Name (4 points):
[No books or notes are allowed. Please show all of your work.]

1. (4 points) Define: Let G and H be groups. A map $f: G \rightarrow H$ is an isomorphism if:
2. (4 points) Define: A permutation σ is even if:
3. (4 points) Define: A subgroup H of G is a normal subgroup if:
4. (4 points) Define: Let a be an element in a group G. The order of a is:
5. (4 points) Define: A group G is cyclic if:
6. (4 points) Define: the kernel of a homomorphism $f: G \rightarrow H$ is:
7. (4 points) An element $g \in G$ is in $Z(G)$, the center of G if:
8. (4 points) State Lagrange's Theorem.
9. (6 points) Give the order of each of the following groups.
(a) \mathbb{Z}_{15}
(b) $U(15)$
(c) S_{5}
(d) A_{5}
(e) $\mathbb{Z}_{2} \oplus S_{3}$
(f) $\mathbb{Z}_{18} /\langle 3\rangle$
10. (6 points) Give the order of each of the following elements.
(a) $9 \in \mathbb{Z}_{12}$
(b) $3 \in U(8)$
(c) $(123) \in S_{3}$
(d) $(23)(4567) \in S_{7}$
(e) $(2,3) \in \mathbb{Z}_{4} \oplus \mathbb{Z}_{9}$
(f) $8+\langle 6\rangle \in \mathbb{Z}_{12} /\langle 6\rangle$
11. (4 points) Let $\sigma=(12356)(234)$.
(a) Write σ as a product of disjoint cycles.
(b) Write σ as a product of 2-cycles (transpositions)
12. (4 points) List all abelian groups of order 98 up to isomorphism (do not include any "repeats").
13. (4 points) (a) Give an example of a homomorphism which is one-to-one but not onto.
(b) Give an example of a homomorphism which is onto but not one-to-one.
14. (4 points) List the left cosets of the subgroup $\langle 4\rangle$ in \mathbb{Z}_{20}.
15. (4 points) (a) Give an example of a finite non-abelian group.
(b) Give an example of an infinite abelian group that is not cyclic.
16. (4 points) According to the Fundamental Theorem of Finite Abelian Groups, $U(12)$ is isomorphic to a direct product of cyclic groups of prime power order. Which one?
17. (4 points) Draw the subgroup lattice of \mathbb{Z}_{18}.
18. (8 points) Let g be a fixed element in a group G. Define the set

$$
H=\{h \in G \mid h g=g h\}
$$

Prove that H is a subgroup of G (it is called the centralizer of g).
19. (8 points) Define a map $f: S_{6} \rightarrow S_{6}$ by

$$
f(x)=(12) x(12)
$$

Prove that f is an automorphism of S_{6}.
20. (8 points) Let p be a prime and suppose that G is an abelian group with order p^{2}. Prove that if G has at least p elements with order p, then $G \simeq \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$.

I certify as a student at The University of Virginia's College at Wise that I have neither received nor given aid on this test.

