line of reflection, so it will be fixed by s2. Furthermore,
the reflecting line cuts the triangle �s1(B)T (A)T (B) in two pieces, that,
by S·A·S, are congruent. Therefore the reflecting line is the perpendicular
bisector to s1(B)T (B)– and that means s2 will map s1(B) to T (B).

Here is where we stand after step two:

s2 ◦ s1(A) = s2 ◦T (A) = T (A),
s2 ◦ s1(B) = T (B).

A

B

C

The second reflection

s1(B)

s1(C)

T(A)

T(C)

T(B)
s2 ◦ s1(C)
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Step Three. That just leaves point C. As in the previous step, what we do
next depends upon where s2 ◦s1(C) is. There aren’t that many possibilities
at this point though. We know that s2 ◦ s1(AB) = T (AB), and we know
that s2 ◦ s1(�ABC) is congruent to �ABC, which is, in turn, congruent to
T (�ABC). There are only two ways to build that triangle on the given side
T (AB)– one on either side of it. If s2 ◦ s1(C) is on the same side of T (AB)
as T (C), then s2 ◦ s1(C) = T (C) already, so just let s3 be the identity map.
If s2 ◦ s1(C) is on the opposite side of T (AB) from T (C), then let s3 be the
reflection across the line T (AB). That fixes both T (A) and T (B), but maps
s2 ◦ s1(C) onto T (C).

Putting it all together,

s3 ◦ s2 ◦ s1(A) = T (A)
s3 ◦ s2 ◦ s1(B) = T (B)
s3 ◦ s2 ◦ s1(C) = T (C).

Since the two isometries agree on three non-collinear points, they must be
the same. As long as at least one of s1, s2, and s3 is a reflection, we have
met the requirements of the theorem. What if all of them are the identity
map though? In that case, T is the identity map, and the identity can be
written as the composition of any reflection s with itself: T = s◦ s.

Over the next few lessons, we will use this result to classify all isometries.
In the next lesson, we will look at what happens when you compose two
reflections. Then, after a little diversion, we will look at what happens
when you tack on a third reflection.

A

B

C

The third reflection

T(A)

T(C)

T(B)

s2 ◦ s1(C)
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The analytic viewpoint

It is a little messy to try to work out an equation for an arbitrary reflection
at this point. We can, however, work out an equation for a reflection across
a line that passes through the origin. Let’s close out this lesson by doing
so.

EQN: REFLECTION ACROSS A LINE THROUGH THE ORIGIN
Let � be a line through the origin, and let (a,b) be the coordinates of
an intersection of � with the unit circle. Then the reflection s across
this line is given by the equation

s
(

x
y

)
=

(
a2 −b2 2ab

2ab b2 −a2

)(
x
y

)

Proof. Since (a,b) is on the unit circle, it can be written as (cosθ ,sinθ).
Let D be the distance from the point (x,y) to the origin and let φ be its
angle measure as measured from the x-axis, in the counterclockwise di-
rection, so that

{
cosφ = x/D
sinφ = y/D

=⇒
(

x
y

)
=

(
Dcosφ
Dsinφ

)
.

If α is the angle between φ and θ , α = φ −θ , then s(x,y) will still be at a
distance D from the origin, but at an angle

φ −2α = φ −2(φ −θ) = 2θ −φ .

(a,b)

(x,y)

D
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Therefore
s
(

x
y

)
=

(
Dcos(2θ −φ)
Dsin(2θ −φ)

)

and we can use the addition rules for sine and cosine

s
(

x
y

)
=

(
Dcos(2θ)cos(−φ)−Dsin(2θ)sin(−φ)
Dsin(2θ)cos(−φ)+Dcos(2θ)sin(−φ)

)

=

(
Dcos(2θ)cosφ +Dsin(2θ)sinφ
Dsin(2θ)cosφ −Dcos(2θ)sinφ

)
.

This can factored into a matrix form, and from there, the double angle
formulas will take us the rest of the way.

s
(

x
y

)
=

(
cos(2θ) sin(2θ)
sin(2θ) −cos(θ)

)(
Dcosφ
Dsinφ

)

=

(
cos2θ − sin2θ 2sinθ cosθ

2sinθ cosθ sin2 θ − cos2 θ

)(
Dcosφ
Dsinφ

)

=

(
a2 −b2 2ab

2ab b2 −a2

)(
x
y

)
.

There are two special cases worth noting. The equation for reflecting
across the x-axis is

s
(

x
y

)
=

(
1 0
0 −1

)(
x
y

)

and the equation for reflecting across the y-axis is

s
(

x
y

)
=

(
−1 0
0 1

)(
x
y

)
.
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Exercises

1. What is the matrix equation for a reflection across the line y = x?

2. What is the matrix equation for a reflection across the horizontal line
y = k?

3. Let s1 and s2 be reflections across perpendicular lines �1 and �2 that
intersect at a point P. Show that if Q is any other point, then P is the
midpoint of the segment connecting Q to s2 ◦ s1(Q).
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The big result of the last lesson was that every isometry can be written as
a reflection, or as a composition of two or three reflections. In this lesson
we will look at the types of isometries that you can get by composing two
reflections. Of course, any reflection composed with itself results in the
identity, so we are really interested in compositions of two distinct reflec-
tions. In that case, there are essentially two scenarios.

Scenario 1: the reflecting lines are parallel
Scenario 2: the reflecting lines are intersecting

The two scenarios do describe two fundamentally different types of isome-
tries. In the second scenario, the intersection point of the two lines is fixed
by the composition of isometries. This doesn’t happen in the first scenario,
since there is no intersection point, and in fact, this type of composition
does not have any fixed points.

DEF: TRANSLATION AND ROTATION
A translation is a composition of reflections across parallel lines. A
rotation is a composition of reflections across intersecting lines.

These are strategic definitions– by defining translations and rotations as
compositions of isometries, it is automatically true that they will be isome-
tries as well. But these definitions do not do a good job of revealing what
a translation or rotation actually looks like. That is the purpose of this
lesson.

1 2 1 2
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Translation

First, let’s tackle the case of the translation. To do that, I think it is helpful
to back up a little bit, and to take a more measured look at the behavior of
a single reflection. Consider a reflection s across a line �. Let P be a point
that is not on � and let �⊥ be the line through P that is perpendicular to �.
Now let’s set up �⊥ as a number line. That is, choose an arbitrary point
O to be the origin, and a ray from O that points in the positive direction;
then every point on �⊥ has a “coordinate”– its signed distance from O.
Suppose that P is at coordinate x, and that � and �⊥ intersect at the point
Q with coordinate y. Given the definition of a reflection, s(P) has to be
somewhere on �⊥ as well, and so it too must correspond to some coordi-
nate. Well, what is that coordinate? The distance from P to Q is |y− x|.
Since s is an isometry and Q is a fixed point, the distance from s(P) to Q
is |y− x| too. That limits the possible coordinates for s(P) to:

y+ |y− x|=

{
y+(y− x) = 2y− x if y− x ≥ 0
y− (y− x) = x if y− x < 0

y−|y− x|=

{
y− (y− x) = x if y− x ≥ 0
y− (−(y− x)) = 2y− x if y− x < 0.

Since P is not on �, it is not a fixed point, so s(P) is not at the coordinate
x. The only other possibility, then, is that s(P) is at the coordinate 2y− x.
Note that this formula still works even if P is on �. In that case P is
fixed, so s(P) should also be at coordinate x. And that is what the formula
reveals: if P is on �, y = x, and so 2y− x = x. Having this little formula in
hand will make it a little easier to compose parallel reflections.

P
x Q

y

O

0
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THM: PROPERTIES OF A TRANSLATION
Suppose that t is the translation s2 ◦ s1 where s1 and s2 are reflections
across parallel lines �1 and �2 that are separated by a distance d. Then
for any point P, t(P) is located

1) on the line through P that is perpendicular to both �1 and �2,
2) in the direction of the ray that points from �1 to �2,
3) at a distance 2d from P.

Proof. Take a point P, and let �⊥ be the line through P that is perpendic-
ular to �1 and �2. By definition, s1(P) will still be on �⊥, and then so will
s2(s1(P)). Let’s just look along this line then, and, as in the preceding dis-
cussion, lay out a number line along it. It does not matter where you put
the origin on the line, but it does help the discussion to choose the positive
direction so that going from �1 to �2 moves in the positive direction. Then
mark these coordinates:

x: coordinate of P
y1: coordinate for the intersection of �⊥ and �1
y2: coordinate for the intersection of �⊥ and �2

According to our previous calculations, s1(x) will be at coordinate 2y1 −x
and s2 ◦ s1(x) will be at coordinate

2y2 − (2y1 − x) = x+2(y2 − y1) = x+2d.

Therefore s2 ◦ s1(P) will be 2d farther along the line �⊥ than P, in the
direction pointing from �1 to �2.

P
x y

O

0

1 2

s2 ◦ s1(P)

s1(P)

d
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1 2

P
Q

So you see, a translation moves all points along lines that are perpendic-
ular to �1 and �2. They all move in parallel, in the same direction, over
the same distance. All of that– the parallel lines, the direction, and the
distance– can be determined by looking at the effect of the translation on
a single point. That means that a translation is completely determined by
its behavior on a single point. And because of that, we can get a very
precise idea of how many translations there are.

THM: THERE ARE JUST ENOUGH TRANSLATIONS
Given any two distinct points P and Q, there is exactly one translation
t so that t(P) = Q.

Proof. Existence: Let’s just take the most straightforward approach and
describe a translation that maps P to Q. The two reflections, s1 and s2,
will be across lines that are perpendicular to PQ (and hence are parallel to
one another). Let s1 be the reflection across the line through P. Let s2 be
the reflection across the line through the midpoint of PQ. Then s2 ◦ s1 is a
translation and

s2 ◦ s1(P) = s2(P) = Q.

Uniqueness: Since a translation is completely determined by its behavior
on one point, there can be only one translation taking P to Q.

d

2d
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In the long run, it is cumbersome to try to think of a translation as a com-
position of reflections. The properties derived above give a much better
sense of the effects of a translation, and those properties can be formal-
ized as follows. A directed segment is a line segment that distinguishes
between the two ends: one is called the initial endpoint, the other the ter-
minal endpoint. We can define an equivalence relation on the set of all
directed segments as follows: two directed segments σ1 and σ2 are equiv-
alent if there is a translation t mapping σ1 to σ2, so that initial point is
mapped to initial point, and terminal point is mapped to terminal point.

DEF: VECTOR
A vector is an equivalence class of directed segments.

Associated to any transformation t is the vector that is represented by di-
rected segments of the form Pt(P) with initial point P and terminal point
t(P). That vector is both defined by and defines t. It is called the transla-
tion vector of t. It is almost always more convenient and natural to think
about a translation in terms of its translation vector rather than as a com-
position of reflections. For instance, if you think of a translation t as a
composition of reflections, it might not be that clear that t has no fixed
points. If you think of that translation in terms of its translation vector, it
is clear that no point P can be fixed by t, since Pt(P) is always a directed
segment with two distinct endpoints.

Some equivalence class representatives of the vector 〈1,2〉 (one over, two up).
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The transport of orientation

An orthonormal frame F= {PPx,PPy} is an ordered pair of perpendicular,
unit length segments that share a common endpoint. One such frame, F+,
centered at the origin with

P = (0,0) Px = (1,0) Py = (0,1),

is at the very heart of the coordinate system. There is another such frame,
F−, that shares the same first segment as F+, but that has Py = (0,−1). In
general, any frame can be viewed as a way to represent information about
orientation, the distinction between clockwise and counterclockwise. To
this point, we have only made that choice at the origin: in F+, the directed
minor arc from Px to Py points in the counterclockwise direction; in F−,
the directed minor arc from Px to Py points in the clockwise direction. But
translation now provides a vehicle to propagate that choice consistently
across the rest of the plane. For any point P, let t be the translation that
maps the origin to P. Then t(F+) is a frame centered at P indicating the
counterclockwise direction and t(F−) is a frame centered at P indicating
the clockwise direction.

P

t

(0,0)

(0,1)

(1,0)
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Rotations

The illustrations at the start of this lesson suggest that when �1 and �2
intersect, the rotation r = s2 ◦ s1 acts by turning points around the inter-
section point O. To measure the effect of this turning, we need to establish
an angular coordinate system around O (just as we established a linear co-
ordinate system on �⊥ when �1 and �2 were parallel). Choose a ray with
endpoint O– this marks the “zero angle”– and an orientation (clockwise
or counter-clockwise). After making those choices, every ray from O will
form an angle with r and we can then associate each point on the ray with
that angle measure. Before attempting two reflections, let’s back up and
try to understand how the angular coordinates of a point behave when hit
with just one reflection s across a line �. Pick a point O on �, and set up an
angular coordinate system as described. Let P be an arbitrary point that is
not on �. Then label

θ : the angular coordinate at P
φ : the angular coordinate of one of the rays from O that make up �.

The two choices of φ will be of the form θ and π + θ , but as far as this
calculation goes, it makes no difference which one you pick. The angle
between � and OP has a measure of |φ − θ |. Since isometries preserve
angle measure and the whole line � is fixed by s, the angle between � and
Os(P) also has a measure of |φ − θ |. That severly limits the possibilities
for the angular coordinates of s(P):

φ + |φ −θ |=
{

2φ −θ if φ −θ ≥ 0
θ if φ −θ < 0

φ −|φ −θ |=
{
θ if φ −θ ≥ 0
2φ −θ if φ −θ < 0.

P

O 0
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Since P is not on �, it is not fixed, and therefore s(P) will not be at angle
θ . The only other possibility, then, is that s(P) is at angle 2φ−θ . Further-
more, this formula still holds when P is on �. In that case, P is fixed, so
s(P) should also be at angle θ . That is indeed what the formula indicates:
if P is on �, then φ = θ , and so 2φ − θ = θ . Now let’s take that formula
and use it to figure out what happens when we compose two intersecting
reflections.

THM: PROPERTIES OF A ROTATION
Suppose that r is the rotation s2 ◦ s1 where s1 and s2 are reflections
across lines �1 and �2 that intersect at a point O at an angle of θ to
one another. For any point P, r(P) is located

1) on the circle centered at O that passes through P
2) so that OP and Os(P) form an angle with measure 2θ ,
3) in the direction indicated by the arc from �1 to �2.

Proof. Since s2 ◦s1 preserves distances and O is a fixed point, the distance
from O to s(P) is the same as the distance from O to P. That places s(P)
on the circle centered at O passing through P. Now where precisely is it
on that circle? As in the discussion above, set up an angular coordinate
system centered at O. Mark these coordinates:

α : the angular coordinate for P,
φ1: the angular coordinate for �1,
φ2: the angular coordinate for �2.

P

1

2

1

2

s2 ◦ s1(P)

s1(P)
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The intersection of �1 and �2 forms two vertical angle pairs. It is helpful
to make the clockwise/counterclockwise choice so that the directed angle
from �1 to �2 is the smaller of those two pairs (if �1 and �2 intersect at right
angles, then it doesn’t matter which orientation you choose). According
to the previous discussion, s1(P) will have the coordinate 2φ1 −α . Then
s2(s1(P)) will have the angular coordinate

2φ2 − (2φ1 −α) = α+2(φ2 −φ1) = α+2θ .

Therefore OP and Os(P) do form an angle of 2θ , measured in the direction
from �1 to �2.

It is generally just a lot more convenient to think of a rotation in terms of
the angle 2θ , the rotation angle, and the fixed point, the center of rotation,
rather than as a composition of reflections. For instance, by thinking of a
rotation in terms of its rotation angle and center, it is clear that a rotation
only has one fixed point– the center of rotation.

This viewpoint also gives a good perspective on just how common rota-
tions are. The proof of the following result is left to the reader.

THM: THERE ARE JUST ENOUGH ROTATIONS
For a given point O and angle measure 0 < θ < 2π , there is exactly
one clockwise rotation and exactly one counterclockwise with rota-
tion center O and rotation angle θ . When θ = π , the clockwise and
counterclockwise rotations coincide (this is called a half-turn).

A counterclockwise rotation by π/6 centered at O.

O
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The analytic viewpoint

From the analytic point of view, translations are the simplest of the isome-
tries. If we break the translation vector of a translation T down into a
horizontal component h and a vertical component k, then

T
(

x
y

)
=

(
x+h
y+ k

)
.

The equations for rotations are a little more challenging. In fact, for now,
let’s restrict our attention to rotations that are centered at the origin.

EQN: ROTATION AROUND THE ORIGIN
The analytic equation for a rotation r around the origin by an angle
θ in the counterclockwise direction is

r
(

x
y

)
=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)
.

Proof. We can realize this rotation as a composition of two reflections
across lines through the origin. For convenience sake, let’s choose the re-
flections s1 across �1 and s2 across �2, where:

�1 is the x-axis and
�2 forms an angle of θ/2 (counterclockwise) with the x-axis

1

2

(x,y)

(a,b)

(1,0)/2
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Then s2 ◦s1 will be a rotation by an angle of 2 ·θ/2 = θ . In the last lesson,
we found out that equations for these types of reflections take the form

s
(

x
y

)
=

(
a2 −b2 2ab

2ab b2 −a2

)

where (a,b) marks the intersection of the line and the unit circle. We can
put that equation to good use now. The first line intersects the unit circle
at (1,0), so

s1

(
x
y

)
=

(
1 0
0 −1

)(
x
y

)
.

The second line intersects the unit circle at (cosθ/2,sinθ/2), and so

s2

(
x
y

)
=

(
cos2(θ/2)− sin2(θ/2) 2cos(θ/2)sin(θ/2)

2cos(θ/2)sin(θ/2) sin2(θ/2)− cos2(θ/2)

)(
x
y

)
.

We can use the double angle formulas to rewrite

cos2(θ/2)− sin2(θ/2) = cos(θ),
2cos(θ/2)sin(θ/2) = sin(θ),

which simplifies the matrix considerably to

s2

(
x
y

)
=

(
cosθ sinθ
sinθ −cosθ

)(
x
y

)
.

To compute the composition of the transformations, just multiply the ma-
trices:

r
(

x
y

)
=

(
cosθ sinθ
sinθ −cosθ

)(
1 0
0 −1

)(
x
y

)

=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)
.
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Exercises

1. Prove that every isometry T can be written as a composition t1 ◦ t2
where t1 is a translation (or the identity) and t2 is an isometry that fixes
the origin.

2. Find the analytic equations for reflections across lines x = a and x = b.
Then verify that the composition of those reflections has the form of a
translation.

3. Suppose that r1 and r2 are counterclockwise rotations about the origin,
by angles of θ1 and θ2 respectively. Working from the matrix equations
for r2 and r1, show that the matrix equations for r2 ◦ r1 have the form
of a rotation or the identity.

4. Suppose that � is an invariant line of a rotation r. That is, if P is any
point on �, then r(P) is also on �. Show that � passes through the center
of rotation and the angle of rotation is π (r is then called a half-turn).

