Math 3400 Test 1. Spring 2014

1. Give a set of parametric equations for the line through the points $(1,2,5)$ and $(-3,1,-1)$.
2. Give the equation of the plane which contains the following two lines:

$$
\begin{aligned}
& r_{1}(t)=\langle 1+t, 1-t, 2+3 t\rangle, \\
& r_{2}(t)=\langle 3 t, 2+t,-1+t\rangle .
\end{aligned}
$$

3. Perform the indicated matrix multiplication

$$
\left(\begin{array}{cc}
2 & t \\
t & 1 \\
3 & -t
\end{array}\right) \cdot\left(\begin{array}{ccc}
t & 1 & 2 \\
1 & t & -t^{2}
\end{array}\right) .
$$

4. Sketch the solid described by the following (a) cylindrical and (b) spherical inequalities.
(a) $1 \leq r \leq 2,0 \leq \theta \leq \pi / 2,0 \leq z \leq 1$
(b) $0 \leq \rho \leq 1,0 \leq \theta \leq \pi / 2,0 \leq \phi \leq \pi / 2$.
5. Sketch (in the $x y$-plane) the domains of each of the following functions.
(a) $f(x, y)=\sqrt{x y}$
(b) $\quad f(x, y)=\sqrt{x-y}$
(c) $\quad f(x, y)=\frac{1}{(x-1)(y-2)}$.
6. Demonstrate that the following limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}
$$

7. Compute the partial derivative $\partial f / \partial x$ and $\partial f / \partial y$ of the following function

$$
f(x, y)=e^{x y} \sin x .
$$

8. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the function given by the equation

$$
f(s, t)=\left(s^{2}-t^{2}, 2 s t\right)
$$

Compute $D f$.
9. Give the equation of the tangent plane to the surface $x^{2}+y^{3}+z=1$ at the point $(1,1,-1)$.
10. Given a function $f(x, y, z)$, give a "chain rule" to compute $d f / d \phi$ where

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

1.

$$
\begin{aligned}
r_{0} & =\langle 1,2,5\rangle \\
d & =\langle-4,-1,-6\rangle \\
r(t) & =r_{0}+t d \\
& =\langle 1,2,5\rangle+t\langle-4,-1,-6\rangle \\
& =\langle 1-4 t, 2-t, 5-6 t\rangle
\end{aligned}
$$

2. The direction vectors of the two lines are vectors in the plane: $v_{1}=\langle 1,-1,3\rangle$ and $v_{2}=$ $\langle 3,1,1\rangle$. The normal vector to the plane is

$$
n=v_{1} \times v_{2}=\left|\begin{array}{ccc}
i & j & k \\
1 & -1 & 3 \\
3 & 1 & 1
\end{array}\right|=\langle-4,8,4\rangle .
$$

The equation of the plane is then

$$
\begin{gathered}
\langle-4,8,4\rangle \cdot\langle x-1, y-1, z-2\rangle=0 \\
-4(x-1)+8(y-1)+4(z-2)=0 \\
-4 x+4+8 y-8+4 z-8=0 \\
-4 x+8 y+4 z=12 \\
-x+2 y+z=3
\end{gathered}
$$

3.

$$
=\left[\begin{array}{ccc}
3 t & 2+t^{2} & 4-t^{3} \\
t^{2}+1 & 2 t & 2 t-t^{2} \\
2 t & 3-t^{2} & 6+t^{3}
\end{array}\right]
$$

4.

5. The domains are the shaded gray regions.

6. Consider the limit along two different paths approaching zero: along the path $\langle t, 0\rangle$,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}=\lim _{t \rightarrow 0} \frac{t^{2}+0^{2}}{t^{2}+0^{2}}=1
$$

Along the path $\langle 0, t\rangle$,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}=\lim _{t \rightarrow 0} \frac{0^{2}+t^{2}}{0^{2}+2 t^{2}}=\frac{1}{2}
$$

Since the limits along these two paths are not equal, the limit does not exist.
7.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=e^{x y} \cos x+y e^{x y} \sin x \\
& \frac{\partial f}{\partial y}=x e^{x y} \sin x
\end{aligned}
$$

8.

$$
D f=\left[\begin{array}{cc}
2 s & -2 t \\
2 t & 2 s
\end{array}\right]
$$

9. This is a level surface of the function $f(x, y, z) \neq$ $x^{2}+y^{3}+z$. The gradient of this function is $\nabla f=\left\langle 2 x, 3 y^{2}, 1\right\rangle$, and in particular,

$$
\nabla f(1,1,-1)=\langle 2,3,1\rangle .
$$

The equation of the plane is then

$$
\begin{gathered}
\langle 2,3,1\rangle \cdot\langle x-1, y-1, z+1\rangle=0 \\
2(x-1)+3(y-1)+(z+1)=0 \\
2 x+3 y+z=4
\end{gathered}
$$

10.

$$
\begin{gathered}
\frac{\partial f}{\partial \phi}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \phi}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \phi}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial \phi} \\
=\frac{\partial f}{\partial x} \rho \cos \phi \cos \theta \\
+\frac{\partial f}{\partial y} \rho \cos \phi \sin \theta \\
\quad-\frac{\partial f}{\partial z} \rho \sin \phi .
\end{gathered}
$$

