
Math 3350. Final Exam (Harvey Spring 2013).

Name (2 points):

[No books, notes, or calculators are allowed. Please show all of your work.]

Definitions. Be precise and concise. Do not give vague answers.

1. (4 points) A set S with a closed binary operation ◦ is a group if:

2. (4 points) Let H be a nonempty subset of group G. What are the two steps of the two-step subgroup
test to show that H is a subgroup of G?

3. (4 points) A subgroup H of a group G is normal if:
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4. (4 points) The center Z(G) of a group G is:

5. (4 points) State the Fundamental Theorem of Finite Abelian Groups.

6. (4 points) State Lagrange’s theorem.

7. (4 points) Suppose that G and H are groups. A map f : G→ H is a group homomorphism if:
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Problems. Short answers are sufficient.

8. (4 points) (a) Give an example of a finite abelian group.

(b) Give an example of a finite non-cyclic group.

9. (4 points) (a) Give an example of a finite subgroup of an infinite group (other than the identity).

(b) Give an example of a infinite subgroup of an infinite group (other than the group itself).

10. (4 points) Give an example of a normal subgroup of a non-abelian group.

11. (4 points) Let σ = (1234)(568) and τ = (145)(2367). Write σ · τ as a product of disjoint cycles.
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12. (8 points) What are the orders of the following groups?

(a) S4

(a) Z6 ⊕ Z3

(b) S5/A5

(c) A4 ⊕ U(4)

13. (8 points) What are the orders of the following elements?

(a) 2 in Z9

(b) (123)(456) in S6

(c) ((123), 2) in S3 ⊕ Z12

(d) eH in G/H (where H CG and e is the identity in G).
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14. (4 points) Draw the subgroup lattice of Z36.

15. (4 points) List, up to isomorphism, all abelian groups of order 36. List each exactly once– no repeats!
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Proofs. Give clear arguments. Don’t skip steps.

16. (8 points) Let H be a subgroup of G and let N be a subgroup of H that is normal in G. Prove that the
set

H/N =
{
hN ∈ G/N

∣∣∣h ∈ H}
is a subgroup of G/N .
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17. (8 points) Let G be the set of integers together with the operation a◦ b = a+ b−1 (we proved on Friday
that this is a group). Prove that the map f : G→ Z defined by f(g) = g − 1 is a group isomorphism.
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18. (8 points) Let ∆ be the subset of G⊕G which consists of elements with the same coordinates. That is,

∆ =
{

(g1, g2) ∈ G⊕G
∣∣∣ g1 = g2

}
.

Prove that ∆ is a normal subgroup of G⊕G, and that (G⊕G)/∆ ' G. [Hint: the quick way to do this
is to construct the right homomorphism from G⊕G onto G and to use the First Isomorphism Theorem.]
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19. (8 points) Suppose that G is an abelian group with order 40 that has at least one element of order 20
and at least two elements of order 2. Prove that G ' Z2 ⊕ Z4 ⊕ Z5.

I certify as a student at The University of Virginia’s College at Wise that I have neither received nor given
aid on this test.
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