5. Take a vector �a,b�. Let S be the set consisting of the identity isometry
and all translations whose translation vectors have the form �ma,nb�.
Show that the composition of two elements of S is an element of S.
Show that the inverse of an element of S is an element of S. This
makes S a subgroup of the group of isometries.
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27 ORIENTATION
MIND YOUR p’S AND q’S.
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Earlier, we used translations to transport orientation (clockwise versus
counterclockwise) from the origin to the rest of the plane. This is not
a completely trivial issue because not all surfaces can be oriented consis-
tently like this. The most famous non-orientable surface is the Möbius
strip. It is formed by taking a strip, giving it a half-twist, and then joining
the two ends. A frame F on the Möbius strip can be translated from one
point to another in two different ways, t1 and t2, and the resulting frames
t1(F) and t2(F) are not oriented the same way. Fortunately, we do not
have this problem in the plane because there is only one translation from
one point to another.

In this lesson we look at how isometries interact with orientation. Since
all isometries are compositions of reflections, we can begin the process by
looking at reflections. Once we understand their effect on orientation, the
rest is pretty easy.

LEM: CONSISTENCY OF ORIENTATION
Let s be a reflection. If F1 and F2 are frames at a point P that are
oriented in the same direction, then s(F1) and s(F2) are frames at a
point s(P) that are oriented in the same direction.

One lap aroud the Möbius strip flips orientation.
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Proof. A frame is composed of two length one segments that form a right
angle. Since a reflection changes neither the length of a segment, nor the
angle between a pair of them, the reflection of a frame is a frame. The
issue of orientation is a bit more delicate. Let’s suppose that F1 and F2 are
oriented in the same direction, and then compare the orientations of s(F1)
and s(F2). To do that, label the components of each frame:

F1 =
{

v1
x, v1

y
}

s(F1) =
{

w1
x, w1

y
}

F2 =
{

v2
x, v2

y
}

s(F2) =
{

w2
x, w2

y
}

Let θ denote the angle between v1
x and v2

x . Since F1 and F2 are oriented in
the same direction, θ is also the angle between v1

y and v2
y . Now move on

over to the frames after the reflection. The angle between w1
x and w2

x still
has to be θ . And the angle between w1

y and w2
y has to be θ . Remember that

the orientation of a frame is essentially a choice: given the first segment,
there will always be two directions perpendicular to it. If we make the
wrong choice for w2

y (that is, we orient s(F1) and s(F2) oppositely), then
the angle between w1

y and w2
y will be π − θ , not θ . Generally, speaking,

that cannot happen, and that is sufficient to show that s(F1) and s(F2) must
be oriented in the same direction.

v1
y

The right and wrong choice for w2
y

v1
x

v2
x

v2
y

w1
x

w2
x

w1
y
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There is still ambiguity in one case though: the previous argument hinged
upon the fact that the angle between w1

y and w2
y must be θ , not π − θ ,

but those two angle measures could be the same, when θ = π − θ , so
when θ = π/2. The illustrations above show the possible scenarios. In
the first, the wrong choice of w2

y maps two distinct segments, v1
x and v2

y ,
to the same segment, which is not permitted since a reflection is one-to-
one. In the second, the wrong choice of w2

y maps one segment, v1
x = w2

y
to two different segments– again not permitted since a reflection is well-
defined.

THM: REFLECTIONS REVERSE ORIENTATION
A reflection s reverses the orientation of any frame F .

Proof. Let s be any reflection and � be the fixed line of that reflection.
While the theorem itself claims that s reverses any frame, the previous
lemma gives us a way to focus on a particularly well-suited subset. That
subset consists of frames of the form F = {vx,vy} where

1) vx is parallel to � (or runs along �), and
2) vy is perpendicular to �, pointing away from it.

At any point P, there are two frames that meet these conditions, one ori-
ented in the clockwise direction, the other in the counterclockwise direc-
tion. Therefore, for every frame f we can find a frame F of the form
described above which has the same orientation as f . According to the
previous lemma, s( f ) and s(F) must have the same orientation, so if we
can show that F and s(F) are oriented oppositely, then that will mean that
f and s( f ) are too. Essentially, the previous lemma lets us rotate f into
the more convenient position of F .

v1
x

v2
x

v2
y

v1
y

w1
x

w2
x

w1
y

v1
x

v2
x

v2
y

v1
y

w2
x

w1
y

w1
x
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To see whether s really does reverse orientation, we need to compare s(F)
to t(F), where t is the translation from the point P to its reflection s(P).
Note that t will map vx to s(vx)– that is the advantage of this particular
subset of frames– so the question of whether s(F) and t(F) have the same
orientation really just comes down to a comparison of s(vy) and t(vy). To
that end, label the endpoint of vy as Q. Let d be the distance from � to P so
that t is a translation by 2d. Set up a coordinate axis on the line through
vy and s(vy) so that � intersects it at the origin and the ray vys(vy)� points
in the positive direction. Compare coordinates:

Q : −d −1
s(Q) : d +1
t(Q) : (−d −1)+2d = d −1.

f
F

–d

–d–1

d–1

d+1

d

P

Q

s

t
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If s were to preserve the orientation of F , then s(Q) and t(Q) would be the
same so s(Q) and t(Q) would have the same coordinates:

d +1 = d−1 =⇒ 2 = 0.

This cannot happen.

DEF: ORIENTATION PRESERVING/REVERSING
An isometry is orientation-preserving if it maps clockwise frames to
clockwise frames and counterclockwise frames to counterclockwise
frames. A isometry is orientation-reversing if it swaps clockwise and
counterclockwise frames.

Because reflections are orientation reversing, and because every isome-
try is a composition of reflections, determining what an isometry does to
orientation is essentially just a matter of counting flips.

COR: ORIENTATION AND COMPOSITION
A composition of two orientation-preserving maps is orientation pre-
serving; a composition of two orientation-reversing maps is orien-
tation preserving; a composition of one orientation-preserving map
and one orientation-reversing map is orientation-reversing.

COR: CLASSIFICATION OF ISOMETRIES BY ORIENTATION
Translations, rotations and the identity map are orientation-preserving.
They are the only orientation-preserving isometries.

Let’s now recap our progress in the classification of isometries.

# of refns isometry orientation fixed pts
1 reflection reversing line
2 identity preserving all

translation .. none
rotation .. point

3 ? reversing ?

In the next lesson we find what goes in place of those questions marks.
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Exercises

1. Show that if τ is an orientation-preserving isometry which fixes two
points, then it must be the identity. Show that if τ is an orientation-
preserving isometry which has at least one fixed one point, and at least
one non-fixed point, then it must be a rotation.

2. Let τ1 be a counterclockwise rotation by π/2 about the origin. Let τ2
be a counterclockwise rotation by π/2 about the point (1,0). Show
that τ1 ◦ τ2 is a rotation.
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So now let’s look at a composition of three reflections. The first two re-
flections will get us to either the identity map, a translation, or a rotation.
We are going to add another reflection to that. Composing a reflection
with the identity will, of course, give a reflection. What about composing
a reflection with a translation or a rotation? That is the subject of this
lesson.

Glide reflections

Straight off, we can see that, yes, there is a fundamentally new type of
isometry here. Just take a reflection s across a line � followed by a transla-
tion t whose translation vector is parallel to �. The composition t ◦s swaps
the two sides of � and translates along �. Therefore it has no fixed points.
We have only seen one type of isometry that has no fixed points so far– a
translation. But this isometry, a composition of three reflections, will be
orientation-reversing, so it can’t be a translation.

DEF: GLIDE REFLECTION
A glide reflection is a composition of a translation t followed by a
reflection s across a line that is parallel to the translation vector.

The path of a few points under a glide reflection.
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The quadrilaterals share two sides, Ps(P) and Pt(P), and since the reflec-
tion and translation are perpendicular motions, both quadrilaterals have
right angles at three of the four vertices, at P, s(P), and at t(P). That of
course means that the fourth angle must also be a right angle, and so the
two quadrilaterals are in fact rectangles. Well, there is only way to build
a rectangle given two of its adjacent sides. Therefore s◦ t(P) and t ◦ s(P)
must be the same.

In general, you can’t just switch the order that you compose isometries
and expect to get the same answer. But the s and t that make up a glide
reflection are interchangeable.

LEM: SWAPPING GLIDE COMPONENTS
Let s be a reflection across a line � and let t be a translation parallel
to �. Then s◦ t = t ◦ s.

Proof. If P is a point on the reflecting line �, then so is its translation t(P),
and in that case, the reflection has no effect on either one of them, so

s◦ t(P) = t(P) = t ◦ s(P).

Now suppose that P is not on �. In that case, let’s compare the two quadri-
laterals

1) with vertices P, s(P), t(P), and s◦ t(P);
2) with vertices P, s(P), t(P), and t ◦ s(P).

t(P)

s(P)

P

t ◦ s(P)

s◦ t(P)
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Proof. Look at the effect of the composition of τ and t−1 on the points of
the line �:

t−1 ◦ τ(P) = t−1 ◦ t(P) = P.

It fixes all the points on �. Assuming τ �= t, t−1 ◦ τ cannot be the iden-
tity map. The only other isometry that fixes an entire line is a reflection.
Therefore t−1 ◦ τ = s where s is the reflection across the line �, and so
τ = t ◦ s = s◦ t is a glide reflection.

By itself, that lemma is already useful, but we can punch it up even more
by combining it with the next one.

LEM: RECOGNIZING GLIDE REFLECTIONS II
Let τ be an isometry and let t be a translation. Suppose that for two
distinct points P and Q, τ(P) = t(P) and τ(Q) = t(Q). Then τ = t
for all points on the line �PQ�.

For what we are going to do, we need an easy way to recognize glide
reflections in the field. The key is that if you narrow your focus down to
just the reflecting line, a glide reflection looks just like a translation. I call
this line of reflection the “glide line”, and the distance of translation along
that line the “glide distance”.

LEM: RECOGNIZING GLIDE REFLECTIONS I
Let τ be an isometry, and suppose that there is a line � and a transla-
tion t so that τ(P) = t(P) for all points P on �. If τ �= t, then τ is a
glide reflection.

P t−1

t = τ
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Proof. Again look at the composition t−1 ◦ τ :

t−1 ◦ τ(P) = P t−1 ◦ τ(Q) = Q.

Since t−1 ◦ τ fixes these two points, it must fix all points on �PQ�. That
is, t−1 ◦τ(R) = R for all points R on �PQ�. Composing t with both sides
of this equation, τ(R) = t(R) for all R points on �PQ�. Therefore τ and
t agree for all points on �PQ�.

By combining those two lemmas we get: an orientation-reversing isom-
etry that agrees with a translation on two distinct points must be a glide
reflection.

Compositions of three reflections

Let’s start the hunt by looking at what happens when we compose a trans-
lation and a reflection. If the translation is parallel to the line of reflection,
of course, then that is the very definition of a glide reflection. But what if
the translation is not along the reflecting line?

THM: TRANSLATION AND REFLECTION
Let t be a translation with translation vector v, let s be a reflection
across line �, and let θ be the angle between v and �. Then s ◦ t
is a glide reflection whose glide line is parallel to �, at a distance
(|v|sinθ)/2 from �, and whose glide distance is |v|cosθ .

P

Q

1 2 3

A composition of three reflections
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Proof. As the previous lemmas suggest, if we want to show that s◦ t is a
glide reflection, then we need to find its glide line. The best way to do that
is to experiment around with the translation-reflection combination. You
are looking for a line along which s ◦ t acts as a translation– first t will
move the points off the glide line, and then s will move them back, shifted
from their original location.

It turns out that the glide line �� is a line that runs parallel to �. It is
on the opposite side of � from the direction that v points, and is separated
from � by a distance of (|v|sinθ)/2. Let’s verify that �� really is the glide
line, and therefore that s◦ t is a glide reflection. Take a point P on ��. We
can break the translation t(P) down into two steps: first a translation by
|v|cosθ along ��, and then a translation by |v|sinθ perpendicular to ��.
The second translation means that t(P) is located on the opposite side of
� from P, at a distance of (|v|sinθ)/2 from �. Therefore, when we apply
the reflection s to t(P), the result s◦ t(P) is back on the line ��, but shifted
up from P a distance of |v|cosθ . All the points on �� exhibit this behavior,
so s◦ t acts as a translation along ��. Since s◦ t is orientation-reversing, it
cannot be a translation. According to the lemma above, it must be a glide
reflection.

P

v

2

1

|v|sinθ|v|cosθ1 2
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We have taken care of combinations of a translation with a reflection–
what happens when we combine a reflection and a rotation? There really
are two scenarios, depending upon whether or not the reflecting line passes
through the center of rotation. The scenario where the reflecting line does
pass through the rotation center is a little bit easier, so let’s start with that
one.

THM: ROTATION AND REFLECTION I
Let r be a rotation by an angle of θ centered at a point O, and let
s be a reflection across a line � that passes through O. Then s ◦ r is
a reflection across a line that passes through O and forms a (signed)
angle of −θ/2 with �.

Proof. First notice that O is a fixed point of s ◦ r. If we can find just one
other fixed point, then that will mean that the entire line between them is
fixed. As a result, s ◦ r will either be the identity or a reflection, and s ◦ r
can’t be the identity since it is orientation-reversing. So really, this is just
a matter of finding a point where the action of the reflection undoes the
action of the rotation. Take a point P on � other than O and rotate it by
−θ/2 about O (that is, rotate it in the opposite direction from r) to a point
Q. This point Q is the one we want: Or(Q)� will form an angle of θ/2
with �. Reflecting back across �, Os◦ r(Q)� will again form an angle of
−θ/2 with �. Since its distance from O remains unchanged throughout
this whole operation, that means s◦ r(Q) = Q.

θ/2

P

Q

O

r(Q)
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If the reflecting line does not pass through the center of rotation, then the
situation is more complicated.

THM: ROTATION AND REFLECTION II
Let r be a rotation by an angle of θ centered at a point O, let s be a
reflection across a line � that does not pass through O, and let Q be
the closest point on � to O. Then s◦r is a glide reflection along a line
that passes through Q at an angle of θ/2 to �.

Proof. This theorem claims that s◦ r is a glide reflection, and if that is the
case, then we need to find its glide line. Let’s use the following labels:

P = (s◦ r)−1(Q)
R = (s◦ r)(Q)
R� = r(Q)
FP: the foot of perpendicular from P to �
FR: the foot of perpendicular from R to �

Note that the labels are set up so that s ◦ r will move P to Q and Q to
R. It turns out that the glide line is the line through P, Q, and R. Now,
ultimately there are a two things to do to show that. First, we need to show
that P, Q, and R are in fact collinear. Second, we need to show that s ◦ r
moves P and Q in the same way that a translation does– that it moves P
and Q the same distance in the same direction– essentially this means we
need to show that |PQ|= |QR|. If we can show both of those things, then
that means s◦ r will have to be a glide reflection.

P

Q

R

FP

FR R

O
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We can do it– we just need to use some congruent triangles.

1. By S·A·S, �OQP ��OQR�.
2. By A·A·S, �PQFP ��R�QFR.
3. By S·A·S, �R�QFR ��RQFR.

Therefore, �PQFP and �RQFR are congruent. Their corresponding an-
gles ∠PQFP and ∠RQFR are congruent, and since FP, Q, and FR are
collinear, that means that P, Q, and R must be collinear too. Furthermore,
by comparing the lengths of the hypotenuses of these congruent triangles,
|PQ| = |QR|. Therefore s ◦ r acts like a translation for the two points P
and Q. It follows that s◦ r acts like a translation for all points on that line.
Since s◦r is not a translation (it is orientation-reversing), it must be a glide
reflection.

P

Q

R

FP

FR Q

R
R

P

Q

O

R

FR

1 2 3
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That’s it! We have looked at all possible combinations of at most three
reflections and seen the following types of isometries: the identity, reflec-
tions, translations, rotations, and glide reflections. Let’s put it all together
in a convenient table.

THE ISOMETRIES OF THE EUCLIDEAN PLANE.

# of refns isometry orientation fixed pts
1 reflection reversing line
2 identity preserving all

transation .. none
rotation .. point

3 glide reflection reversing none

The four non-identity Euclidean isometries.

Reflection Translation Rotation Glide
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Exercises

1. Give analytic equations for the glide reflection formed by reflecting
across the line y = mx and then translating a distance d along this line
(choose the translation vector so that it points from the origin into the
first quadrant).

2. We saw that the composition of a rotation and a reflection is a glide
reflection if the center of rotation is not on the line of reflection. What
is the glide distance in this case (in terms of the rotation center, the
rotation angle, and the line of reflection)?

3. Let r be a counterclockwise rotation by π/4 about the origin. Let s
be the reflection across the line y = x+ 1. What is the equation of the
glide line of the glide reflection s◦ r?

4. Let g be a glide reflection. What is the minimum number of points
required to completely determine g (to find both its glide line and glide
distance)?

5. Describe the isometries τ that satisfy the condition τ2 = id. Describe
the isometries that satisfy the condition τn = id for n > 2.

6. Show that the composition of a glide reflection and reflection is either a
rotation or a translation. Give specific examples in which each outcome
occurs.

7. Show that the composition of two glide reflections is either the identity,
a rotation, or a translation. Give specific examples in which each of
these outcomes occurs.



392 LESSON 28



29 CHANGE OF COORDINATES



394 LESSON 29

Vector arithmetic

In the lesson on translation and rotation, I introduced vectors, but did little
more than define them. Let’s take a more detailed look at vectors now. In
general, a vector holds two pieces of information: a length and a direction.
It is represented by a directed segment, and it is common to distinguish the
two endpoints of that segment with the names “tail” and “head”, so that
the segment points from the tail to the head. There is one exception: the
zero vector is a vector with length zero and no direction. You can think
of it as the degenerate case that occurs when a segment shrinks all the
way down to a point and the head and tail merge. It is common practice
to conflate a vector with one of its representative directed segments, and
there is generally no problem with that. For now, I think it is probably a
good idea to maintain a little distance between the two: for this section
I will write �v for a vector, and v for one of its representative directed
segments. Once we are out of this section, I will do as everyone else does,
and just mix up the two notions.

One of the strengths of vectors is that they have an inherent arithmetic
that points do not. Any two vectors can be added together using a “head-
to-tail” procedure as follows. Given any two vectors �u and �v, their sum
�u+�v is the vector which is represented by a directed segment u+ v that
is defined as follows. Let u be any representative of �u and let v be the
representative of�v whose tail is located at the head of u. Then u+ v is the
directed segment from the tail of u to the head of v.

v

v

2v

–v

–2vu

u+v

Vector addition Scalar multiplication
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Any vector �v can be multiplied by any real number r. The resulting
vector r ·�v is represented by a directed segment that

1) has the same tail as v and is on the same line as v,
2) has length |r| · |v|, and
3) is in the same direction as v if r > 0 and in the opposite if r < 0.

