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Chapter 1
Introduction

The opening lines in the subject of geometry were written around 300 B.C. by the
Greek mathematician Euclid in 13 short books gathered into a collection called The
Elements. Now certainly geometry existed before Euclid, often in a quite sophisti-
cated form. It arose from such practical concerns as parcelling land and construct-
ing homes. And even before Euclid, geometry was emerging from those practical
origins to become an abstract study in its own right. But Euclid’s thorough and sys-
tematic approach codified both the subject and its method, and formed a basis of
study for over two millennia. The influence of The Elements both inside and outside
of mathematics is staggering.

The first book of The Elements is extremely important– it lays the foundation for
everything that follows. At the start of this first book is a list of definitions, begin-
ning with:

A point is that which has no part.
A line is breadthless length.
The extremities of a line are points.
A straight line is a line which lies evenly with the points on itself.

The later definitions are more straightforward, but from a mathematical perspec-
tive, there is something inherently unsatisfying about these first definitions. Perhaps
something is lost in translation, but they seem more akin to poetry than mathematics.

After the definitions, Euclid states five postulates. These are the foundational
statements upon which the rest of the theory rests. As such they have received an
extraordinary amount of scrutiny. The first three are couched in the terms of con-
struction, but are essentially existence statements about lines, segments and circles
respectively. The fourth is also straightforward, providing the mechanism needed to
compare angles. The fifth postulate, though, appears more complicated. In fact, it
really seems quite out of place. Almost from the time of Euclid through much of the
nineteenth century, there was significant effort to expunge the fifth postulate from
the list by proving it as a theorem resulting from the other four. These efforts ulti-
mately failed (opening the door for non-Euclidean geometry), but in this process,
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The Five Postulates of Euclid
 
1. To draw a straight line from any point to any point. 

2. To produce a finite straight line continuously in a straight line. 

3. To describe a circle with any center and distance. 

4. That all right angles are equal to one another. 

5. That, if a straight line falling on two straight lines makes the 
interior angles on the same side less than two right angles, the two 
straight lines, if produced indefinitely, meet on that side on which are 
the angles less than the two right angles.

Euclid�’s postulates have some gaps. 
For instance, they are not sufficient 
to prove the Crossbar Theorem.
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2 1 Introduction

gaps were found in Euclid’s original work. To patch up these gaps, the list of postu-
lates was refined and extended.

Euclid’s Five Postulates
I. To draw a straight line from any point to any point.
II. To produce a finite straight line continuously in a straight line.
III. To describe a circle with any center and distance.
IV. That all right angles are equal to one another.
V. That, if a straight line falling on two straight lines make the interior angles on

the same side less than two right angles, the two straight lines, if produced indefi-
nitely, meet on that side on which are the angles less than the two right angles.

So while Euclid historically provided a valuable foundation for the study of ge-
ometry, that foundation is not without flaws – some of Euclid’s definitions are vague
and his list of postulates are incomplete. Subsequent attempts to patch these flaws
up were just that– patches. Meanwhile, logicians and mathematicians were mov-
ing all of mathematics towards a more formal framework. Finally at the end of the
19th century, the German mathematician David Hilbert set down a formal axiomatic
system describing Euclidean geometry.

1.1 Axiomatic Systems

Let us examine how, in an axiomatic system, we must view the most elementary
terms. Fundamentally, any definition is going to depend upon other terms. These
terms, in turn, will depend upon yet others. Short of circularity, or appealing to
objects in the real world, there is no way out of this cascade of definitions. Rather,
there will simply have to be some terms which remain undefined. While we may
describe properties of these terms, or how they relate to one another, we cannot
define them. Of course, we will want to clearly identify at the outset which terms
will be undefined.

Once a short list of undefined terms has been established, there must be certain
statements which describe how those undefined terms interact with one another.
These statements, which correspond to Euclid’s postulates, are called the axioms.
It must be noted that, unless they contradict one another, there can be no intrinsic
defense of these statements. They must be accepted as true, and eventually every
theorem in the system must be developed in a logical progression from this initial
list of statements. The list of axioms ought to be small enough to be manageable,
yet large enough to be interesting.

Once a set of axioms has been established, it is time to start working on theorems.
Here we should be cautioned by Euclid. After all, his procedure was similar, yet gaps
and omissions were found in his proofs. To get a better sense of the pitfalls inherent
to this subject we look at two of Euclid’s omissions.
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1.2 Caution

There is a well-known elementary statement in geometry, often called S ·A · S for
short. It says that if two triangles have two corresponding congruent sides, and
if the corresponding angles between those sides are congruent, then the triangles
themselves are congruent. In Euclid’s Elements, it is the fourth proposition in the
first book, and it is an absolutely fundamental result for much of what follows. To
prove this result, Euclid tells us to pick up one of the triangles, and place it upon the
other so that the two corresponding angles match up. Now, there is nothing in any
of Euclid’s postulates which permits such movement of triangles, and as such the
proof is incorrect.

