Name (5 points):

1 (32 points) Set up an appropriate integral to evaluate the line or surface integral. Simplify the integrand but do not evaluate you integral.
(a) The scalar line integral $\int_{C}(x+y) d s$ over the parabolic path C parametrized by $\mathbf{r}(t)=$ $\left\langle t, t^{2}\right\rangle, 0 \leq t \leq 1$.
(b) The integral $\int_{C} \mathbf{F} \cdot d \mathbf{s}$ where $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}-x y \mathbf{k}$ and C is the circular path parametrized by $\mathbf{r}(t)=\langle\cos (2 t), \sin (2 t), 4\rangle, 0 \leq t \leq \pi$.
(c) The surface integral $\iint_{S} x y d S$ over the surface S parametrized by $\langle s, t, s+t+1\rangle, 0 \leq s \leq 1$, $0 \leq t \leq 2$.
(d) The surface integral $\iint_{S} z d S$ over the surface S which consists of the portion of the cylinder $x^{2}+y^{2}=1$ between $z=3$ and $z=6$.

2 (10 points) Let C be the circle $x^{2}+y^{2}=9$ traversed counterclockwise and consider the vector line integral

$$
\int_{C}-x^{2} y d x+y^{2} d y
$$

Use Green's Theorem to set up an equivalent double integral. You do not have to evaluate it.

3 (15 points) Give a parametrization for each surface. Be sure to include the bounds for your parametrization.
(a) The surface $z=2 x^{2}+3 y, 0 \leq x \leq 1,0 \leq y \leq 1$.
(b) The top half of the sphere of radius $1\left(x^{2}+y^{2}+z^{2}=1, z \geq 0\right)$.
(c) The unit disk in the $x y$-plane: $x^{2}+y^{2} \leq 1, z=0$.

4 (15 points) (a) Give the formula for Green's Theorem.
(b) Give the formula for Stokes's Theorem.
(c) Give the formula for Gauss's Theorem.

5 (12 points) Let $\mathbf{F}(x)=x \mathbf{i}+y \mathbf{j}+x y \mathbf{k}$ and let S be the sphere $x^{2}+y^{2}+z^{2}=1$. Use Gauss's Theorem to set up a triple integral which will calculate

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S} .
$$

You do not have to evaluate the integral.

6 (12 points) Let $\mathbf{F}(x)=-y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ and let C be the boundary of the disk $x^{2}+y^{2}=1$, $z=3$ traversed in the counterclockwise direction. Use Stokes's Theorem to set up a double integral which will calculate

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{S} .
$$

You do not have to evaluate the integral.

I certify as a student at The University of Virginia's College at Wise that I have neither received nor given aid on this test.