Note that each of these calculations requires a choice of representatives.
This raises a potential issue: these operations may not be well-defined–
different choices for the representatives could conceivably lead to different
answers. It’s not too hard to see that this is not the case. I will leave it as
an exercise.

There is an analytic side of the story too. Let�v be a vector represented
by a directed segment v, and mark:

(tx, ty): the coordinates of the tail of v;
(hx,hy): the coordinates of the head of v.

Then hx − tx is called the horizontal component or x-component of �v, and
hy − ty is called the vertical component or y-component of �v. Note that
these values do not depend upon the choice of v. We write the vector �v in
terms of its components as�v = �hx − tx,hy − ty�.

v

hx − tx

hy − ty

(tx, ty)

(hx,hy)

The horizontal and vertical components of a vector.
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LEM: ADDITION
Let �u = �ux,uy� and�v = �vx,vy�. Then �u+�v = �ux + vx,uy + vy�.

Proof. Position u and v head-to-tail. Label the coordinates of the tail of u
as (px, py), of the head of v as (qx,qy), and of the head of u, which is the
tail of v, as (rx,ry). Then the horizontal component of �u+�v is

qx − px = (qx − rx)+ (rx − px) = ux + vx,

and the vertical component of �u+�v is

qy − py = (qy − ry)+ (ry − py) = uy + vy.

LEM: SCALAR MULTIPLICATION
Let�v = �vx,vy� and k be a real number. Then

k ·�v = �kvx,kvy�.

Proof. From the previous part, we can break�v down into two vectors, one
containing the horizontal component, the other the vertical:

�v = �vx,0�+ �0,vy�.

v

u

P

R

Q

rx − px

ry − py

qy − ry

qx − rx



397CHANGE OF COORDINATES

These two vectors, together with �v itself, form a right triangle. Similarly,
we can form a right triangle from k ·�v and its horizontal and vertical com-
ponents. Now note that these two triangles are similar. Comparing the
two hypotenuses, the (signed) scaling factor between those triangles is k.
Scaling the legs by the same amount, k ·�v has a horizontal component of
kvx and a vertical component of kvy.

THM: PROPERTIES OF VECTOR ARITHMETIC
The following are true for all vectors �u,�v and �w and for all real num-
ber k and l:

1. Additive associativity: (�u+�v)+�w =�u+(�v+�w)
2. Additive commutativity: �u+�v =�v+�u
3. Additive identity: the sum of the zero vector and�v is�v
4. Additive inverse: every vector �v has an additive inverse �w so

that�v+�w is the zero vector
5. Distributive 1: k(�u+�v) = k�u+ k�v
6. Distributive 2: (k+ l)�v = k�v+ l�v
7. Multiplicative associativity: kl(�v) = k(l�v)
8. Multiplicative identity: 1(�v) =�v

These properties are really more linear algebra than geometry, so I will
not take the time to verify them.

k>0 k<0

kv

kv

v

v
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Vectors and points are not the same thing, so point coordinates (x,y)
should not be equated with vector components �x,y�. There is, however, a
useful conduit between the two. If �v = �x,y�, then the representative of �v
that has its tail at the origin will have its head at the point with coordinates
(x,y). In fact, I have already used this correspondence: to be proper, the
input of a matrix equation for an isometry is a vector �x,y�, not a point’s
coordinates (x,y).

Before moving on, there is one more term to define. The norm (or
length, or size, or magnitude) of a vector�v, written |�v|, is the length of any
of its representative segments. Using the distance formula, the norm of a
vector may be calculated from its components to be

|�vx,vy�|=
√

(vx)2 +(vy)2.

Change of coordinates

Our study of the analytic side of geometry began with choices about where
to put the origin, and how to point the x- and y-axes. A frame provides
that same information– the vertex of the frame is the origin, and the two
segments vx and vy point in the directions of the positive x- and y-axes. In
essence, then, each frame F determines a coordinate system CF . In prac-
tice, there are times when it is convenient to switch from one coordinate
system, say CF , to another coordinate system, say CG. To do that, we need
to understand how a point’s CF coordinates are related to its CG coordi-
nates. As you might expect, the key to this is an isometry that maps the
frame F to the frame G.

vx

v vy
|v|=

√
(vx)

2 +(vy)
2
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There are a few more things that we need to know before we can proceed.
First, we need to know that there is an isometry from F to G. Second, in
the course of the proof, we will need to use a linearity property of matrices
(that you may have seen in, say, a linear algebra course).

THM: THERE ARE JUST ENOUGH ISOMETRIES
There is a unique isometry from any frame to any other frame.

THM: THE LINEARITY OF MATRIX OPERATIONS
If M is a matrix, v1 and v2 are vectors, and k is a constant, then

1. M(v1 + v2) = Mv1 +Mv2
2. M(kv1) = kM(v1)

I will leave the proofs of both of these results to you. For the first, you
should be able to model your proof on the argument I gave in Lesson 24
where I computed a general form of the analytic equations of all isome-
tries. For the second, you are only really obligated to deal with 2× 2
matrices (since that is all we will be using), in which case the calculations
are not hard at all. Now back to business.

THM: CHANGE OF COORDINATES
Let CF and CG be the coordinate systems determined by the frames
F and G respectively, and let T be the isometry from F to G. Then
the CG coordinates of a point P are the same as the CF coordinates of
T−1(P).

Coordinates of three points in three systems

(4,1)
(2,6)

(–2,3)

(5,3)
(0,7)

(–3,1)
x

x

x

y

y

y

(–4,2)
(1,–2)

(6,2)
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Proof. Start by taking a look at the isometry T and its inverse. From our
work on analytic isometries, we know quite specifically what forms the
equations of T can have. In general, we can write

T
(

x
y

)
= M

(
x
y

)
+

(
e
f

)

where M is some 2× 2 matrix. Note that since we want to know about
the CF coordinates of T−1(P), this matrix M must be set up in the CF
coordinate system (for instance, if M represents a rotation about the origin,
then it is the CF origin). This equation for T is a matrix manifestation of an
equation of the form Y = MX +B. To find the inverse of such an equation,
you switch the X and Y , then solve for the Y :

X = MY +B =⇒ Y = M−1(X −B).

Thus T−1 can be written in the form

T−1
(

x
y

)
= M−1 ·

((
x
y

)
−
(

e
f

))
.

Now let’s turn our attention to the frames F and G and the coordinate
systems that they define. Let F = {vx,vy} and G = {wx,wy} and let OF
and OG be the vertices of the frames F and G, respectively. They serve
as the origins of the CF and CG coordinate systems. Note that T (OF) =
OG and and that, in the CF coordinate system, OF has coordinates (0,0).
Therefore, in the CF coordinate system, the coordinates of OG are

T
(

0
0

)
= M

(
0
0

)
+

(
e
f

)
=

(
e
f

)
.

OF : (0,0)

OG : (e, f )

vx

vy

wx

wy

T
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Finally, we can talk about the coordinates of a general point P. When
we say that P has coordinates (x,y) in the CG coordinate system, what
that means is that the vector from OG to P can be written as the linear
combination x�wx + y�wy (where �wx and �wy are the vectors represented by
the segments wx and wy directed to point away from OG). In terms of the
CF coordinate system, then, the vector from OF to P can be written as

x�wx + y�wy+

(
e
f

)
.

From that, we can now compute T−1(P). Along the way, we will use the
fact that the matrix multiplication acts linearly, as discussed right before
the start of this proof.

T−1(P) = T−1
(

x�wx + y�wy +

(
e
f

))

= M−1
((

x�wx + y�wy+

(
e
f

))
−
(

e
f

))

= M−1(x�wx + y�wy)

= M−1(x�wx)+M−1(y�wy)

= x ·M−1(�wx)+ y ·M−1(�wy)

Now T maps the segments vx and vy to wx and wy respectively. It therefore
maps the vectors �vx and �vy to �wx and �wy. In fact, though, the situation with
the vectors is a little simpler. The map T has two components: a matrix
component M and a translation component B. The translation compo-
nent has no effect on the vectors– translating a representative of a vector
just gives another representative of the same vector– as far as vectors are
concerned, all the effect of T is contained in the matrix M. Therefore
M(�vx) = �wx and M(�vy) = �wy, and so M−1(�wx) = �vx and M−1(�wy) = �vy.
Plugging those in,

T−1(P) = x�vx + y�vy,

and so the coordinates for T−1(P) in the CF coordinate system are (x,y),
the same as the coordinates for P in the CG system.
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The real value of this theorem is in situations where calculations are dif-
ficult to work out in one coordinate system, but easy in another. In order
for you to get a more concrete sense of this result, though, let me look at
a few examples where coordinates of a point can be easily determined in
both systems.

Example 1. Let G be the frame {wx,wy} where in CF coordinates,

◦ wx has endpoint (3,4) and (4,4), and
◦ wy has endpoint (3,4) and (3,5).

Consider a point P with CF coordinates (6,3). It is clear that its CG coor-
dinates should be (3,−1). Let’s see if the previous theorem confirms that.
The isometry T that maps F to G is a translation by �3,4�. Its inverse is
the translation in the opposite direction:

T−1
(

x
y

)
=

(
x
y

)
−
(

3
4

)
,

and so, as anticipated,

T−1
(

6
3

)
=

(
6
3

)
−
(

3
4

)
=

(
3
−1

)
.

wx

wy

T

(6,3)

(0,0)

(3,4)
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Example 2. Let G be the frame {wx,wy} where in CF coordinates,

◦ wx has endpoint (2,0) and (1,0), and
◦ wy has endpoint (2,0) and (2,1).

Consider a point P with CF coordinates (3,2). Again, we can see that the
CG coordinates should be (−1,2). This time, the isometry that maps F to
G is a reflection that is given by the equation

T
(

x
y

)
=

(
−1 0
0 1

)(
x
y

)
+

(
2
0

)
=

(
−x
y

)
+

(
2
0

)
=

(
2− x

y

)
.

Since it is a reflection, it is its own inverse and we can calculate

T−1
(

3
2

)
=

(
2−3

2

)
=

(
−1
2

)
.

In the last few lessons, we worked out the matrix equations for some,
but not all, isometries– in particular, we only gave equation for rotations
about the origin and reflections across lines through the origin. With the
right change of basis, we can now move the origin around, and so get
equations for any rotation or reflection. Let’s consider an example.

wx

wy

T

(3,2)

(0,0) (2,0)
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Example. Suppose we want to find the matrix equation of a counterclock-
wise rotation by π/2 around the point (3,1). Begin with the coordinates
(x,y) of an arbitrary point P. Now, the only formula we have for a rotation
is one for rotation about the origin. In order to use that formula, we are
going to have to switch to a coordinate system with (3,1) as its origin. We
can do it with a translation. There are three steps to the process:

1. Find the coordinates of P in the new coordinate system.
The translation T : (x,y) �→ (x + 3,y + 1) takes the current coordinate
frame to one with the origin at (3,1). To find the coordinates of P in
the new system, we just need to calculate T−1(P).

2. Calculate the rotation of this point.
The matrix for this rotation is

(
cosπ/2 −sinπ/2
sinπ/2 cosπ/2

)
=

(
0 −1
1 0

)
.

3. Write the the result in the original coordinate system.
Going the other direction, we now need to apply T to the result.

Combining those three steps gives the equation of the rotation:

R
(

x
y

)
=

(
0 −1
1 0

)[(
x
y

)
−
(

3
1

)]
+

(
3
1

)

=

(
0 −1
1 0

)(
x−3
y−1

)
+

(
3
1

)

=

(
1− y
x−3

)
+

(
3
1

)

=

(
4− y
x−2

)
.

This single example illustrates the general procedure. Let τ be an isom-
etry. Suppose F and G are frames and that S is the matrix equation of
the isometry that maps F to G (written in terms of the F-coordinate sys-
tem). Suppose that τ can be expressed as a matrix equation T in the
G-coordinate system. Then τ can be expressed as the matrix equation
S◦T ◦S−1 in the F-coordinate system.
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Exercises

1. Verify that vector addition is commutative and associative.

2. Prove that there is a unique isometry from any (orthonormal) frame to
any other (orthonormal) frame.

3. Prove the theorem in the lesson called “The Linearity of Matrix Oper-
ations”. You may assume that M is a 2× 2 matrix and that v1 and v2
are vectors in the plane.

4. What is the image of the point (3,0) under the counterclockwise rota-
tion by an angle π/6 about the point (1,1)?

5. What is the matrix equation for a glide reflection whose glide line is
y = 2x+ 1 and whose glide distance is 5 (and the glide vector points
from the origin into the first quadrant)?

6. Use a change of coordinates to find the general form for the counter-
clockwise rotation by an angle θ about a point (h,k).

7. Use a change of coordinates to find the general form for the reflection
across the line y = mx+b.

8. (a) Show that the composition of two translations is either a translation
or the identity.
(b) Show that the composition of a translation and a rotation is a rota-
tion.
(c) Show that the composition of two rotations is: (1) a translation or
the identity if the sum of the rotation angles is a multiple of 2π; (2) a
rotation otherwise.
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Similarity mappings

Throughout our study of Euclidean geometry, we have dealt with two fun-
damentally important equivalence relations for triangles– congruence and
similarity. The isometries of the last few lessons are closely tied to the
congruence relation: if T is any triangle and τ is any isometry, then τ(T )
is congruent to T . In this lesson, we will look at mappings that are tied to
the similarity relation.

DEF: SIMILARITY MAPPING
Def. A bijective mapping σ of the Euclidean plane is called a sim-
ilarity mapping if for every triangle T , T and its image σ(T ) are
similar.

The first and most important thing to do is to understand the effect that a
similarity mapping will have on distance.

THM: SIMILARITY MAPPINGS AND DISTANCE
A bijection σ is a similarity mapping if and only if it scales all dis-
tances by a constant. That is, σ is a similarity mapping if and only
if there is a positive real number k so that |σ(AB)| = k|AB| for all
segments AB.

Proof. =⇒ First suppose that σ scales all distances by a constant k. Then
given any triangle �ABC,

|σ(AB)|= k|AB| |σ(AC)|= k|AC| |σ(BC)|= k|BC|.

σ(C)

σ(B)

σ(A)

B

C

x y

ky kz

kx

zA
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By the S·S·S similarity theorem, �ABC and σ(�ABC) are similar, and
so σ meets the requirements of a similarity mapping.

⇐= Now suppose that σ is a similarity mapping. We need to show
that σ scales all distances by a constant– suppose instead that there are
two segments s1 and s2 that are not scaled by the same amount. From that,
we will try to get to a contradiction. This proof uses some triangles, and
in order to guarantee that the triangles will be properly formed, I need s1
and s2 to be in “general position”, so that no three endpoints of s1 and
s2 are collinear. Of course it is possible that s1 and s2 are not in general
position– what to do in that case? Choose another segment, s3, and get
it right this time: choose one whose two endpoints are not on any of the
lines formed by a pair of endpoints from s1 and s2. This new segment
may be scaled by the same amount as s1, or it may be scaled by the same
amount as s2, or it may be scaled by an entirely different amount. In any
case, s3 can’t be scaled by the same amount as both s1 and s2 since they
themselves differ. So now we have a setup with two segments in general
position with different scaling constants. Label them AB and CD.

Consider �ABC. Since σ is a similarity mapping, σ(�ABC) is similar to
�ABC. There is, then, a constant k so that

|σ(AB)|= k|AB| & |σ(BC)|= k|BC|.

Second, σ(�BCD) is similar to �BCD. We already know that |σ(BC)|=
k|BC|, and so |σ(CD)|= k|CD|. But that then means that AB and CD are
scaled by the same amount, a contradiction.

σ(A)
A

C

B

D
σ(D)

σ(C)

σ(B)s1

s2

s3

Fix a bad arrangement by replacing s2 with s3. Then look at similar triangles.
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Let’s investigate some of the properties of a similarity mapping σ .

LEM: SEGMENT CONGRUENCE
If AB � A�B�, then σ(AB)� σ(A�B�).

Proof. This follows immediately from the previous theorem since seg-
ments are congruent when they are the same length, and since

|σ(AB)|= k|AB|= k|A�B�|= |σ(A�B�)|.

LEM: ANGLE CONGRUENCE
1. For any angle ∠A, σ(∠A)� ∠A.
2. If ∠A � ∠A′, then σ(∠A)� σ(∠A′).

Proof. 1. Mark points B and C on the two rays forming A to make a tri-
angle �ABC. Since σ is a similarity mapping, σ(�ABC) is similar to
�ABC. The corresponding angles in similar triangles are congruent, so
σ(∠A)� ∠A.

2. If ∠A � ∠B, then using the first part,

σ(∠A)� ∠A � ∠A′ � σ(∠A′).

B

A A

B CB

A A

Congruence of segments. And of angles.
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Note that this property together with the distance scaling property means
that a similarity mapping will map any polygon to a similar polygon, not
just triangles.

LEM: INCIDENCE AND ORDER
If A∗B∗C, then σ(A)∗σ(B)∗σ(C).

Proof. Since A∗B∗C, |AC|= |AB|+ |BC|. Multiply through by the scal-
ing constant k to get

k|AC|= k|AB|+ k|BC|
|σ(AC)|= |σ(AB)|+ |σ(BC)|.

This is the degenerate case of the triangle inequality. The only way it can
be true is if σ(A), σ(B), and σ(C) are all collinear, and σ(B) is between
σ(A) and σ(C).

More generally, the images of any number of collinear points are collinear,
and their order is retained. Essentially, while similarity mappings distort
distances, they do so in a relatively tame way, and the key synthetic rela-
tions of incidence, order, and congruence, are preserved.

B

C

A

The image of B has to be at the intersection of the circles.
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Dilations

We have looked at some properties of similarities without ever really ask-
ing whether there are in fact mappings (other than isometries) that meet
this condition. There are, of course– we use them daily whenever we use
a map, or a blueprint, or a scale model.

DEF: DILATION
Let O be a point and k be a positive real number. The dilation by a
factor of k centered at O is the map d of the Euclidean plane so that
1. d(O) = O, and
2. for any other point P, d(P) is the point on OP� that is a distance
k|OP| from O.

Dilations are also called scalings, dilatations, and occasionally homoth-
eties. First of all, it is clear that a dilation is a bijection (that it is both
one-to-one and onto). In fact, it is easy to describe its inverse: if d is the
dilation by k centered at O, its inverse is another dilation centered at O,
this time by a factor of 1/k. When k = 1, d is the identity map. Otherwise,
a dilation will not be an isometry– it will alter distance.

0 x kx kyydist. from O:
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THM: DILATIONS AND DISTANCE
A dilation is a similarity mapping.

Proof. Let d be a dilation centered at O with a scaling factor of k. By def-
inition, any segment with one endpoint on O will be scaled by k. To show
that d is a similarity mapping, we need to show that any other segment AB
is scaled by that same amount. There are a handful of cases to consider.