In Proposition 10, Euclid states that it is possible to bisect any line segment. To
do this, he builds an equilateral triangle with this segment as base, and then bisects
the opposing angle, claiming that this ray will bisect the segment. But what he fails
to prove is that this ray actually intersects the segment at all.

Of these two examples, the second seems to me more insidious. It is extremely
hard to avoid making assumptions about intersecting lines. Almost always, these
gaps are created because of a reliance upon on a mental image, rather than what is
actually available to us from the axioms. From our earliest instruction in geometry,
we are taught to think of a point as a tiny little dot made with a pencil, and a line
as something made with a ruler, with little arrowheads at each end. In fact though,
what we are illustrating when we make such drawings is only a representation of
a model of the geometry described by the axioms. As such, any statements made
based upon the model may only be true for the model, and not the geometry itself.

On the one hand, then, there is a great risk of leaving out steps, or making un-
warranted assumptions based on a illustration. On the other hand, illustrations can
often elucidate, in a very concise manner, elaborate and difficult situations. They can
provide an intuition into the subject which just words cannot. In addition, there is,
in my eyes at least, something inherently appealing about the pictures themselves.
Realizing that I do not have a consistent position in the debate between rigor and
picture, I have tried to combine the two, with the hopes that they might coexist.
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Chapter 2
Incidence and Order

With this preparatory discussion out of the way, it is time to begin examining the
axioms we will use in this text. Our list is closely modeled on Hilbert’s list of axioms
for plane geometry. Hilbert divided these axioms into several sets: the axioms of
incidence, the axioms of order, the axioms of congruence, the axioms of continuity,
and the axiom on parallels. In this chapter we will examine the axioms of incidence
and order. In the next, the axioms of congruence, and in the chapter after that, the
axioms of continuity. For now, though, we will leave off the Axiom on Parallels, the
axiom which is equivalent to Euclid’s fifth postulate. Geometry without this axiom
is usually called neutral or absolute geometry and is surprisingly limited. In these
first chapters, we will get a good look at what we can prove without the parallel
axiom. It should be noted that Hilbert’s is not the only list of axioms for Euclidean
geometry. There are other axiom systems for Euclidean geometry including one
by Birkhoff and another by Tarski, and each has its own advantages over Hilbert’s
initial list. Hilbert’s system remains a nice one, though, in large part because it is
designed to resemble Euclid’s approach as closely as possible.

In our geometry there are two undefined objects. They are called the point and the
line. There are three undefined relationships between these objects.The first is a bi-
nary relationship between a point and a line, called incidence or (more concisely) on,
so that we can say whether a point P is or is not on a line !, as in common parlance.
But note that the binary relation is symmetric in the sense that we can equivalently
say that ! is or is not on P. The second is a ternary relationship between triples of
points on a line, called order or betweenness. That is, given two points on a line,
we can say whether or not a third is between them. Using these relationships, we
may define the terms line segment and angle. The third binary relationship is called
congruence. Given either two segments or two angles, we may say whether or not
those segments or angles are congruent to one another. It is important to remember
that these terms, which are the building blocks of the geometry, are undefined. Any
behavior that we may expect from them must be behavior derived from the axioms
which describe them. First are the three axioms which describe the incidence or on
relationship between points and lines.
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BA B

C

ABA

I. At least two points on 
any line.

I. Exactly one line 
through any two points.

III. At least three 
non-collinear points.

The Axioms of Incidence

A graphical depiction of 
parallel lines in the 
Euclidean model.

Of intersecting lines. Of lines which are 
understood to be 
intersecting, although 
the intersection lies 
outside of the frame.

A

B

C

D
A and B lie on opposite 
sides of the line. C and 
D lie on the same side.
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2 2 Incidence and Order

The Axioms of Incidence
I. For every two points A and B, there exists a unique line ! which is on both of them.
II. There are at least two points on any line.
III. There exist at least three points that do not all lie on the same line. A collection
of points are collinear if they are on the same line.

These axioms establish the existence of points and lines, but with only these
axioms, it is difficult to do much. We can at least introduce some notation and get a
few definitions out of the way. Because of the first axiom, any two points on a line
uniquely define that line. We can therefore refer to a line by any pair of points on it.
That brings us to a useful notation for lines: if A and B are distinct points on a line
!, then we write ! as !AB".

Definition 2.1. Intersecting and Parallel Lines. Two distinct lines are said to in-
tersect if there is a point P which is on both of them. In this case, P is called the
intersection of them. Note that two lines intersect at at most one point, for if they in-
tersected at two, then there would be two distinct lines on a pair of points, violating
the first axiom of incidence. Distinct lines which do not intersect are called parallel.

