Math 3350. Test 1 (Harvey Spring 2013).

Name (4 points):
[No books, notes, or calculators are allowed. Please show all of your work.]

Definitions. Be precise and concise. Do not give vague answers.

1. (6 points) Suppose that H is a nonempty subset of a group G. What are the two steps of the 2-Step Subgroup Test (to show that H is a subgroup of G)?
2. (4 points) What does it mean for a group G to be abelian?
3. (6 points) What is the order of a group G ? What is the order of an element a in a group G ?
4. (6 points) What is the center $Z(G)$ of a group G ? What does it mean if $G=Z(G)$?
5. (6 points) Describe the elements of the group $U(n)$. What is the operation in this group?

Problems. Short answers are sufficient.
6. (4 points) Is $U(n)$ a subgroup of \mathbb{Z}_{n} ? Why or why not?
7. (10 points) Identify each group in the list below as finite or infinite, and abelian or non-abelian (put checks in the appropriate boxes).

8. (6 points) What is the order of the group \mathbb{Z}_{10} ? What is the order of the group $U(10)$?
9. (6 points) What is the order of the element 2 in $U(15)$? What is the order of the element 2 in \mathbb{Z}_{15} ?
10. (6 points) Construct the Cayley table for the group $U(6)$.
11. (6 points) What is the inverse of the element 3 in the group \mathbb{Z}_{10} ? What is the inverse of the element 3 in the group $U(10)$?

Proofs. Give clear arguments. Don't skip steps.
12. (10 points) Let m and n be positive integers, and suppose that m divides n. Let H be the subset of \mathbb{Z}_{n} consisting of all elements which are a multiple of m. [For instance, if $m=3$ and $n=12$, then $H=\{0,3,6,9\} \subseteq \mathbb{Z}_{12}$.] Prove that H is a subgroup of Z_{n}.
13. (10 points) Let a and b be elements in an abelian group G with identity e. Suppose that $a^{9}=e, b^{2}=e$, and $(a b)^{6}=e$. Prove that $a^{2}=a^{-1}$.
14. (10 points) Let x be an element of G, and let H be a subgroup of G. Let a and b be integers, and let $g=\operatorname{gcd}(a, b)$. Prove that if both $x^{a} \in H$ and $x^{b} \in H$, then $x^{g} \in H$.