1. Suppose that A and B are on the same ray from O, and for the sake
of convenience, let’s suppose that A is between O and B. Then d(A) and
d(B) are still on that same ray from O, at respective distances of k|OA|
and k|OB|, and so d(A) is still between O and d(B). Therefore

|d(AB)|= |d(OB)|− |d(OA)|
= k|OB|− k|OA|
= k(|OB|− |OA|)
= k|AB|.

2. Suppose that A and B are on opposite rays from O. Then d(A) and d(B)
are also on those same opposite rays, and so

|d(AB)|= |d(OA)|+ |d(OB)|
= k|OA|+ k|OB|
= k(|OA|+ |OB|)
= k|AB|.

O

O

A

A

B

B

k|OA|

k|OB|

k|OA|

O∗A∗B

A∗O∗B
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3. Surely the most common case, though, is when A and B are neither
on the same ray, nor on opposite rays from O. Compare then the tri-
angles �AOB and d(�AOB). Since d(O) = O, and d(A) and d(B) are
on the same rays from O as A and B, ∠AOB = d(∠AOB). In addition,
|d(OA)| = k|OA| and |d(OB)|= k|OB|. By the S·A·S similarity theorem,
then, �AOB and d(�AOB) are similar. Comparing the third sides of those
triangles, |d(AB)|= k|AB|.

As with isometries, the effect of a dilation can be described with a matrix
equation.

EQN: SCALING ABOUT THE ORIGIN
The matrix equation for a dilation d by a factor of k centered at the
point (0,0) is

d
(

x
y

)
=

(
kx
ky

)
.

Proof. We need to show that the mapping d that is given by the equation
has the same effect on points as a dilation by k does. There are three things
to show:

1. that d fixes the origin O;
2. that for any other point P, d(P) is on OP�; and
3. that the distance from O to d(P) is k|OP|.

O

A

B
k|OB|

k|OA|
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1. d
(

0
0

)
=

(
k ·0
k ·0

)
=

(
0
0

)
.

2. The slope of the line through the origin and (kx,ky) is (ky)/(kx) = y/x,
the same as the slope of the line through the origin and (x,y). Therefore
(kx,ky) and (x,y) are on the same line through the origin. Furthermore,
since we specified that the scaling constant k of a dilation is a positive
number, kx and ky will have the same signs as x and y, respectively. There-
fore (kx,ky) and (x,y) will be the in same quadrant, and so they are on the
same ray from the origin.

3. The distance from (0,0) to (kx,ky) is
√
(kx−0)2 +(ky−0)2 =

√
k2(x2 + y2) = k

√
(x−0)2 +(y−0)2.

It is k times the distance from the origin to (x,y).

As we did earlier with isometries, we can now use a change of coordinates
to describe dilations about any point.

EQN: DILATION ABOUT AN ARBITRARY POINT
The matrix equation for a dilation d by a factor of k centered at the
point (a,b) is

d
(

x
y

)
=

(
kx+(1− k)a
ky+(1− k)b

)
.
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Proof. Let P be an arbitrary point with coordinates (x,y). The strategy of
this proof is simple– follow the procedure that we developed in the lesson
on changing coordinates:

1. convert (x,y) to a coordinate system whose origin is at (a,b);
2. perform the scaling by a factor of k; and then
3. convert the result back to the original coordinate system.

1. The translation t(x,y) = (x + a,y+ b) shifts the standard coordinate
frame centered at (0,0) to one that is centered at (a,b). To compute the
coordinates of P in the new coordinate system, then, apply t−1:

(
x
y

)
�→

(
x−a
y−b

)

2. Now scale by k, using the special formula from the previous theorem.

�→
(

k(x−a)
k(y−b)

)

3. Convert back to the original coordinate system by applying t:

�→
(

k(x−a)+a
k(y−b)+b)

)
=

(
kx+(1− k)a
ky+(1− k)b

)
.

(a, b)

t
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Preserving incidence, order, and congruence

Dilations and isometries are similarity mappings. It is natural to wonder
what other types of similarity mappings there might be, but I actually
want to investigate what is in theory a slightly more general question.
Every similarity mapping preserves the relations of incidence, order and
congruence. We have seen two such types of mappings– dilations and
isometries. What other types of bijections will preserve these structures?
It all hinges on the congruence relation. In the next three lemmas, f is a
bijection that preserves incidence, order, and congruence.

LEM: HALVING SEGMENTS
Let s1 and s2 be segments. If |s1| = 1

2 |s2|, and f scales s2 by k, then
f scales s1 by k as well.

Proof. Label the two endpoints of s2 as A and B, and its midpoint as M.
Then all three segments s1, AM, and BM are congruent and so their images
must be as well. Then

| f (s1)|= (| f (s1)|+ | f (s1)|)/2
= (| f (AM)|+ | f (BM)|)/2
= | f (AB)|/2
= k|AB|/2
= k ·2|s1|/2
= k|s1|.

A
M

Bs1 s2
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LEM: CHAINING SEGMENTS TOGETHER
If A∗B∗C and if f scales both AB and BC by k, then f scales AC by
that same constant.

Proof. Since f preserves the order of points, f (A)∗ f (B)∗ f (C), and so

| f (AC)| = | f (AB)|+ | f (BC)|
= k|AB|+ k|BC|
= k(|AB|+ |BC|)
= k(|AC|).

LEM: DYADIC LENGTHS
If |s1| = (m/2n) · |s2| where m and n are positive integers, and if f
scales s2 by k, then f scales s1 by k as well.

Proof. The first lemma tells us that a segment of length (1/2) · |s2| will be
scaled by k. Applied again, it tells us that a segment of length (1/4) · |s2|
will be scaled by k. And so on, so that for all positive integers n, a segment
of length (1/2n) · |s2| will be scaled by a factor of k. Then we can line up
m segments of length (1/2n) · |s2|, to get a segment of length (m/2n) · |s2|.
By repeatedly applying the second lemma, we can see that it too must be
scaled by k.

k
k

A CB
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THM: THAT IS ALL, PART I
Any bijection of the Euclidean plane that preserves incidence, order,
and congruence is a similarity mapping.

Proof. Let f be a bijection that preserves incidence, order, and congru-
ence. Since f maps congruent segments to congruent segments, all seg-
ments of a given length will be scaled by the same amount. Let k be the
scaling constant for a segment of length one. By subdividing and chaining
together (as described above), k is the scaling constant for all segments of
length m/2n. We need to show that k is the scaling constant for segments
of all other lengths as well. Suppose that segment OA has a length of x and
that | f (OA)|= k�|OA|. To get an idea of k�, we can use dyadic approxima-
tions to pin OA between segments that are scaled by k. For each n, there
is an mn so that

mn

2n ≤ x ≤ mn +1
2n .

Along the ray OA �, mark off points M<
n and M>

n bracketing A so that
|OM<

n | = mn/2n and |OM>
n | = (mn + 1)/2n. Reading off the points in

order, then O ∗M<
n ∗A ∗M>

n . The distance between M<
n and M>

n is 1/2n,
so as n increases, the bracketing of A gets tighter and tighter. Since f
preserves incidence and order, when we apply it to these points, we get a
bracketing of f (A) that can give us an idea of the scaling of OA:

f (O)∗ f (M<
n )∗ f (A)∗ f (M>

n )

| f (OM<
n )| ≤ | f (OA)| ≤ | f (OM>

n )|

k ·mn/2n ≤ k� · |OA| ≤ k · (mn +1)/2n.

A

O

M<
n M>

n
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To find k�, divide through by |OA|

k · mn/2n

|OA| ≤ k� ≤ k · (mn +1)/2n

|OA| .

This set of inequalities is true for all values of n. Notice that as n increases,
both of the terms (mn/2n)/|OA| and ((mn + 1)/2n)/|OA| approach one.
The only way that this inequality can be satisfied for all n, then, is for k�
to be equal to k. Therefore f scales all distances by the same constant k–
this means that f is a similarity mapping.

THM: THAT IS ALL, PART II
Any bijection that preserves incidence, order, and congruence can be
written as a composition of an isometry and a dilation.

Proof. Let f be such a bijection. As we have just seen, that means f is
a similarity mapping, which in turn means that f scales all distances by
some constant k. Let d be the dilation centered at the origin by a factor of
k. Its inverse, d−1 is a dilation by a factor of 1/k, so for any segment s,

|d−1 ◦ f (s)| = (1/k) · | f (s)| = (1/k) · k · |s| = |s|.

Therefore d−1 ◦ f is an isometry. Writing τ for this isometry, d−1 ◦ f = τ .
Hit both sides of this equation with the dilation d to get

d ◦d−1 ◦ f = d ◦ τ =⇒ f = d ◦ τ ,

and we have just written f as a composition of an isometry and a dilation.
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Exercises

1. What is the image of the point (2,3) under the scaling by a factor of 4
centered at the point (1,5)?

2. Show that if d1 and d2 are transformations with the same scaling factor,
then there is an isometry τ so that d2 = τ ◦d1.

3. Show that if d1 is a scaling by a factor of k1 and d2 is a scaling by a
factor of k2, then d1 ◦d2 is a scaling by a factor of k1 · k2.

4. Write an equation for the similarity mapping that is formed by
1. first dilating by a factor of 1/2 about the point (1,1), and then
2. reflecting across the x-axis.
Does this transformation have any fixed points?

5. Prove that if �ABC ∼ �A�B�C�, then there is a similarity mapping σ
so that σ(A) = A�, σ(B) = B�, and σ(C) =C�.

6. Consider the similar triangles �ABC and �A�B�C� with vertices at the
following coordinates:

A = (0,0) B = (1,0) C = (0,1)
A� = (2,0) B� = (0,2) C� = (0,−2)

Find the equation of the similarity mapping that maps �ABC to �A�B�C�.
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We have spent the last several lessons building up a theory of Euclidean
transformations. To do that, we drew upon some of the Euclidean the-
ory that we had previously developed. Now in this lesson we will turn
the tables and use the theory of transformations to prove three results of
classical Euclidean geometry.

Varignon’s Theorem

The first result, Varignon’s Theorem, discovers a parallelogram that hides
inside of any quadrilateral. The proof of this theorem uses half-turns.
Recall from the lesson on rotations that

DEF: HALF-TURN
A half-turn is a rotation with a rotation angle of π .

Note that a half-turn is its own inverse. Because of that, this is the one
instance where we don’t have to specify whether the rotation is clockwise
or counterclockwise– they are the same. In the exercises at the end of the
Change of Coordinates lesson, I asked you to investigate what happens
when you compose two rotations. In particular, you were supposed to ver-
ify that if the two angles of rotation add up to a multiple of 2π , then their
composition is either the identity or a translation (it is a fairly straightfor-
ward, albeit messy, calculation using the matrix equations for a rotation).
Because of that, when we compose any two half-turns, their rotation an-
gles add up to π +π = 2π , and the result must be either a translation or
the identity.

LEM: COMPOSING FOUR HALF-TURNS
Let rA, rB, rC, and rD be half-turns around four distinct points A, B,
C, and D. If the composition rA ◦ rB ◦ rC ◦ rD is the identity map, then
the quadrilateral ABCD is a parallelogram.
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Proof. Let’s break that four-part composition into two pieces: rA ◦ rB is
one and rC ◦ rD is the other. If we assume that their composition is the
identity, then they must be inverses of each other. That is

rC ◦ rD = (rA ◦ rB)
−1 = r−1

B ◦ r−1
A .

Each of rB and rA is its own inverse, though, since they are half-turns.
Thus rC ◦ rD = rB ◦ rA. In that case, we can apply both of these maps to
the point A, chasing it in two directions around the quadrilateral, and we
should end up in the same place. Label that ending point P, and along the
way label one more point, Q = rD(A). That is,

rC ◦ rD(A) = rC(Q) = P & rB ◦ rA(A) = rB(A) = P.

The points A, P, and Q form a triangle around the original quadrilateral.
This triangle is particularly well-balanced with respect to ABCD. You see,
because rD is an isometry, |AD| = |DQ|; and because rC is an isometry,
|QC|= |CP|; and because rB is an isometry, |PB|= |AB|. Thus,

|AQ|= 2|DQ|, |QP|= 2|CD|= 2|CP|, |PA|= 2|PB|.

By S·A·S similarity we have created two sets of similar triangles: �AQP
is similar to �DQC, and �QPA is similar to �CPB. Matching up angles
in them, ∠C � ∠P and ∠A � ∠B. Finally, the Alternate Interior Angle
Theorem tells us that CD �AB and AD �BC and so ABCD is, by definition,
a parallelogram.

A
E

H

G

F

D

Q

P

C

B

ABCD is a parallelogram EFGH is not a parallelogram
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THM: VARIGNON’S THEOREM
Let A1A2A3A4 be any quadrilateral and label the midpoints of the four
sides B1, B2, B3 and B4, so that Bi is the midpoint of AiAi+1. Then
B1B2B3B4 is a parallelogram.

Proof. The strategy should be pretty obvious– use the last lemma! That
means we need to look at the composition r1 ◦ r2 ◦ r3 ◦ r4 of half-turns
around the four midpoints B1, B2, B3, and B4. We need to show it is the
identity. For starters, let’s take the four half-turns in pairs again, as r1 ◦ r2
and r3 ◦r4. Each of these is a translation, and so their composition is either
a translation or the identity. Now the easiest way to show that a map is the
identity rather than a translation is to find a fixed point– translations don’t
have any. In the case of r1 ◦ r2 ◦ r3 ◦ r4 there is one fixed point that is easy
to find:

r1 ◦ r2 ◦ r3 ◦ r4(A4)

= r1 ◦ r2 ◦ r3(A3)

= r1 ◦ r2(A2)

= r1(A1)

= A4.

A1

A2

A3

A4

r2

r1

r4

r3
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Since r1 ◦ r2 ◦ r3 ◦ r4 has a fixed point, it cannot be a translation, and so it
must be the identity. According to the previous lemma, B1B2B3B4 must
be a parallelogram.

Napoleon’s Theorem

Like Varignon’s Theorem, Napoleon’s Theorem reveals an unexpected
symmetry. And yes, it is named after that Napoleon, although there is
some skepticism about whether he in fact discovered it. I guess once you
have conquered half of Europe, no one is going to raise a fuss if you claim
a theorem or two as well.

THM: NAPOLEON’S THEOREM
Given any triangle �ABC, construct three equilateral triangles exte-
rior to it– one on each of the sides AB, BC, and CA. The centers of
these three equilateral triangles are the vertices of another triangle.
This triangle is also equilateral.

Napoleon’s Theorem: two examples

A A B

C CB
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Proof. This proof begins as Varignon’s did, with a composition of rota-
tions whose rotation angles add up to 2π . The fixed point is easy to find,
meaning that the composition is the identity. It may not be immediately
clear how to use that fact in a meaningful way, and so it is admittedly a
bit of a scramble to the finish. Anyway, this time around the fundamental
symmetry of the situation comes from the three equilateral triangles, and
the rotations that capture that symmetry are 1/3-turns around the centers
of the equilateral triangles. To make sure that our labeling is consistent,
let’s do a quick check: I want the path that goes from A to B to C to A to
make a counterclockwise loop around the triangle. If it instead makes a
clockwise loop, you can just swap two of the labels to fix it. Now label
the centers of those equilateral triangles as a, b, and c, where

a is the center of the triangle
built off of side AB,

b is the center of the triangle
built off of side BC, and

c is the center of the triangle
built off of side CA.

Label the corresponding 2π/3 counterclockwise rotations around these
points as ra, rb, and rc. When we compose these three rotations, their
rotation angles add up to 2π/3+2π/3+2π/3 = 2π , so their composition
rc ◦ rb ◦ ra must be either a translation or the identity. Now take a look
inside one of the equilateral triangles, say the one centered at a, and notice
that in it |aA|= |aB|, and (∠AaB) = 2π/3. That means that ra sends A to
B. Likewise, rb sends B to C and rc sends C to A. In combination,

rc ◦ rb ◦ ra(A) = rc ◦ rb(B) = rc(C) = A,

and so rc ◦ rb ◦ ra has a fixed point. Well, it can’t be a translation then, so
it must be the identity.

A

a

b

c

C B
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Now for the scrambling part. Let’s see what happens when we plug the
point a into this composition (that is really just the identity):

rc ◦ rb ◦ ra(a) = a =⇒ rc ◦ rb(a) = a =⇒ rb(a) = r−1
c (a)

This gives us one last point to label: d = rb(a). There are two triangles to
look at.

The first is �abd. Since rb maps
the segment ba to the segment bd,
ba and bd are congruent. Thus
�abd is an isosceles triangle. Fur-
thermore, at vertex b, we know
the angle measure is 2π/3. The
other two angles in this triangle
must add up to π − 2π/3 = π/3.
According to the Isosceles Trian-
gle Theorem, they are congruent,
though, so they each measure π/6.

The second triangle is �acd. The
map r−1

c is also a rotation by
2π/3– it is just a clockwise rota-
tion by that amount. It maps the
segment ac to the segment ad, and
so they must be congruent. There-
fore, �acd is also isosceles, its
angle at vertex c has a measure
of 2π/3, and that means its other
two angles also must each measure
π/6.

Finally, when we put the two pieces together, we get

(∠bac) = (∠bad)+ (∠cad) = π/6+π/6 = π/3.

a

d b

c

2π/3
π/6
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This angle at a is no more special than the angles at vertices b and c,
though. A similar argument (in which the the compositions of ra, rb, and rc
are taken in different orders) will show that the other two angles of �abc
also measure π/3. Therefore �abc is equiangular and so it is equilateral.

The Nine Point Circle

For the last part of this lesson, let’s look back at the Nine Point Circle
Theorem. We proved this theorem way back in Lesson 20 without using
transformation methods– the key then was to find a diameter of the nine-
point circle. This time, the key is to find a transformation that maps the
nine-point circle to the circumcircle. In the Lesson 20 proof, we also
needed to know that the diagonals of a parallelogram bisect one another.
In this proof, we will need the converse of that.

LEM: BISECTING DIAGONALS
If segments AC and BD bisect each other, then the quadrilateral ABCD
is a parallelogram.

Proof. Let h be the half-turn around the point of intersection of AC and
BD. Then h interchanges A and C, and it interchanges B and D. Therefore
h(∠BAC) = ∠DCA. That means that ∠BAC must be congruent to ∠DCA,
and according to the Alternate Interior Angle Theorem, then, AB is par-
allel to CD. Similarly, h(∠CAD) = ∠ACB, meaning ∠CAD is congruent
to ∠ACB, so AD is parallel to BC. Quadrilateral ABCD has two pairs of
parallel sides– it must be a parallelogram.

A
D

C
B
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THM: THE NINE POINT CIRCLE THEOREM, REVISITED
For any triangle, the following nine points all lie on the same circle:
(1) the feet of the three altitudes, (2) the midpoints of the three sides,
and (3) the midpoints of the three segments connecting the orthocen-
ter to each vertex. This circle is called the nine-point circle associated
with that triangle.

