```
Math 3350. Test 3 (Harvey Spring 2013).
```

Name (2 points):
[No books, notes, or calculators are allowed. Please show all of your work.]

Definitions. Be precise and concise. Do not give vague answers.

1. (6 points) State Lagrange's Theorem.
2. (6 points) Let H be a subgroup of G, and let $a \in G$. The left coset $a H$ is:
3. (6 points) A subgroup H of G is a normal subgroup if:
4. (6 points) For groups G and H, the direct product $G \oplus H$ consists of the set:
together with the operation:
5. (6 points) Let H be a normal subgroup of G. The factor group G / H consists of the set:
together with the operation:

Problems. Short answers are sufficient.
6. (8 points) Is $\mathbb{Z}_{2} \oplus \mathbb{Z}_{6} \simeq \mathbb{Z}_{12}$? Why or why not?
7. (8 points) List the left cosets of $H=\langle(1,1)\rangle$ in $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$.
8. (8 points) What is the order of the element $((12)(34), 3)$ in $A_{4} \oplus \mathbb{Z}_{12}$?
9. (8 points) What is $\left[S_{4}:\langle(1234)\rangle\right]$, the index of the subgroup generated by (1234) in S_{4} ?
10. (8 points) Give an example of a group G and a subgroup H which is not a normal subgroup of G.

Proofs. Give clear arguments. Don't skip steps.
11. (10 points) Prove that every non-cyclic group of order four is abelian (note that a cyclic group is always abelian, so this means that all groups of order four are abelian).
12. (10 points) Let G be a group, and let K be the subgroup of $G \oplus G \oplus G$ which consists of all elements with the same first two coordinates. That is,

$$
K=\left\{\left(g_{1}, g_{2}, g_{3}\right) \in G \oplus G \oplus G \mid g_{1}=g_{2}\right\}
$$

Prove that $K \simeq G \oplus G$.
13. (10 points) Suppose that K and H are both normal subgroups of G. Then H / K is a subgroup of G / K (this is easy, but you don't have to prove it). Prove that H / K is a normal subgroup of G / K.

