MATH 3350. TEST 1 (HARVEY SPRING 2013).

Name (4 points):

[No books, notes, or calculators are allowed. Please show all of your work.]

Definitions. Be precise and concise. Do not give vague answers.

1. (6 points) Suppose that H is a nonempty subset of a group G. What are the two steps of the 2-Step Subgroup Test (to show that H is a subgroup of G)?

2. (4 points) What does it mean for a group G to be *abelian*?

3. (6 points) What is the order of a group G? What is the order of an element a in a group G?

4. (6 points) What is the center Z(G) of a group G? What does it mean if G = Z(G)?

5. (6 points) Describe the elements of the group U(n). What is the operation in this group?

Problems. Short answers are sufficient.

6. (4 points) Is U(n) a subgroup of \mathbb{Z}_n ? Why or why not?

7. (10 points) Identify each group in the list below as finite or infinite, and abelian or non-abelian (put checks in the appropriate boxes).

Group	Finite	Infinite	Abelian	non-Abelian
\mathbb{Z}_8				
D_8				
U(8)				
\mathbb{Z}				
$\mathbb{R}^{ imes}$				

8. (6 points) What is the order of the group \mathbb{Z}_{10} ? What is the order of the group U(10)?

9. (6 points) What is the order of the element 2 in U(15)? What is the order of the element 2 in \mathbb{Z}_{15} ?

10. (6 points) Construct the Cayley table for the group U(6).

11. (6 points) What is the inverse of the element 3 in the group \mathbb{Z}_{10} ? What is the inverse of the element 3 in the group U(10)?

Proofs. Give clear arguments. Don't skip steps.

12. (10 points) Let m and n be positive integers, and suppose that m divides n. Let H be the subset of \mathbb{Z}_n consisting of all elements which are a multiple of m. [For instance, if m = 3 and n = 12, then $H = \{0, 3, 6, 9\} \subseteq \mathbb{Z}_{12}$.] Prove that H is a subgroup of Z_n .

13. (10 points) Let a and b be elements in an abelian group G with identity e. Suppose that $a^9 = e, b^2 = e$, and $(ab)^6 = e$. Prove that $a^2 = a^{-1}$.

14. (10 points) Let x be an element of G, and let H be a subgroup of G. Let a and b be integers, and let g = gcd(a, b). Prove that if both $x^a \in H$ and $x^b \in H$, then $x^g \in H$.