Proof. Given a triangle �A1A2A3 with orthocenter R, label

Li, the foot of the altitude which passes through Ai,
Mi, the midpoint of the side that is opposite Ai, and
Ni, the midpoint of the segment AiR.

Let d be the scaling by a factor of two centered at the orthocenter. We
will show that d(Li), d(Mi), and d(Ni) are all on the circumcircle C. [Note
that this proof does not handle a few degenerate cases: when Mi = R, the
quadrilateral described in (2) cannot be formed, and when Li = Mi, the
right angle described in (3) cannot be formed. Those case are easily re-
solved though, so I have omitted them to keep the proof as streamlined as
possible.]

The points Ni. Since Ni is halfway from R to Ai, d maps each of the points
Ni to the corresponding vertex Ai. All three of the vertices are, of course,
on C.

N1

A1

A2 A3

R
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The points Mi. This is the difficult one. Take for example M1, the midpoint
of A2A3. The scaling d maps M1 to a point D that is twice as far away from
R as M1, and so M1 is the midpoint of RD. Thus M1 is the intersection of
two bisecting diagonals, A2A3 and RD. As we just proved, this means that
the quadrilateral RA2DA3 is a parallelogram. Therefore

1. DA3 is parallel to RA2, the altitude perpendicular to A1A3. Hence
DA3 is perpendicular to the side A1A3.

2. DA2 is parallel to RA3, the altitude perpendicular to A1A2. Hence
DA2 is perpendicular to the side A1A2.

In other words, both ∠A1A2D and ∠A1A3D are right angles. According to
Thales’ Theorem, both A2 and A3 have to be on the circle with diagonal
A1D. Well, there is only one circle through the three points A1, A2, and
A3– it is the circumcircle C. Therefore D = d(M1) must be on C. It is
just a matter of shuffling around the indices to show that d maps M2 and
M3 to points of C as well. Furthermore, each of the segments Aid(Mi) is
a diameter of C. Note that this is in keeping with the Lesson 20 proof–
in that proof, we showed directly that NiMi is a diameter of the nine point
circle. Here we see that its scaled image d(NiMi) = Aid(Mi) is a diameter
of the circumcircle.

A1

A2 A3

R

d



433APPLICATIONS OF TRANSFORMATIONS

The points Li. The intersection of each altitude with its corresponding
side forms a right angle ∠NiLiMi. Now apply the scaling: the result,
d(∠NiLiMi), will still be a right angle. As we just saw, d(NiMi) is a diam-
eter of C. By Thales’ Theorem, d(Li) must be on C as well.

In conclusion, the scaling d maps the nine points Li, Mi, and Ni to nine
points of C. In reverse, d−1 will map nine points of C to Li, Mi, and Ni.
Since d−1 is a Euclidean transformation, it will map the points of one
circle, such as C, to the points of another circle. Therefore Li, Mi and Ni
must all be on the same circle.

These transformations provide a fundamentally different perspective on
the problems of geometry. I hope that these few examples give you a little
sense of that. Going forward, transformations will be a critical weapon in
our arsenal.

A1

A2 A3
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Exercises

1. Properties of half-turns

2. Show that if ABCD is a parallelogram, then the composition rA ◦ rB ◦
rC ◦ rD of half-turns around A, B, C, D is the identity (the converse of
what we proved in the lesson).
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The area function

It took us long enough, but we have finally gotten around to talking about
area. Fundamentally, when we talk about the area of a polygon, we are
talking about a number, a positive real number. So you can think of area as
a function from the set of all polygons to the set of positive real numbers

A : {polygons} −→ (0,∞).

That’s not all though– if this area function is going to live up to our ex-
pectations, it needs to meet a few other requirements as well.

1. If two polygons are congruent, their areas should be the same. This
statement can also be interpreted in terms of isometries. Remember
that if P is any polygon and τ is any isometry, then τ(P) and P are
congruent. Therefore area is an invariant of any isometry.

2. If a polygon can be broken down into smaller pieces, then the area
of the polygon should be the sum of the areas of the pieces. More
precisely, let int (P) denote the set of points in the interior of a poly-
gon P, and let P denote that set of interior points together with the
points on the edges of P. A set of polygons {Pi} is a decomposition
of P if

∪Pi = P (the pieces cover P), and

int (Pi)∩ int(Pj) = /0 if i �= j (the pieces don’t overlap).
In this context, if {Pi} is a decomposition of polygon P, then A(P)=
∑A(Pi).

Congruent polygons have the same area.
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3. Finally, we need something to get us started, and it is this: the area
of a rectangle with a base b and a height h is A = bh.

The congruence and decomposition conditions allow us to cut apart and
rearrange polygons, starting with rectangles, to find the areas of other,
more exotic shapes. We will start that process in the next few results.
Because these early results are just a few steps removed from the formula
for the area of a rectangle, these formulas also involve bases and heights,
so let me first clarify what is meant by “base” and “height” in each of
these shapes.

Three convex shapes. Since they can be decomposed into the same set of 
congruent pieces (the tangram tiles), they must have the same areas.

b

h bh
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Parallellogram: Any side of a parallelogram can serve as its base. The
height is a segment that is perpendicular to the base; one of its endpoints
is on the line containing the base and the other is on the line through the
opposite side. Usually you will want to use a vertex of the parallelogram
as one of the endpoints for the height.

Trapezoid: The two parallel sides are both considered bases (the area for-
mula uses them both). The height is as in the parallelogram– a segment
perpendicular to, and connecting, the lines through the two parallel sides.

Triangle: Any of the sides of a triangle can serve as its base. The height is
the segment from the opposite vertex to the line containing the base, per-
pendicular to that base (it runs along the altitude, but I originally defined
an altitude to be a line, not a segment).

Let’s start cutting and gluing to find some area formulas.

THM: AREA OF A PARALLELOGRAM
A parallelogram with base b and height h has area A = bh.

Proof. With a well-mannered parallelogram, you just need to cut off the
triangular end and shift it to the other side. Since adjacent angles in a
parallelogram are supplementary, the two pieces will fit perfectly to form
a rectangle with base b and height h. Since cutting and rearranging pieces
doesn’t change the total area, the area of the parallelogram is the same as
the area of the rectangle.

h h h

b bb1

b2
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If the parallelogram is particularly narrow, this simple approach may
not work– the height line along which you need to cut may slip outside
the parallelogram. In this case, you can lay out congruent copies of the
parallelogram next to each other to form a wider parallelogram. Do this
enough times (let’s say n times) and eventually the result will be wide
enough to fall in the well-behaved scenario described above. It is a par-
allelogram with a base of nb and a height of h, so its area is A = nbh. It
is made up of n congruent pieces, each of which must then have an area
A = (nbh)/n = bh.

h

b
b

h h

b nb
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This formula for the area of a parallelogram raises an important issue:
there are two choices for what will be the base of the parallelogram (ac-
tually, any of the four sides could be the bases, so there are really are four
choices, but since the opposite sides of a parallelogram are congruent,
there are two different choices). In order for the area of a parallelogram to
be well-defined, it must not depend upon which of those choices we make.

THM: THE ILLUSION OF CHOICE I
The area of a parallelogram does not depend upon the choice of base.

Proof. Consider a parallelogram with sides of length a and b. Let ha be
the height corresponding to the base of length a, and let hb be the height
corresponding to the base of length b.

Then we can write the area of the parallelogram as either A = aha or
A = bhb. Note, though, that if θ is the angle between the sides of the
parallelogram (take the acute angle for convenience), then ha = bsinθ
and hb = asinθ , so either way, A = absinθ .

a

bhb

ha
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THM: AREA OF A TRIANGLE
A triangle with base b and height h has area A = 1

2bh.

Proof. Begin with a triangle �ABC. Identify the base b of this triangle
as the segment AB, and the corresponding height h. Consider a half-turn
r through the midpoint of b. The resulting triangle r(�ABC) is congruent
to the original and r swaps the points A and B– that means the alternate
interior angles at A and B are congruent, so the sides AB and Cr(A) are
parallel, as are the sides AC and Br(A). We have created a parallelogram!
It has a base b and a height h, so its area is bh. The area of each of the two
triangles forming it, then, must be half of that– they will have an area of
bh/2.

As with the parallelogram, this raises the issue: there is an apparent choice
of base– does that choice effect the result?

THM: THE ILLUSION OF CHOICE II
The area of a triangle does not depend upon the choice of base.

Proof. Start with a triangle �ABC. There are three choices of base here,
and each can potentially lead to a different, non-congruent, parallelogram.

A

r

C

B

h

r(A)
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Label the corresponding heights:

hA: the height associated with BC,
hB: the height associated with AC, and
hC: the height associated with AB.

But look more closely. The two parallelograms formed by turning across
AB and AC both have base BC and height hA, so they have the same area.
And the two parallelograms formed by turning across AB and BC both
have base AC and height hB, so they too have the same area. So yes, the
parallelograms may not be congruent, but they do have the same area.

AREA OF A TRAPEZOID
A trapezoid with bases b1 and b2 and height h has area

A =
b1 +b2

2
·h.

I will leave it to you to prove this one.

A

CB

hA

hB

hB

hA

hC

hC
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Laws of Sines and Cosines

Standard trigonometry provides functions that describe the relationships
between the sides and angles of a right triangle. Out of the box, though,
those relationships are limited to right triangles. The Law of Sines builds
from those elementary relationships to describe some of the connections
between the angles and the sides of an arbitrary triangle. We could have
derived the Law of Sines way back when we first looked at the trigono-
metric functions, but we didn’t. So now let’s do it by thinking in terms of
area.

THM: THE LAW OF SINES
In a triangle �ABC, let a denote the length of the side opposite ∠A,
b denote the length of the side opposite ∠B, and c denote the length
of the side opposite ∠C. Then

sinA
a

=
sinB

b
=

sinC
c

.

Proof. We know that each of the three sides of the triangle can serve as the
base in the calculation of its area, and that no matter which side is chosen,
the result is the same. Doing that calculation with each of the sides:

1
2 ahA = 1

2bhB = 1
2chC

where hA, hB, hC are the heights corresponding to the bases a, b, and c
respectively.

C C CB B B

A A A

hA hB
hC
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Work with the first equality and note that we can write hA = csin B and
hB = csinA. Therefore

1
2acsin B = 1

2bcsin A
asinB = bsin A
sinB

b
=

sinA
a

.

That gets the first half of the Law of Sines, and working with the second
equality is similarly productive: with hB = asinC and hC = asin B,

1
2basinC = 1

2casin B
bsinC = csinB
sinC

c
=

sin B
b

.

I am pretty sure that the first proof I ever saw in my life was a proof of
the Pythagorean Theorem that I stumbled across while flipping through
my parent’s copy of Bronowski’s The Ascent of Man. It was a proof based
upon calculating the areas of triangles and squares. Of course, we have al-
ready seen one proof of the Pythagorean Theorem, but (1) the Pythagorean
Theorem is fairly important; (2) this proof is personally significant to me;
and (3) it suggests a way to use area to prove the Law of Cosines.

THM: THE PYTHAGOREAN THEOREM
In a right triangle with legs of length a and b, and hypotenuse of
length c,

c2 = a2 +b2.

Proof. Position four congruent copies of the triangle around a square with
sides of length c as shown. Now look at how the angles come together at
each corner of the square– the two acute angles of the right triangle, and
then the right angle of the square. Taken together, these three angles add
up to π– that means the edges of the triangles join up in a straight line.
The pieces fit perfectly to form a square with sides of length a+ b. We
can calculate the area of the big square in two ways.
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1. Directly in terms of its sides:

(a+b)2 = a2 +2ab+b2.

2. By adding the areas of the center square and surrounding triangles:

c2 +4 · 1
2ab = c2 +2ab

Set the two equal, subtract 2ab from both sides, to get c2 = a2 + b2, the
Pythagorean Theorem.

The Pythagorean Theorem only applies to right triangles. There is, how-
ever, an extension of the Pythagorean Theorem called the Law of Cosines
that can be used in any triangle.

THM: THE LAW OF COSINES
Given a triangle with sides of length a, b, and c, and angle θ opposite
side c,

c2 = a2 +b2 −2abcosθ .

b a

a b

a

c

c

c

c

b

b

a
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Proof. As in the last proof, what we want to do is to build four congruent
copies of the triangle around a square with sides c. If ∠θ is a right angle,
then the 2abcosθ term in the equation is zero, and this really is just the
Pythagorean Theorem. In terms of the proof, it is when ∠θ is right that
the sides of the two neighboring triangles line up with each other to form
a square. If ∠θ is not a right angle, this does not happen, and so we will
have to work a little harder. That special Pythagorean arrangement neatly
splits the more general problem into two cases– one when ∠θ is acute
and one when ∠θ is obtuse. I will take the acute case, and leave you the
obtuse case.

The four congruent copies of the triangle form a pinwheel shape around
the square. We can build a square that frames that pinwheel by drawing
lines through each pinwheel tip parallel to the “a” sides of the triangle.
Since adjacent triangles in the pinwheel are turned at right angles to each
other, these new lines will also intersect at right angles. So we have a big
square which is divided into four trapezoids, four triangles and a smaller
square. Now let’s calculate the dimensions of these shapes.

4= + 4+

b

a

a

c
bsinθ

bcosθ



447AREA I

Area of the big square:

(a+b(sinθ + cosθ))2

= a2 +2ab(sinθ + cosθ)+b2(sinθ + cosθ)2

= a2 +2absinθ +2abcosθ +b2 +2b2 sinθ cosθ

Area of the small square: c2

Area of one of the four triangles: 1
2absinθ

Area of one of the four trapezoids:

1
2(a+(a+bsinθ)) ·bcosθ

= 1
2 (2abcosθ +b2 sinθ cosθ)

= abcosθ +
1
2

sinθ cosθ

asinθ

b

a

c

b

a

absinθ

bcosθ
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Since the area of the whole is the sum of the areas of the parts

a2+2absinθ +2abcosθ +b2 +2b2 sinθ cosθ
= c2 +4

( 1
2absinθ

)
+4

(
abcosθ + 1

2 sinθ cosθ
)
.

Simplify and cancel out common terms to get the Law of Cosines,

a2 +b2 −2abcosθ = c2.

Hint: if you are interested in proving the obtuse case, then I would suggest
you build the triangles inside the square with sides c, as shown in the
following illustration, rather than out around it.

Heron’s formula

To close out this lesson, I want to use the Law of Cosines to derive an-
other formula for the area of a triangle called Heron’s Formula. The S·S·S
Triangle Congruence Theorem says that a triangle is uniquely determined
by the lengths of its three sides. That means there should be a formula to
calculate the area of a triangle using the just the lengths of its sides. The
formula A = bh/2 does not do that, since it also requires a height. But
Heron’s Formula does.

b

a
c
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DEF: SEMIPERIMETER
The semiperimeter s of a triangle is half its perimeter. If a triangle
has sides of length a, b, and c, then its semiperimeter is

s = 1
2(a+b+ c).

THM: HERON’S FORMULA
The area of a triangle with sides of length a, b, and c, and semiperime-
ter s is

A =
√

s(s−a)(s−b)(s− c).

Proof. This theorem is not difficult from a theoretical point of view. It is a
nuisance, however, on the calculation side. Label the sides of the triangle
so that side a is the base and the angle θ between a and b is acute (at least
two angles in any triangle have to be acute, so this is no problem).

Then the area of the triangle is

A =
1
2

absinθ .

We want to get that θ out of the picture. The Law of Sines might seem
like the obvious choice, but it always relate an {angle & side} to another
{angle & side}, so it doesn’t help eliminate angles entirely. The Law of
Cosines does give a way to relate an angle to the three sides– that’s what
we need to use– so we have to write the area in terms of cosine, not sine.
Use the Pythagorean Identity:

sin2θ + cos2 θ = 1 =⇒ sin2 θ = 1− cos2 θ .

b

a

a/2 c/2

b/2
s

c
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Normally at this point, taking the square root of both sides would yield
two solutions. In this case, since I required that θ be an acute angle, sinθ
will be a positive number, and we can go with the positive root

sinθ =
√

1− cos2 θ ,

so the area of the triangle is

A = 1
2ab

√
1− cos2 θ .

Now use the Law of Cosines

c2 = a2 +b2 −2abcosθ =⇒ cosθ =
c2 −a2 −b2

2ab
,

and substitute into the area formula to get

A = 1
2ab

√
1−

[
c2 −a2 −b2

2ab

]2

= 1
2ab

√
4a2b2 − (c2 −a2 −b2)2

4a2b2

= 1
2ab · 1

2ab

√
4a2b2 − (c4 −2a2c2 −2b2c2 +a4 +2a2b2 +b4)

= 1
4

√
−(a4 −2a2b2 +b4)+2(b2c2 + c2a2)− c4

= 1
4

√
−(a2 −b2)2 +2c2(a2 +b2)− c4

= 1
4

√
−(a2 −b2)2 +(a2 +b2)2 − (a2 +b2)2 +2c2(a2 +b2)− c4

= 1
4

√
(−a4 +2a2b2 −b4 +a4 +2a2b2 +b4)− ((a2 +b2)2 − c2)2
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= 1
4

√
4a2b2 − ((a2 +b2)− c2)2

= 1
4

√
(2ab− (a2 +b2 − c2))(2ab+(a2 +b2 − c2))

= 1
4

√
((−a2 +2ab−b2)+ c2)((a2 +2ab+b2)− c2)

= 1
4

√
(c2 − (a−b)2)((a+b)2 − c2)

= 1
4

√
(c+(a−b))(c− (a−b))(a+b+ c)(a+b− c)

=

√
(a−b+ c)(−a+b+ c)(a+b+ c)(a+b− c)

16

=

√
a−b+ c

2
· −a+b+ c

2
· a+b+ c

2
· a+b− c

2

=

√[
a+b+ c

2
−b

][
a+b+ c

2
−a

][
a+b+ c

2

][
a+b+ c

2
− c

]

=
√

(s−b)(s−a)s(s− c).

In this lesson, we started from area of a rectangle and worked our way
down to area of a triangle. In the next lesson, we will build up from the
area of a triangle to the area of polygons in general.
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Areas of polygons

The goal of this section is to establish a formula for the area of a general
simple polygon. Ultimately, we will use a proof by induction to prove this
formula. We need two things to make this proof work. (1) We need a way
to decompose a polygon into smaller pieces– this is handled by the next
result, which states that any simple polygon has a diagonal that cuts it into
two smaller pieces. (2) We need a working formula for the “base” case–
the area of a triangle. We found a few formulas for the area of a triangle in
the last lesson, but none of those are really appropriate for this problem,
so we will derive another one, this time in terms of the coordinates of its
vertices. Those two steps are the hard work of this section– once they are
done, it is easy to slot those pieces into the induction proof.

THM: EXISTENCE OF A DIAGONAL
Every simple polygon P has a diagonal that lies entirely in its interior.

