Name:

1 (10 points) (a) Find the cylindrical coordinates of the rectangular point $(-\sqrt{2},-\sqrt{2}, 5)$.
(b) Find the spherical coordinates of the rectangular point $(1,1,0)$.

2 (10 points) (a) Translate the equation from rectangular to cylindrical coordinates:

$$
z=4 x^{2}+4 y^{2} .
$$

(b) Translate the equation from spherical to rectangular coordinates:

$$
\rho=3 \sec \phi
$$

3 (10 points) Sketch the solid whose cylindrical coordinates satisfy the inequalities

$$
0 \leq r \leq 2 \quad 3 \pi / 2 \leq \theta \leq 2 \pi \quad 0 \leq z \leq 4 .
$$

4 (10 points) Find the equation of the tangent line to the curve

$$
\mathbf{x}(t)=\langle\cos t, \sin (2 t), t\rangle
$$

when $t=\pi / 4$.

5 (10 points) Find the arc length of the curve

$$
\mathbf{x}(t)=\langle\cos (3 t), \sin (3 t), 4 t\rangle
$$

between $t=0$ and $t=2 \pi$.

6 (10 points) In this problem, you will need to use the formula for a parabolic trajectory

$$
\mathbf{x}(t)=-\frac{1}{2} g t^{2} \mathbf{j}+t \mathbf{v}_{\mathbf{0}}+\mathbf{x}_{\mathbf{0}}
$$

where g is the acceleration due to gravity, $\mathbf{v}_{\mathbf{0}}$ is the initial velocity and $\mathbf{x}_{\mathbf{0}}$ is the initial position. If a projectile is fired from level ground at an angle of 45° with an initial speed of $100 \mathrm{ft} / \mathrm{sec}$, how far away will the projectile land?

7 (10 points) Compute the gradient of the function $f(x, y, z)=x^{3}-4 x y^{2}+y+e^{z}$.

8 (10 points) Let $\mathbf{F}=(x+y) \mathbf{i}+(y+z) \mathbf{j}+(x+z) \mathbf{k}$.
(a) Compute $\nabla \cdot F$
(a) Compute $\nabla \times F$

9 (20 points) Consider the curve:

$$
\mathbf{r}(t)=\langle 4 t, \sin (3 t),-\cos (3 t)\rangle .
$$

(a) Compute $T(t)$, the unit tangent vector.
(b) Compute $N(t)$, the principal normal vector.
(c) Find the curvature of $r(t)$ when $t=1$.

I certify as a student at The University of Virginia's College at Wise that I have neither received nor given aid on this test.

