Name (5 points):

1 (6 points) Compute the gradient of the function $f(x, y, z)=x+y z+\sin (x z)$.

2 (5 points) The Cartesian coordinates of a point are ($1,-1,2$). What are the cylindrical coordinates of this point?

3 (6 points) Compute the Jacobian of the transformation

$$
\left\{\begin{array}{l}
x=u^{2}-v^{2} \\
y=u v
\end{array}\right.
$$

4 (10 points) Let $\mathbf{r}(t)=\langle\cos (3 t), \sin (3 t),-4 t\rangle$.
(a) Compute the unit tangent vector $T(t)$.
(b) Compute the unit normal vector $N(t)$.

5 (10 points) Sketch each of the solids.
(a) $\{0 \leq \theta \leq 2 \pi, 1 \leq r \leq 2,0 \leq z \leq 1\}$
(b) $\{0 \leq \rho \leq 1,0 \leq \theta \leq \pi / 2,0 \leq \phi \leq \pi / 2\}$

6 (6 points) Sketch the region of integration and change the order of integration in the following integral

$$
\int_{0}^{1} \int_{x^{3}}^{\sqrt{x}} f(x, y) d y d x
$$

7 (10 points) Write the double integral $\iint_{D} f(x, y) d A$ as an iterated integral for each region D described below.
(a) $D=\{0 \leq x \leq 4, x \leq y \leq 8-x\}$.
(b) D is the region inside the circle centered at $(0,0)$ with radius 2 .

8 (6 points) Write the triple integral $\iiint_{D} f(x, y, z) d V$ as an iterated integral where D is the region inside the cylinder $x^{2}+y^{2}=1$ and between the planes $z=0$ and $z=x+y+2$.

9 (10 points) Set up the integral and simplify the integrand. You do not have to evaluate the integral.
(a) $\int_{C} x^{2} d x+x y d y$, where the curve C is parametrized by $\mathbf{r}(t)=\left\langle t, t^{3}\right\rangle, 0 \leq t \leq 2$.
(b) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\left\langle x^{2}, x y\right\rangle$ and C is parametrized by $r(t)=\langle\ln t, t\rangle, 2 \leq t \leq 5$.

10 (10 points) Set up the double integral and simplify the integrand. You do not have to evaluate the integral.
(a) $\iint_{S} x z d s$, where S is the portion of the plane $x+y-z=1$ where $0 \leq x \leq 2$ and $0 \leq y \leq 3$.
(b) $\iint_{S} \mathbf{F} \cdot d \mathbf{s}$ where $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and S is the portion of the paraboloid $z=x^{2}+y^{2}$ between $z=0$ and $z=1$.

11 (10 points) Let $\mathbf{F}=x^{2} y \mathbf{i}+y z \mathbf{j}+x \mathbf{k}$. Compute $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$.

12 (8 points) Let $\mathbf{F}(x)=-x \mathbf{i}+2 \mathbf{j}+x z \mathbf{k}$ and let C be the edge of the rectangle $0 \leq x \leq 1$, $0 \leq y \leq 2, z=1$ traversed in the counterclockwise direction. Use Stokes's Theorem to set up a double integral which will calculate

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r} .
$$

You do not have to evaluate the integral.

I certify as a student at The University of Virginia's College at Wise that I have neither received nor given aid on this test.
\qquad