Proof. If P is convex, then any diagonal will work. If P is not convex, the
situation becomes a little more complicated– some of the diagonals will
not be contained entirely in P. We need to show, then, that even the most
contorted polygon has at least one diagonal that lies entirely inside it. To
do that, let’s consider the coordinates of P– we are looking for the “low-
est” point on the polygon– the vertex with the smallest y-coordinate. Call
this point Pi. Now consider the segment that connects Pi’s two neighbors,
Pi−1 and Pi+1. If Pi−1Pi+1 lies entirely inside of P, then we have found our
diagonal, easy enough.
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What if it doesn’t? In that case, it is because at least some of the remain-
ing vertices of P lie inside the triangle �Pi−1PiPi+1. From this subset of
vertices, let Pj be the lowest one– the one with the smallest y-coordinate.
I claim that the segment PiPj lies entirely inside P, so that it can serve as
our diagonal. To see why, you need to remember that a point Q is inside a
polygon P if any ray from Q crosses the polygon an odd number of times
(counting multiplicities). In this case, if Q is any point on PiPj, it is lower
than any of the vertices of P except for Pi, and possibly Pi−1 and Pi+1.
Therefore the ray QPi� only intersects the sides Pi−1Pi and PiPi+1 once at
the shared endpoint Pi, and it does not intersect any of the other sides of
P at all. Since Pj is inside the triangle �Pi−1PiPi+1, the ray QPi � splits
the polygon at Pi (the adjacent vertices Pi−1 and Pi+1 are separated by the
line PiPj). Therefore, there is one intersection of QPi � with P and it has
multiplicity one– that’s an odd number of intersections, and so Q is inside
P. Now that is true for all points on the segment PiPj, so PiPj is a diagonal
that lies entirely inside P.

Pi–1Pi+1 is a diagonal. Pi–1Pi+1 is not, but PiPj  is.

Pi Pi

Pj
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Now compute

�v×�w =

∣∣∣∣∣∣
i j k

x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣∣∣∣∣∣

= [(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)]k

= [(x2y3 − x2y1 − x1y3 + x1y1)− (x3y2 − x3y1 − x1y2 + x1y1)]k

= [(x1y2 − x2y1)+ (x2y3 − x3y2)+ (x3y1 − x1y3)]k

=

(∣∣∣∣
x1 y1
x2 y2

∣∣∣∣+
∣∣∣∣
x2 y2
x3 y3

∣∣∣∣+
∣∣∣∣
x3 y3
x1 y1

∣∣∣∣
)

k.

Now let’s go back to the question of the area of a triangle. Let me first try
to motivate this new area formula from the perspective of vector calculus.
For any two three-dimensional vectors�v= �vx,vy,vz� and �w= �wx,wy,wz�,
the cross product�v×�w is given by the determinant

�v×�w =

∣∣∣∣∣∣
i j k

vx vy vz
wx wy wz

∣∣∣∣∣∣
.

Furthermore, it is a well-known fact from calculus that the length of�v×�w
is the area of the parallelogram formed by�v and �w, so half of that would be
the area of the triangle with sides �v and �w. Let’s use that idea to calculate
the area of the triangle with vertices at (x1,y1), (x2,y2), and (x3,y3). We
can make vectors out of two of the sides and embed them in 3-dimensional
space by setting the last coordinate equal to zero:

�v = �x2 − x1,y2 − y1,0� & �w = �x3 − x1,y3 − y1,0�.

v×w

v

w
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It is easy to read off the length of �v×�w, and half that amount gets you
a formula for the area of a triangle. And while all of this may be familiar
to you, it does take us out of the plane, and it does draw upon some facts
about vectors that we have not yet developed. So let me give a more
elementary proof of this formula.

THM: DETERMINANT FORMULA FOR THE AREA OF A TRIANGLE
Label the three vertices of a triangle in counterclockwise order: P1 =
(x1,y1), P2 = (x2,y2), and P3 = (x3,y3). The area of �P1P2P3 is

A =
1
2

(∣∣∣∣
x1 y1
x2 y2

∣∣∣∣+
∣∣∣∣
x2 y2
x3 y3

∣∣∣∣+
∣∣∣∣
x3 y3
x1 y1

∣∣∣∣
)
.

Proof. Designate the side P1P2 to be the base of the triangle, and put
b = |P1P2|. With the right isometry (and remember that isometries do
not alter areas of shapes), we can reposition the triangle so that its base
lies along the x-axis. Then it is easy to read off the height. The necessary
isometry is composed of two pieces.

1) The first piece is a translation t to move P1 to the origin:

t
(

x
y

)
=

(
x− x1
y− y1

)

t(P1) = (0,0)
t(P2) = (x2 − x1,y2 − y1)

t(P3) = (x3 − x1,y3 − y1)
P1

P3

P2

O

t
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2) The second piece is a rotation r about the origin to move t(P2) onto the
x-axis. To find the angle for this rotation, look at the angle θ between the
x-axis and the line from the origin through t(P2).

In particular, the sine and cosine values of this angle are

cosθ =
x2 − x1

b
& sinθ =

y2 − y1

b
.

In order to put the base of the triangle along the x-axis, then, we need to
rotate by −θ . The matrix equation for that rotation is

r
(

x
y

)
=

(
cos(−θ) −sin(−θ)
sin(−θ) cos(−θ)

)(
x
y

)

=

(
cosθ sinθ
−sinθ cosθ

)(
x
y

)

=
1
b

(
x2 − x1 y2 − y1
y1 − y2 x2 − x1

)(
x
y

)
.

O

rt(P2)

t(P3)
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The point t(P1) stays at the origin, while the point t(P2) rotates around to
(b,0). The key to finding the height of the triangle, though, lies with the
third point:

r(t(P3)) =
1
b

(
x2 − x1 y2 − y1
y1 − y2 x2 − x1

)(
x3 − x1
y3 − y1

)

=
1
b

(
[x2 − x1][x3 − x1]+ [y2 − y1][y3 − y2]
[x3 − x1][y1 − y2]+ [x2 − x1][y3 − y1]

)
.

Since r◦ t is a composition of a rotation and a translation, it is orientation-
preserving. Since the points P1, P2, P3 are listed in counterclockwise or-
der, their images under r ◦ t must also be in counterclockwise order. That
means r ◦ t(P3) must lie above the x-axis, and so the height of the triangle
is just the y-coordinate of r ◦ t(P3):

h =
1
b
[(x3 − x1)(y1 − y2)+ (x2 − x1)(y3 − y1)] .

The rest is algebra

A =
1
2

bh

=
1
2

b · 1
b
[(x3 − x1)(y1 − y2)+ (x2 − x1)(y3 − y1)]

=
1
2
(x3y1 − x1y1 − x3y2 + x1y2 + x2y3 − x2y1 − x1y3 + x1y1)

=
1
2
((x1y2 − x2y1)+ (x2y3 − x3y2)+ (x3y1 − x1y3))

=
1
2

(∣∣∣∣
x1 y1
x2 y2

∣∣∣∣+
∣∣∣∣
x2 y2
x3 y3

∣∣∣∣+
∣∣∣∣
x3 y3
x1 y1

∣∣∣∣
)
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With this new area formula in hand, we can now turn back to the bigger
question of polygon area.

THM: AREA OF A POLYGON
Let P1 = (x1,y1), P2 = (x2,y2), P3 = (x3,y3), . . . , Pn = (xn,yn) be the
coordinates of the vertices of simple polygon listed in counterclock-
wise order For notational convenience, put xn+1 = x1 and yn+1 = y1.
Then the area of the polygon is

A =
1
2

n

∑
k=1

∣∣∣∣
xk yk

xk+1 yk+1

∣∣∣∣ .

Proof. The proof I will give uses induction on n, the number of sides of
the polygon. In the base case, when n = 3, the polygons are just triangles,
and the area formula given here is really just the coordinate formula for
triangular area that we proved above. Now move to the inductive step:
suppose that this formula does give the proper area for every polygon with
at most n sides, and let P be an arbitrary polygon with n+1 sides. As we
saw at the start of the lesson, P can be cut in two along a diagonal ∆.

Pj

PnP1

P2

Pj+1

Pj–1
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In the interest of keeping indices as simple as possible, let’s relabel the
points Pi and the corresponding coordinates (xi,yi) so that one end of ∆
is the vertex P1 = (x1,y1). Continue around P in the counterclockwise
direction, labeling the remaining vertices P2 = (x2,y2), P3 = (x3,y3), ...,
Pn = (xn,yn) and then loop back around to the start by setting xn+1 = x1
and yn+1 = y1. At some point along the way, we come to the other end
of ∆. Identify that point as Pj = (x j,y j). With those labels, ∆ cuts P into
two smaller polygons with at most n sides, P1P2...Pj and PjPj+1...PnP1.
The area of P is the sum of the areas of these two pieces, and by the
induction hypothesis we know the area formula works for both of those
pieces. Therefore

A(P) = A(P1P2...Pj)+A(PjPj+1...PnP1)

=
1
2

j−1

∑
k=1

∣∣∣∣
xk yk

xk+1 yk+1

∣∣∣∣+
1
2

∣∣∣∣
x j y j
x1 y1

∣∣∣∣

+
1
2

n

∑
k= j

∣∣∣∣
xk yk

xk+1 yk+1

∣∣∣∣+
1
2

∣∣∣∣
x1 y1
x j y j

∣∣∣∣

=
1
2

n

∑
k=1

∣∣∣∣
xk yk

xk+1 yk+1

∣∣∣∣+
1
2
(x jy1 − y1x j)+

1
2
(x jy1 − x jy1)

=
1
2

n

∑
k=1

∣∣∣∣
xk yk

xk+1 yk+1

∣∣∣∣ .

By induction, the formula holds for all polygons.

What’s really going on here is that by repeatedly cutting P along diago-
nals, we can eventually break P down into a bunch of triangles– we can
“triangulate” P. The area of each triangle in the triangulation is calculated
by three determinants, one for each edge of the triangle. Different trian-
gulations lead to different edges, but (and this is key) each internal edge is
actually an edge of two triangles, and if the counterclockwise orientation
of one triangle points it in the direction from vi to v j, then the counter-
clockwise orientation of the other triangle points it in the direction from
v j to vi.
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In the end, that internal edge makes a contribution to the overall area com-
putation of

∣∣∣∣
xi yi
x j y j

∣∣∣∣+
∣∣∣∣
x j y j
xi yi

∣∣∣∣= (xiy j − x jyi)+ (x jyi − xiy j) = 0.

The contributions of all the internal edges cancel out, leaving just the con-
tributions from the edges of the polygon! Note that this is what happens
along the internal edge ∆ in the proof above. If you have studied multi-
variable calculus, this internal cancellation may seem familiar. This same
thing happens in Green’s Theorem, where a double integral across a re-
gion is converted to a line integral around the region. In fact, this area
formula is a special case of Green’s Theorem– this connection is explored
more thoroughly in the exercises.

Each internal edge is shared by two neighboring triangles, but is oriented 
oppositely in those triangles. In the overall area calculation, those components 
cancel one another.
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The area of a circle

Time to hit another big landmark– the area of a circle. There are several
ways to derive this famous area formula, but of course I want to incorpo-
rate the coordinate formula we just derived. First we will use this formula
to find the area of a regular polygon. Then we will trap the circle be-
tween circumscribed and circumscribing regular polygons, and use their
areas as upper and lower bounds for the area of the circle (as we did in the
derivation of the circumference formula in lesson 17).

AREA OF A REGULAR POLYGON
Let P be a regular polygon with n sides and a radius of r (this is the
radius of the circumscribing circle). Then the area of P is

A =
1
2

nr2 sin
(

2π
n

)
.

Proof. All regular polygons with the same radius and the same number of
sides are congruent, so we will just the one that is easiest, and that is when
P is centered at the origin with its n vertices at the coordinates

(
r cos

(
2πk

n

)
, r sin

(
2πk

n

))
, 1 ≤ k ≤ n.

θ

(x2,y2) = (r cos2θ ,r sin2θ)

(x0,y0) = (r cos0,r sin0)

(x1,y1) = (r cosθ ,r sinθ)
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It makes for easier reading if we put θx = 2πx/n. Then the area of P is

A =
1
2

n

∑
k=1

∣∣∣∣
r cosθk r sinθk

r cosθk+1 r sinθk+1

∣∣∣∣

=
1
2

n

∑
k=1

(
r2 cosθk sinθk+1 − r2 sinθk cosθk+1

)

Factor out the r2 and play around with the signs, using the fact that sine
is an odd function and that cosine is an even one, to get this into the right
form to use the addition formula for sine

A =
1
2

n

∑
k=1

r2(cos(−θk)sin(θk+1)+ sin(−θk)cos(θk+1)).

=
1
2

n

∑
k=1

r2 sin(θk+1 −θk)

=
1
2

n

∑
k=1

r2 sin(2π/n)

=
1
2

n · r2 sin(2π/n).

By trapping a circle between circumscribed and circumscribing regular
polygons, it is possible to pin down its area.

THM: AREA OF A CIRCLE
The area of a circle with radius r is A = πr2.

Proof. The radius of the inscribed regular polygons is r. The radius of the
circumscribed regular polygons is r sec(π/n) (as illustrated). By plugging
those radii into the area formula we just derived, we get upper and lower
bounds on the area of the circle itself:

1
2

nr2 sin
(

2π
n

)
≤ A ≤ 1

2
n(r secπ/n)2 sin

(
2π
n

)
.
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This set of inequalities is true for all n, so let’s see what happens to those
pieces when we take the limit as n approaches ∞:

(1) π/n approaches 0, so sec(π/n) approaches 1.

(2) for the term nsin(2π/n), make the substitution m = n/2. As n ap-
proaches ∞, so does m, and so

lim
n→∞

nsin(2π/n) = lim
m→∞

2msin(π/m) = 2 lim
m→∞

msin(π/m).

Back in the lesson on circumference, this limit was the very definition of
π (although we were using degrees instead of radians at the time), so this
term is approaching 2π . Now let’s put it back together:

lim
n→∞

1
2

nr2 sin
(

2π
n

)
≤ A ≤ lim

n→∞

1
2

n(r secπ/n)2 sin
(

2π
n

)
.

1
2

2πr2 ≤ A ≤ 1
2

2πr2.

Therefore A is trapped between two values that are both closing in upon
πr2. That means A itself must be πr2.

r sec(π/n)

2π/n
π/n r

r
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Exercise: cut and rearrange to parallelogram to show are of circle.
Exercise: induction proof that simple polygon can be triangulated
Exercise: the connection with Green’s Theorem



34 BARYCENTRIC COORDINATES



468 LESSON 34

In Lesson 22 we studied the trilinear coordinate system. At the time, I
postponed discussion of the closely related barycentric coordinate system,
because we hadn’t yet dealt with area. Now that we have looked at area,
we can get some closure on this topic. Barycentric coordinates are closely
connected to the idea of the center of mass – the balance point of a set of
weights. Archimedes has the first word on this topic that is near and dear
to heart of every kindergarten kid.

[The principle of the lever] Place two masses m1 and m2 on a
seesaw at distances d1 and d2 from the fulcrum. The seesaw
balances if

m1d1 = m2d2.

3 2
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Archimedes lever is essentially a one-dimensional construct– the points
and the fulcrum are all on one line. For the two-dimensional case, with
points lying in the plane, I think of the work of a more contemporary
figure– the mobiles of Alexander Calder. Let’s think about how he (or
some other mobile maker) would build a very simple mobile – one that
consists of just three equal weights located at points A, B, and C, and
wired together like this:

From a mathematical point of view, the interesting questions are: (1)
where should he put the hook M so that A and B balance?, and (2) where
should he put the hook N so that everything balances when the mobile is
hung from the string? The answer to question (1) is easy: since the two
weights are the same, the principle of the lever says that M needs to be at
the midpoint of AB. The answer to question (2) is just a bit more involved:
since M is now supporting twice the weight of C, the principle of the lever
says that the distance from N to C must be twice the distance from N to
M. In other words, N must be located two-thirds of the way down CM
from C– it is at the centroid. Now this was a simple system since all three
weights were the same, but imagine if we changed those weights so that
they were not all the same. The corresponding balance point of the system
(the N) would move as well. This is the key to barycentric coordinates– by
putting different weights at A, B, and C, we get different balance points,
and the barycentric coordinates of a point P are the weights that make P
the balance point.

A

B

C
M

N
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The vector approach

There is a vector approach to this problem as well. Start again with the
two person seesaw, with masses mA and mB at points A and B, respectively.
The balance point occurs at the center of mass M, when the two vectors
ma ·

−→
MA and mb ·

−→MB cancel out:

ma ·
−→
MA+mb ·

−→MB = 0.

More generally, we can consider when a sum of terms of the form mi ·
−−→MPi

add up to zero. The quantities mi ·
−−→MPi are measures of the the tendency

of the system to turn in the direction of Pi. The balancing point, the center
of mass M, is where all those cancel out:

∑
i

mi ·
−−→MPi = 0.

Of course, the idea of mass exists outside of the geometry that we have
developed. For our purposes, it is not really necessary to think of the co-
efficients mi as masses at all– if you want to avoid physics entirely, you
can just think of these as arbitrary scalar coefficients in a vector equa-
tion. Whether you think of them as masses or not, it is these coefficients
that form the basis for barycentric coordinates. Let’s start by investigating
some properties of these centers of mass, beginning with a two mass sys-
tem. Of course, the center of mass of two objects will lie between them,
as long as those two masses both have positive mass.

A:4 A

B:1 C:2 B C

Vectors from P to A,B,C. 4va + vb +2vc = 0

4va

va

vb

vb

vc 2vc

P
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If you are willing to allow for negative mass, then that center of mass
may not be between them, but everything else still “just works”, but you
do have to talk about in terms of signed distance and signed area. I don’t
feel like dealing with that, so I will just work with positive masses and
positive distances.

PROPOSITION I
If M is the center of mass of a two mass system, with mass mA at
point A and mass mB at point B, then

|MA|= mB

mA +mB
· |AB| & |MB|= mA

mA +mB
· |AB|.

Proof. Since M is the center of mass, by definition

mA ·
−→
MA+mB ·

−→MB = 0.

For these two vectors to cancel, they have to be the same length, so
mA|MA| = mB|MB|, so |MA|/|MB| = mB/mA. Now let’s look at the ra-
tio of |MA| to |AB|:

|MA|
|AB| =

|MA|
|MA|+ |MB| =

1
1+(|MA|/|MB|)

=
1

1+(mA/mB)
=

mB

mA +mB
.

Therefore
|MA|= mB

mA +mB
· |AB|.

The calculation of |MB| is, of course, similar.

A M B

mA mB
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PROPOSITION II
In a triangle �ABC with masses mA at A, mB at B, and mC at C,
label:MAB, the center of mass of A and B; MAC, the center of mass of
A and C; and MBC, the center of mass of B and C. Then the segments
AMBC, BMAC, and CMAB are concurrent.

Proof. This is a straightforward application of Ceva’s Theorem, using the
measurements from the previous calculation. Recall that Ceva’s Theorem
guarantees a point of concurrence if a product of ratios around the edges
of the triangle equals out to one. In this case, that product is

|AMAB|
|MABB| ·

|BMBC|
|MBCC| ·

|CMAC|
|MACA| .

If we focus on just the first ratio in that product and use the previous
proposition,

|AMAB|
|MABB|

=
mB/(mA +mB) · |AB|
mA/(mA +mB) · |AB|

=
mB

mA
.

Likewise,
|AMAB|
|MABB| =

mC

mB
&

|CMAC|
|MACA| =

mA

mC
,

and so
|AMAB|
|MABB|

· |BMBC|
|MBCC|

· |CMAC|
|MACA|

=
mB

mA
· mC

mB
· mA

mC
= 1.

By Ceva’s Theorem, the three segments are concurrent.

A

B

C

MAB

MAC

MBC

mA

mB

mC
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PROPOSITION III
The center of mass M of masses mA at A, mB at B, and mC at C, is the
point of concurrence of the segments AMBC, BMAC, and CMAB.

Proof. Let’s show that M is on the segment AMBC. A similar argument
will work to show it is on the other two segments, and therefore that it
is at their mutual intersection. Since M is the center of mass of the three
mass system, we may write

mA
−→
MA+mB

−→MB+mC
−→
MC = 0.

Now a little vector arithmetic gets us

mA
−→
MA+mB(

−−−→MMBC +
−−−→MBCB)+mC(

−−−→MMBC +
−−−→
MBCC) = 0,

mA
−→
MA+(mB+mC)

−−−→MMBC +(mB
−−−→MBCB+mC

−−−→
MBCC) = 0.

The last piece of that is zero since MBC is the center of mass of the system
with masses mB at B and mC at C, so

mA
−→
MA+(mB +mC)

−−−→MMBC = 0.

In order for these two vectors to cancel out like this, they must be oppo-
sitely directed. That is, A, M, and MBC must be collinear.

A

B

C

MAB M

MAC

MBC
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DEF: BARYCENTRIC COORDINATES
Given a triangle �ABC and a point M. A set of barycentric coordi-
nates of M (relative to �ABC) is a triple [ma : mb : mC] (with not all
of mA, mB, and mC equal to zero) so that

ma
−→
MA+mb

−→MB+mc
−→
MC = 0.

The most immediate observation is that barycentric coordinates are de-
fined only up to a constant multiple: if

ma
−→
MA+mb

−→MB+mc
−→
MC = 0

then
k ·ma

−→
MA+ k ·mb

−→MB+ k ·mc
−→
MC = 0

as well. Therefore, the barycentric coordinates of a point are not really a
triple [ma : mb : mc], but instead an equivalence class of triples where [ma :
mb : mc] = [na : nb : nc] if there is a nonzero constant k so that ma = kna,
mb = knb, and mc = knc.

[1:1:1]

[0:0:1][0:1:0] [0:1:1]

[1:1:0] [0:1:1]

[1:0:0]
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The connection to area and trilinears

Barycentric coordinates can be calculated, quite directly, using either ar-
eas of triangles or trilinear coordinates. The key to it is the following
theorem that relates the masses mA, mB and mC to the areas of certain tri-
angles. Throughout the rest of this lesson I will use the notation (�ABC)
to denote the area of �ABC (it appears to be somewhat common to use
the absolute value signs to denote area, but I used that bit notation for
perimeter a long time ago).

THM: MASS AND AREA
Given a triangle �ABC, with masses mA at A, mB at B, and mC at C,
and a center of mass M. Then

mA

mB
=

(�BCM)

(�ACM)
,

mB

mC
=

(�ACM)

(�ABM)
,

mC

mA
=

(�ABM)

(�BCM)
.

Proof. Let’s look at the first of these (the other two are just a shuffling of
labels). Label

FC: the foot of the altitude from A
FM: the foot of the altitude from M
MAB: the center of mass of AB.

A B

C

M

FMFC MAB
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Then

(�CAM) = (�CAMAB)− (�MAMAB)

= |CFC| · |AMAB|− |MFM| · |AMAB|
= |AMAB|(|CFC|− |MFM|).

and

(�CBM) = (�CBMAB)− (�MBMAB)

= |CFC| · |BMAB|− |MFM| · |BMAB|
= |BMAB|(|CFC|− |MFM|)

so
(�CAM)

(�CBM)
=

|AMAB|(|CFC|− |MFM|)
|BMAB|(|CFC|− |MFM|)

=
|AMAB|
|BMAB|

=
mA

mB
.

Likewise, with the proper interchange of letters,

mB

mC
=

(�ACM)

(�ABM)
&

mC

mA
=

(�ABM)

(�BCM)
.

A B

C

M M

FMFC MAB B

C

FMFC MAB
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As an immediate consequence, we get a way to use triangle areas to cal-
culate barycentric coordinates.

COR: BARYCENTRIC COORDINATES AND AREA
Any point M subdivides a triangles �ABC into three pieces, �ABM,
�ACM, and �BCM. The barycentric coordinates of M can be com-
puted from the the areas of those triangles as

[(�BCM) : (�ACM) : (�ABM)].

Proof. Let [ma : mb : mc] be the barycentric coordinates of M. At least one
of the three coordinates must be nonzero. Let’s assume it is mC. Then
it is a three-step calculation: (1) divide through by mC, (2) use the previ-
ous theorem to make the connection to area, and (3) multiply through by
(�BCM).

[ma : mb : mc] = [ma/mc : mb/mc : 1]
= [(�BCM)/(�ABM) : (�ACM)/(�ABM) : 1]
= [(�BCM) : (�ACM) : (�ABM)]

A

34.1 32.3

33.6
B

C

A

54.3
17.6

28.1
B

C

[32.3 : 34.1 : 33.6] [17.6 : 54.3 : 28.1]
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So just how closely related are barycentric and trilinear coordinates?

THM: BARYCENTRIC COORDINATES AND TRILINEARS
If the trilinear coordinates of a point M relative to �ABC are [a : b : c],
then the barycentric coordinates of M (relative to that same triangle)
are

[a · |BC| : b · |AC| : c · |AB|].

Proof. The barycentric coordinates of M can be computed from the areas
of triangles as

[(�BCM) : (�ACM) : (�ABM)] = [ha|BC| : hb|AC| : hC|AB|].

where ha, hb, and hc are the lengths of the altitudes from M in each of the
three triangles. But the trilinear coordinates of M can be normalized to
measure exactly these lengths. Therefore a = ha, b = hb, and c = hc.

c

ab

A B

C
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Barycentric coordinates of important triangle cen-
ters

Based upon the conversation at the start of the lesson, the barycentric co-
ordinates of the centroid are [1 : 1 : 1]. What about some of the other
triangle centers we have encountered? Of course, we already have a very
easy way to convert from trilinear coordinates to barycentric coordinates,
but what would be the fun in that? So let’s start with the orthocenter.

THM: BARYCENTRIC COORDINATES OF THE ORTHOCENTER
In �ABC, the barycentric coordinates of the orthocenter are

[cot A : cotB : cotC].

Proof. Let MBC be the foot of the altitude which passes through A and
is perpendicular to BC. Look at the two right triangles �ABMBC and
�ACMBC.

In them,

|BMBC|= |AMBC|cot(∠B) & |CMBC|= |AMBC|cot(∠C).

Therefore
|BMBC|
|CMBC|

=
cot B
cotC

.

A

B

Q

CMBC
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Likewise, if MAC is the foot of the altitude which passes through B and is
perpendicular to AC, then

|AMAC|
|CMAC|

=
cot A
cotC

.

Now the masses mA, mB, and mC must be in those same ratios. That is,

cotA
cotC

=
mA

mC
&

cotB
cotC

=
mB

mC
.

That means that the barycentric coordinates of the orthocenter are
[

cotA
cotC

:
cot B
cotC

: 1
]
∼ [cotA : cotB : cotC].

The barycentric coordinates of the circumcenter and the incenter both key
off of the fact that they are the centers of circles– the circumcircle and the
incircle.

THM: BARYCENTRIC COORDINATES OF THE CIRCUMCENTER
In �ABC, the barycentric coordinates of the circumcenter are

[|BC|cos(∠A) : |AC|cos(∠B) : |AB|cos(∠C)].

A

B C

PI
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Proof. Let P denote the circumcenter and remember that it is the center of
the circumcircle, a circle that passes through each of A, B, and C, so that
|PA|= |PB|= |PC|. Let r be the radius of this circumcircle. The argument
in this proof is essentially a rip-off of the argument in the calculation of the
circumcenter’s trilinear coordinates, so you may want to review that now.
If F is the foot of the perpendicular through P to the line BC, then note
that ∠BPF = 1

2∠BPC =∠A (by the Inscribed Angle Theorem). Therefore

|PF|= r cos(∠A)

and so
(�PBC) = 1

2r cos(∠A)|BC|.

Similarly

(�PAC) = 1
2r cos(∠B)|AC| & (�PAB) = 1

2r cos(∠C)|AB|,

and we have seen that the areas of these triangles determine the barycentric
coordinates of P:

[ 1
2r|BC|cos(∠A) : 1

2r|AC|cos(∠B) : 1
2 r|AB|cos(∠C)

]

∼ [|BC|cos(∠A) : |AC|cos(∠B) : |AB|cos(∠C)].

A

P

r r

B F C
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THM:BARYCENTRIC COORDINATES OF THE INCENTER
In �ABC, the barycentric coordinates of the incenter are

[|BC| : |AC| : |AB|].

Proof. Let P be the incenter of �ABC. Recall that the incenter is equidis-
tant from each of the sides of the triangle– it is the center of the inscribed
circle of �ABC. Let r be the radius of this incircle. Then

(�PBC) = 1
2 r|BC|, (�PAC) = 1

2r|AC|, (�PAB) = 1
2 r|AB|,

so the barycentric coordinates of P are
[ 1

2r|BC| : 1
2r|AC| : 1

2r|AB|]∼ [|BC| : |AC| : |AB|
]
.

A

r

I

B C
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In the last few lessons we classified all of the bijective mappings of the
Euclidean plane that respect incidence, order, and congruence. Now we
are going to have to look for mappings that fall short of that stringent list
of conditions, but that still preserve enough remnants of the Euclidean
structure to tell us something interesting. An optimist would view the ad-
ditional freedom as an opportunity, and indeed I think that this is a time
to be optimistic. The particular type of mapping that we will investigate
in the next couple of lessons is called inversion. Inversions provides inter-
esting insight into some of the classical problems of Euclidean geometry,
particularly those that involve circles. Inversions also play an important
role in the study of non-Euclidean geometry. I think that the most natu-
ral path into the topic of inversion is via stereographic projection. This
means that we will have to momentarily step outside of the plane. Don’t
worry– by the time we get around to formally defining inversions, we will
be comfortably back in the plane.

Stereographic Projection

Ever since map-makers realized that the earth is round, they have sought
ways to project a spherical surface down to a flat plane. One approach
which is nice mathematically (although maybe not so nice cartographi-
cally) is called stereographic projection. It works as follows. First put
the center of the sphere (say of radius r) at the origin of the plane. Then
draw rays out from the north pole through each other point of the sphere.
Those rays will each intersect the plane, establishing a bijection between
the points of the sphere (except the north pole itself) and the points of the
plane. That mapping from the sphere to the plane is called stereographic
projection.
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With a few symbols, we can describe the process more precisely. Label

E: the plane z = 0;

S: the sphere of radius r, centered at the origin;

N: the “north pole”– the point with coordinates (0,0,r);

Φ: the stereographic projection from S to E;

P: any point of S other than N.

Then NP � will intersect E exactly once, and Φ(P) is defined to be this
intersection point. Since Φ is a bijection, it has an inverse, Φ−1, that
is called inverse stereographic projection. For those of you that worry
about a possible northern hemisphere bias, we can do the same kind of
projection equally well from the south pole. In fact, to define inversion,
we will need to work from both poles– first an inverse stereographic from
the north pole, and then a stereographic projection from the south pole. It
is pretty straightforward to work out analytic equations to describe these
mappings, and that is the first task of this lesson.

P

N

Φ(P)
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THM: EQUATIONS FOR STEREOGRAPHIC PROJECTION
The inverse stereographic projection Φ−1

N from the north pole (0,0,r)
is given by the equation

Φ−1
N (x,y) =

(
2xr2

d2 + r2 ,
2yr2

d2 + r2 ,
rd2 − r3

d2 + r2

)

where d =
√

x2 + y2 is the distance from O to the point (x,y). The
stereographic projection ΦS from the south pole (O,O,−r) is given
by the equation

ΦS(x,y,z) =
(

rx
r+ z

,
ry

r+ z

)
.

Proof. I will prove the first of these formulas, and leave the second to
you. The point (x,y) in the plane corresponds to the point (x,y,0) in 3-
dimensional space. Start with a parametrized equation for the line through
(x,y,0) and the north pole, (0,0,r):

s(t) = �0,0,r�+ t�x−0,y−0,0− r� = �tx, ty,r− rt�.

We need to find out when this line hits the sphere. All the points on the
sphere are a distance r from the origin, so this basically boils down to the
equation |s(t)|2 = r2:

(tx)2 +(ty)2 +(r− rt))2 = r2

t2x2 + t2y2 + r2 −2r2t + r2t2 = r2.

P = (x,y)

Φ−1
N (P)

(0,0,r)

d
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Cancel out the r2 on both sides, and factor to solve for t:

t2(x2 + y2)−2r2t + r2t2 = 0
t2d2 + r2t2 −2r2t = 0

t((d2 + r2)t −2r2) = 0.

The first solution, when t = 0, is at the north pole – that’s not the one we
want. The other intersection occurs when

t =
2r2

d2 + r2 .

Plugging that into s(t) gives the vector that points to Φ−1
N (x,y):

〈
2xr2

d2 + r2 ,
2yr2

d2 + r2 ,r−
2r3

d2 + r2

〉
.

You can use a similar argument for the second part– find the equation of
the line through the south pole and the point (x,y,z), and then locate its
intersection with the plane z = 0.

This is a book on plane geometry, so we should really be looking for maps
from the plane to itself. We can get such a map by composing Φ−1

N and
ΦS– the first step in the composition takes the plane to the sphere, but the
second step brings it back. Notice that when we do this, there is clearly
a problem at the origin O, since Φ−1

N (O) = S, and ΦS(S) is undefined. If
we just toss out that one bad point, though, what’s left is a perfectly good
bijection from E−O to itself.

P

Φ−1
N (P)

ΦS ◦Φ−1
N (P)
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Let’s call that bijection σ . Then

σ(x,y) =ΦS ◦Φ−1
N (x,y) =ΦS

(
2xr2

d2 + r2 ,
2yr2

d2 + r2 ,r−
2r3

d2 + r2

)
.

Let’s focus on simplifying just the first coordinate of σ(x,y):

r
(

2xr2

d2 + r2

)

r+
(

r− 2r3

d2 + r2

) .

Multiply through, top and bottom, by d2 + r2 to get

2xr3

2r(d2 + r2)−2r3 =
2xr3

2rd2 +2r3 −2r3 =
2xr3

2rd2 =
xr2

d2 .

The second coordinate works similarly and eventually simplifies down to
yr2/d2, so

σ(x,y) =
(

x · r2

d2 , y · r2

d2

)
.

Note then that σ(x,y) is on the same ray from the origin as (x,y), but its
distance from the origin has been altered– the distance from the origin is
now

√(
xr2

d2

)2
+

(
yr2

d2

)2
=

√
x2r4 + y2r4

d4 =

√
d2r4

d4 =
r2

d
.

PO σ(P)
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There is a more geometric view of this that may be more appealing than
the previous calculations. Take a cross section of the sphere and plane as
illustrated:

By Thales’ Theorem, the two lines
� NP � and � Sσ(P) � intersect
at right angles at Φ−1

N (P). Then by
A·A similarity,

�SNΦ−1
N (P)∼�Sσ(P)O

(since they both have a right angle
and they share the angle at S).

Also by A·A similarity,

�Sσ(P)O ∼�Pσ(P)Φ−1
N (P)

(using the right angles and the ver-
tical angle pair at σ(P)).

P

NN

SS

P

N

O P

S

σ(P)
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Therefore
�SNΦ−1

N (P)∼�Pσ(P)Φ−1
N (P).

Matching the corresponding ratios of the two legs of these triangles,

|Oσ(P)|
r

=
r

|OP| =⇒ |Oσ(P)|= r2

|OP| = r2/d.

Inversion

This map σ that we constructed in the previous section is, in fact, an in-
version. Using the above properties, we can now give a proper definition
of inversion that does not stray from the plane. The sphere of radius r is
replaced by its intersection with the plane, a circle of radius r. Further-
more, there is no longer any real advantage to centering the circle at the
origin.

DEF: INVERSION
Let C be a circle with center O and radius r. The inversion σ across
C is the bijection of the points of E−O defined as follows. For any
point P ∈ E−O, σ(P) is the point on the ray OP� that is a distance
r2/|OP| from O.

Inversion of a collection of points across a circle.
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Note that an inversion turns a circle inside out–

1. If P is inside C, then |OP| is less than r, so r2/|OP| is greater than
r, so σ(P) is outside C.

2. If P is outside C, then |OP| is greater than r, so r2/|OP| is less than
r, so σ(P) is inside C.

3. If P is on C, then |OP|= r, so r2/|OP|= r, so σ(P) is again on C.
In fact, since OP� only intersects C once, in this case P = σ(P).

That last observation is an important one– σ fixes all the points of C. In
this regard, an inversion is a little like a reflection. Whereas a reflection
fixes a line and swaps the two sides of it, an inversion fixes a circle and
swaps the interior and exterior of it. Furthermore, it is easy to see that, like
a reflection, an inversion is its own inverse. But it is also important to note
how an inversion differs from a reflection, and perhaps most importantly,
an inversion does not scale all distances by a constant– points that are very
close to O may be thrown very apart from one another, while points that
are very far from O will all be squeezed into a tiny space right around O.

Distances are not all scaled by the same amount.



494 LESSON 35

All is not lost, however. The first sign of hope is a result on similarity.

THM: A SIMILARITY CREATED BY INVERSION
Let σ be the inversion across a circle C with radius r and center O.
Then for any two distinct points P and Q in E−O,

�POQ ∼�σ(Q)Oσ(P).

Proof. First of all, the two triangles in question share an angle at O. Now
take a look at the sides:

|Oσ(P)|= r2/|OP| & |Oσ(Q)|= r2/|OQ|,

so
|Oσ(P)|
|Oσ(Q)| =

r2/|OP|
r2/|OQ| =

|OQ|
|OP| .

By the S·A·S similarity theorem, then, the two triangles are similar. Note
carefully, though, that the sides OP and OQ are “crossed up” by this sim-
ilarity.

σ(Q)

σ(P)

P

Q

O



495INVERSION

Let’s look at some larger structures. We have seen that all Euclidean trans-
formations map lines to lines, but what happens when we invert a line?
One situation is easy– any line that passes through O is mapped to itself.
[Technically, it isn’t quite mapped to itself, because there is a problem at
O. Forgive me, but for the rest of the section, it is just more convenient to
ignore the problems that arise at O.] For a line that does not pass through
O, the situation gets more interesting.

THM: INVERTING A LINE
Let σ be the inversion across a circle C with radius r and center O.
Let � be a line that does not pass through O. Then σ(�) is a circle
that passes through O.

Proof. Let F be the foot of the altitude from O to �. I claim that Oσ(F)
is the diameter of the circle σ(�). To see why, take any other point P on
�. Then �OFP is a right triangle with right angle at F . As we have just
seen, �OFP is similar to �Oσ(P)σ(F) which means that �Oσ(P)σ(F)
is a right triangle whose right angle is at σ(P). By Thales’ Theorem (its
converse actually), σ(P) must be on the circle with diameter Oσ(P).

σ(P)
σ(F)

F

P

O
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Inverting a circle 1

It is easy to play that argument in reverse: any circle which passes through
O inverts to a line (which does not pass through O). But that obviously
leads to another question– what about circles that don’t pass through O?

THM: INVERTING A CIRCLE
Let σ be the inversion across a circle C with radius r and center O.
Let c be a circle that does not pass through O. Then σ(c) is again a
circle (that does not pass through O).

Proof. This proof again uses Thales’ Theorem. . . it is just a little more
complicated. The ray from O through the center of c will intersect c twice.
Label those two points P and Q. Then PQ is a diameter of c and I claim
that σ(P)σ(Q) is a diameter of σ(c). Now let R be another point on c.
Then

�OPR ∼�Oσ(R)σ(P) =⇒ ∠OPR � ∠Oσ(R)σ(P)
�OQR ∼�Oσ(R)σ(Q) =⇒ ∠OQR � ∠Oσ(R)σ(Q).

A little angle arithmetic:

(∠σ(P)σ(R)σ(Q)) = (∠Oσ(R)σ(P))− (∠Oσ(R)σ(Q))

= (∠OPR)− (∠OQR).
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Inverting a circle 2

Inverting a circle 3

Note though that ∠OPR is an exterior angle of �PQR, so

(∠OPR) = (∠PQR)+ (∠PRQ).

Substituting that in,

(∠σ(P)σ(R)σ(Q)) = ((∠PQR)+ (∠PRQ))− (∠OQR)= (∠PRQ).

Since R is on the circle with diameter PQ, ∠PRQ is a right angle. There-
fore ∠σ(P)σ(R)σ(Q) is a right angle as well, and so σ(R) lies on the
circle with diameter σ(P)σ(Q). A word of warning: while σ(c) is a cir-
cle, σ does not map the center of c to the center of σ(c).
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angles between curves

Since an inversion σ doesn’t map lines to lines, it doesn’t really make
much sense to ask whether σ(∠ABC) � (∠ABC). Instead, let’s take a
page from the book of calculus. In calculus, the angle between intersecting
curves is measured by zooming into the infinitesimal level, at which point
the angle between the curves becomes the angle between their tangent
lines. A mapping that preserves those angles between curves is called a
conformal map. Inversion does preserve angles in this sense.

THM: INVERSION IS CONFORMAL
Let σ be the inversion across the circle C with center O and radius r.
Let �1 and �2 be curves that intersect at some point P other than O.
The curves may be both lines, both circles, or one of each. Let P be
the intersection of �1 and �2. Then the angle between �1 and �2 at P
is the same as the angle between σ(�1) and σ(�2) at σ(P).

Proof. There are a lot of cases here, particularly since the scenarios where
one or both of the curves pass through O require their own attention. I will
do the part where �1 and �2 are lines, but leave the rest as an exercise. Note
first that �1 and �2 cannot both pass through O, for if they did, then their
inversion P would occur at O– it doesn’t make sense to talk of the image
of that point, which is why that scenario was specifically prohibited in the
statement of the theorem.

Suppose that �1 passes through O, but that �2 does not.
Then σ will map �1 to itself and will map �2 to a circle which passes
through O. In the course of the proof of that second fact, we found out
that if F is the foot of the perpendicular to �2 from O, then Oσ(F) will be
a diameter of σ(�2). On the chance that �1 and �2 intersect exactly at F ,
then �1 and �2 will intersect at right angles, and in that case, the diameter
of σ(�2) will lie along the line �1. Thus the tangent line to the circle σ(�2)
at σ(F) will again intersect σ(�1) at a right angle. More generically, when
�1 and �2 intersect at a point P other than F , then their angle of intersection
is ∠OPF, and

�OPF ∼�Oσ(F)σ(P),

so ∠OPF � ∠Oσ(F)σ(P). Let Q be the center of the circle σ(�2). Both
Qσ(F) and Qσ(P) are radii of that circle, so �Qσ(F)σ(P) is isosceles,
and by the Isosceles Triangle Theorem,

∠Qσ(F)σ(P)� ∠Qσ(P)σ(F).
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line 1 goes through O, and intersects line 2 at F

line 1 through O, but intersects line 2 at a point other than F

Suppose that �1 passes through O, but that �2 does not.
Then σ will map �1 to itself and will map �2 to a circle which passes
through O. In the course of the proof of that second fact, we found out
that if F is the foot of the perpendicular to �2 from O, then Oσ(F) will be
a diameter of σ(�2). On the chance that �1 and �2 intersect exactly at F ,
then �1 and �2 will intersect at right angles, and in that case, the diameter
of σ(�2) will lie along the line �1. Thus the tangent line to the circle σ(�2)
at σ(F) will again intersect σ(�1) at a right angle. More generically, when
�1 and �2 intersect at a point P other than F , then their angle of intersection
is ∠OPF, and

�OPF ∼�Oσ(F)σ(P),

so ∠OPF � ∠Oσ(F)σ(P). Let Q be the center of the circle σ(�2). Both
Qσ(F) and Qσ(P) are radii of that circle, so �Qσ(F)σ(P) is isosceles,
and by the Isosceles Triangle Theorem,

∠Qσ(F)σ(P)� ∠Qσ(P)σ(F).
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line 1 does not go through O

zoom into to sigma(P)

Now focus on what is happening right around σ(P). Both ∠Oσ(P)σ(F)
and the angle between σ(�1) and σ(�2) are complementary to the same
angle. That means they must be congruent.

Suppose that neither �1 nor �2 pass through O.
In this case, the line �OP� splits the angle formed by �1 and �2 into two
pieces. Let θ1 be the angle between �1 and OP, and let θ2 be the angle
between �2 and � OP �. Now � OP � will also split the angle between
σ(�1) and σ(�2). From our previous work, the angle between σ(�1) and
� OP � is the same as the angle between �1 and � OP �, and the angle
between σ(�2) and �OP� is the same as the angle between �2 and �OP�.
Adding the pieces together, the angle between σ(�1) and σ(�2) is the same
as the angle between �1 and �2.
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cross ratio

That’s some good news about angle measure. Unfortunately, we already
know that the news isn’t so good when it comes to measuring distance.
Does inversion have any kind of distance invariant? As a matter of fact,
yes– to find it you have to play around with the similarity property of
inversion. The invariant is something called the cross ratio.

DEF: CROSS RATIO
Let A, B, P and Q be four distinct points. The cross ratio of A, B, P,
and Q, written [AB,PQ] is the product of ratios

[AB,PQ] =
|AP|
|AQ|

· |BQ|
|BP|

.

THM: INVERTING THE CROSS RATIO
The cross ratio is invariant under inversion. That is, for any inversion
σ , and points A, B, P, and Q,

[AB,PQ] = [σ(A)σ(B),σ(P)σ(Q)].

Proof. By the similarity property,

|σ(A)σ(P)|
|AP| =

|Oσ(P)|
|OA|

|σ(B)σ(Q)|
|BQ| =

|Oσ(Q)|
|OB|

|σ(A)σ(Q)|
|AQ| =

|Oσ(Q)|
|OA|

|σ(B)σ(P)|
|BP| =

|Oσ(P)|
|OB|
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similar triangles

so

|σ(A)σ(P)|
|AP| · |σ(B)σ(Q)|

|BQ| · |AQ|
|σ(A)σ(Q)| ·

|BP|
|σ(B)σ(P)|

=
|Oσ(P)|
|OA| · |Oσ(Q)|

|OB| · |OA|
|Oσ(Q)| ·

|OB|
|Oσ(P)| = 1.

Multiplying across,

|σ(A)σ(P)|
|σ(A)σ(Q)| ·

|σ(B)σ(Q)|
|σ(B)σ(P)| =

|AP|
|AQ| ·

|BQ|
|BP| .

and so
[σ(A)σ(B),σ(P)σ(Q)] = [AB,PQ].

We will see the cross ratio again. It is an essential tool for building non-
Euclidean geometry.
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Matrix/vector arithmetic is the natural language of isometries, but it does
not do so well when it comes to describing inversion. For that, it is bet-
ter to translate the problem into the language of complex arithmetic. We
will start off this lesson with a review of that complex arithmetic. I as-
sume that readers who have made it this far have some experience work-
ing with complex numbers– if not, then this cursory overview is probably
not sufficient– our needs here are pretty minimal, but they are not non-
existent. Any standard text on complex numbers will get you up to speed
in next to no time.

Complex numbers, complex arithmetic

A complex number is a number of the form a+bi where a and b are real
numbers and i is a solution to the equation x2 = −1. The set of complex
numbers C contains all the real numbers in the form a+ 0i, but since the
square of any real number is positive, i is not itself a real number. Thus C
is properly an extension of the real numbers. There is a bijection between
complex numbers and points (or vectors) in R2 via

a+bi ←→ (a,b).

This correspondence is what allows us to translate problems in R2 into
problems in C. Why would we want to do that? Well, the basic advantage
of C over R2 is that C is a field– any two numbers in it can be added,
subtracted, multiplied, and (except in the case of 0) divided. In contrast,
while the vectors of R2 are equipped with addition, subtraction, and scalar
multiplication, there is no natural way to multiply or divide vectors. It is
the multiplication and division operations that make it worth the effort.
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conjugate, norm, argument

Addition and subtraction in C are essentially the same as vector addition
and subtraction. Multiplication in C is just “FOIL” together with the fact
that i2 =−1. Division is done by multiplying by the “complex conjugate”.

COMPLEX ARITHMETIC

(a+bi)+ (c+di) = (a+ c)+ (b+d)i
(a+bi)− (c+di) = (a− c)+ (b−d)i

(a+bi)(c+di) = ac+adi+bci+bdi2 = (ac−bd)+ (ad +bc)i
a+bi
c+di

=
a+bi
c+di

· c−di
c−di

=
ac+bd
c2 +d2 +

bc−ad
c2 +d2 i.

The complex conjugate of z = a+bi (mentioned above) is z = a−bi. The
norm (or length or absolute value) of a complex number z = a+ bi is its
distance from 0,

|z|=
√

a2 +b2.

The argument of a complex number z is the measure of the angle that it
forms with the real axis (as measured in the counterclockwise direction),
so

tan(arg(a+bi)) = b/a.
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The standard presentation of a complex number in the form a+ bi is dis-
tinctly rectangular in its construction. Complex numbers can also be ex-
pressed in a “polar form”– if r = |z| and θ = arg(z), then a = r cosθ and
b = r sinθ , so

a+bi = (r cosθ)+ (r sinθ)i = r(cosθ + isinθ).

For our purposes, this polar form is really just a stepping stone toward
the ultimate goal– an “exponential form”. If you have only ever been
exposed to real-valued functions, then the trigonometric functions sin x
and cosx probably seem vastly different from the exponential function ex.
For instance, sin x and cosx are bounded and periodic; the exponential
function is neither bounded nor periodic. In the more expansive world of
complex numbers, though, there are deep connections between these three
functions. The easiest way to see those connections is by looking at their
Taylor series.

Taylor series: a quick and dirty review

Let f (x) be a function whose derivatives at a point a are all defined.
The nth Taylor polynomial of f (x), expanded about the point a, is a
specific degree n polynomial pn that approximates f (x) in a region right
around a. It is calculated by matching the function value and the first n
derivatives at a of pn with those of f (x). Now all these derivatives at a
give local information about the function right around the a (they tell us
whether the function is increasing or decreasing, concave up or concave
down). It makes sense that taking more derivatives would improve that
approximation around a and perhaps extend the region for which the
approximation is “fairly close”. Taken to its natural extreme, then, if
we want the best approximation, we’ve got to let n →∞, and look at the
Taylor series p∞ that approximates f (x). Matching up derivatives gives
the formula

p∞(x) =
∞

∑
n=0

p(n)(a)
n!

(x−a)n.

Even with an infinite sum, there is in general no guarantee that p∞(x)
will be a good approximation of f (x) as you move away from a (in fact,
there is now the additional question of whether the series converges at
all).
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Taylor polynomial: exponential

Taylor polynomial: cosine

Taylor polynomial: sine

Here’s the good news: the Taylor series of ex, sin x, and cosx do con-
verge to exactly the function value for all x (no matter what a value is
chosen). The Taylor series expansions about a = 0 for these functions
are

ex =
∞

∑
n=0

1
n!

xn

cosx =
∞

∑
n=0

(−1)n

(2n)!
x2n

sinx =
∞

∑
n=0

(−1)n

(2n+1)!
x2n+1

ex =
∞

∑
n=0

1
n!

xn

cosx =
∞

∑
n=0

(−1)n

(2n)!
x2n

sinx =
∞

∑
n=0

(−1)n

(2n+1)!
x2n+1

ex =
∞

∑
n=0

1
n!

xn

cosx =
∞

∑
n=0

(−1)n

(2n)!
x2n

sinx =
∞

∑
n=0

(−1)n

(2n+1)!
x2n+1
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rectangular, polar, and exponential form, all together

Now let’s see how that allows us to relate the sine and cosine functions to
the exponential. Cosine is an even function and sine is an odd function, so
if we take the series expansion of eiθ and segregate the even powers from
the odd powers:

eiθ =
∞

∑
n=0

(iθ)n

n!

=
∞

∑
n=0

(iθ)2n

(2n)!
+

∞

∑
n=0

(iθ)2n+1

(2n+1)!

=
∞

∑
n=0

i2nθ2n

(2n)!
+

∞

∑
n=0

i · i2nθ2n+1

(2n+1)!

=
∞

∑
n=0

(−1)nθ2n

(2n)!
+ i

∞

∑
n=0

(−1)nθ2n+1

(2n+1)!

= cosθ + isinθ .

Therefore the polar form of a complex number z can be rewritten in an
exponential form

z = r(cosθ + isinθ) = reiθ .

All the rules of exponents still apply, so this is a very powerful alternative
to the rectangular form for a complex number.
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reflection

transation

The geometry of complex arithmetic

Adding the complex number z = a + bi to another complex number w
has the effect of translating w by the vector �a,b�. Subtracting z from w
has a similar effect, but the translation is in the opposite direction. For
multiplication and division it is best to look at the exponential form: write
z = reiθ and w = seiφ . Then

zw = reiθ · seiφ = rsei(θ+φ).

The effect of multiplying by z, then, is to scale from the origin by r and to
rotate counterclockwise around the origin by θ . Division works similarly,

w/z = seiφ/reiθ = (s/r)ei(φ−θ ),

but this time the scaling is by 1/r and the rotation by θ is in the clockwise
direction. For this reason, some Euclidean isometries can be described
quite naturally in terms of complex arithmetic.

The translation

t
(

x
y

)
=

(
x+a
y+b

)

becomes

t(z) = z+(a+bi).

The reflection across the real (x-) axis

s
(

x
y

)
=

(
x
−y

)

becomes
r(z) = z.



510 LESSON 36

scaling

rotation

circle

line

The scaling by k about the origin

d
(

x
y

)
=

(
kx
ky

)

becomes
d(z) = kz.

The rotation by θ about the origin

r
(

x
y

)
=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)

becomes

d(z) = eiθ · z.

For any complex number a and positive
real number r, the equation |z− a| =
r describes a circle with center a and
radius r.

For any two complex numbers z1 and
z2, the function r : R→ C defined by

r(t) = z1 + t(z2 − z1)

describes the line through z1 and z2.
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inversion (applied to a grid)

The whole point of this, remember, was to find a workable equation for
inversion.

THM: AN EQUATION FOR INVERSION
The inversion σ across |z| = r, the circle of radius r centered at the
origin, is given by the equation

σ(z) = r2/z.

Proof. Write z= Reiθ . According to the definition of inversion, σ(z) is on
the ray from the origin passing through z and its distance from the origin
is r2/R. The points on this ray all have an argument of θ . Therefore

σ(z) =
r2

R
eiθ =

r2

Re−iθ = r2/z.
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change of coordinates

More generally, we can use a change of coordinates to find the equation
of an inversion across a circle that is not centered at the origin.

COR: GENERAL FORM FOR AN INVERSION
The inversion σ across |z− a| = r, the circle of radius r centered at
a, is given by the equation

σ(z) =
r2

z−a
+a.

Proof. To use the previous formula, we need to work with a change of
coordinates that repositions the origin at a. We can use the translation
t(z) = z+ a. If we label σ0 as the inversion across the circle of radius r
centered at the origin, then

σ(z) = t ◦σ0 ◦ t−1(z)
= t ◦σ0(z−a)

= t
(

r2

z−a

)

=
r2

z−a
+a.
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Properties of the norm and conjugate

A lot of the arithmetic of complex numbers plays on a few simple proper-
ties of the norm and the conjugate. I am providing the proof of a couple
of these properties but leaving the rest to you.

THM: PROPERTIES OF THE CONJUGATE
For complex numbers z, z1, and z2

(z) = z
z1 + z2 = z1 + z2

z1 − z2 = z1 − z2

If z = reiθ , then z = re−iθ .
z1 · z2 = z1 · z2

z1/z2 = z1/z2 (if z2 �= 0)

Proof. Let me just take the claim that z1 · z2 = z1 · z2. Writing z1 = r1eiθ1

and z2 = r2eiθ2 , then

z1 · z2 = r1eiθ1r2eiθ2

= r1r2ei(θ1+θ2)

= r1r2e−i(θ1+θ2)

= r1e−iθ1r2e−iθ2

= z1 · z2.

THM: PROPERTIES OF THE NORM
For complex numbers z, z1, and z2

zz = |z|2

|z|= |z|
|z1 · z2|= |z1| · |z2|
|z1/z2|= |z1|/|z2| (z2 �= 0)
|z1 ± z2| ≤ |z1|+ |z2|.



514 LESSON 36

Proof. For example, the first one is easy to verify: write z = reiθ . Then

zz = reiθ · re−iθ = r2 = |z|2.