Definition 2.2. Same and opposite sides. Let ! be a line and let A and B be two
points which are not on !. We say that A and B are on opposite sides of ! if !AB"
intersects ! and this intersection point is between A and B (recall that “between” is
one of the undefined terms). Otherwise, we say that A and B are on the same side of
!.

The next set of axioms describes the behavior of the order or betweenness rela-
tionship between points. In these, we will use the notation A∗B∗C to indicate that
the point B is between points A and C. There are four axioms of order, and with
these we will begin to be able to develop the geometry.

The Axioms of Order
I. If A∗B∗C, then the points A, B, C are three distinct points on a line, and C∗B∗A.
In this case, we say that B is between A and C.
II. For two points B and D, there are points A, C, and E, such that

A∗B∗D B∗C ∗D B∗D∗E

III. Of any three distinct points on a line, exactly one lies between the other two.
IV. The Plane Separation Axiom. For every line ! and points A, B, and C not on !:
(i) If A and B are on the same side of ! and B and C are on the same side of !, then A
and C are on the same side of !. (ii) If A and B are on opposite sides of ! and B and
C are on opposite sides of !, then A and C are on the same side of !.

The last of these is a subtle but nevertheless important axiom. It says that a line
separates the rest of the plane into two parts. That is, suppose A and B are on opposite
sides of !. Let C be another point (which is not on !). If C is not on the same side of
! as B, then by part (ii) it must be on the same side of as A.

2. Incidence and Order 13
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ECA

CBA

B

CA

B

CA

IV-i. Plane Separation, 
the division of the plane 
into two components 
(case 1).

IV-ii. Plane separation, 
case 2.

I. Order can be read in 
two directions.

II. There are points on 
either side of a point 
and between any two 
points.

III. Lines cannot 
contain loops.

The Plane Separation Axiom can be used 
to separate the points on a line.

B C D

P

A

Axioms of 

Order
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2 Incidence and Order 3

Together, these axioms tell us (somewhat indirectly) that it is possible to put a
finite set of points on a line in order. What exactly is meant by that? Given n distinct
collinear points, there is a way of labeling them, A1, A2, . . . , An so that if i, j, and k
are integers between 1 and n, and i < j < k, then

Ai ∗A j ∗Ak.

We can use the single expression:

A1 ∗A2 ∗ · · ·∗An

to encapsulate all of these betweenness relationships. The next two theorems make
this possible.

Theorem 2.1. Ordering four points. If A ∗B ∗C and A ∗C ∗D, then B ∗C ∗D. If
A∗B∗C and B∗C ∗D, then A∗B∗D and A∗C ∗D. If A∗B∗D and B∗C ∗D, then
A∗C ∗D.

Proof. We will only provide a proof of the first statement since the others can be
proved similarly. Since A∗B∗C and A∗C ∗D, both B and D lie on the line !AC".
In other words, all four points are collinear. Let P be a point which is not on this
line. Since the intersection of !PC" and AB is not between A and B, A and B are
on the same side of !PC". Since the intersection of !PC" and AD is between A
and D, A and D are on opposite sides of !PC". By the Plane Separation Axiom, B
and D are then on opposite sides of !PC". Therefore C, which is the intersection
of !PC" and BD, is between B and D. "#

Theorem 2.2. Ordering points. Consider a set of n (at least three) collinear points.
There is a labeling of these points so that

A1 ∗A2 ∗ · · ·∗An.

Proof. We will use a proof by induction. The base case, when n = 3, is given by the
third axiom of order. Now assume that any n collinear points can be put in order,
and consider a set of n+1 distinct collinear points. Take n of those, and put them in
order

A1 ∗A2 ∗ · · ·An.

This leaves one more point which we will label P. We will consider the relation-
ship of P with A1 and A2. There are three cases, and each draws extensively on the
previous theorem. In each case, we must look at the relationship between P and the
previously ordered points.
Case 1: P∗A1 ∗A2. In this case we need to show that P∗Ai ∗A j for 1 ≤ i < j ≤ n.
Note the case when i = 1 and j = 2 is already done, so we may assume that j > 2.
Then

P∗A1 ∗A2 & A1 ∗A2 ∗A j =⇒ P∗A1 ∗A j.

This takes care of all cases where i = 1, so we may assume i > 1. When combined
with the previous result, this yields

2. Incidence and Order 15



A1 A2 Ai A jP

A1 A2 A jP

A1 A2 Ai A jP

A1 A2 Ai P

A1 A2 A jP

A1 Ai A jP

Case I

Evaluating possible orderings of 
points on a line using the lemma on 
ordering four points. Each line is 
shown several times to more clearly 
illustrate the order relationships.

Case II

Case III
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4 2 Incidence and Order

P∗A1 ∗A j & A1 ∗Ai ∗A j =⇒ P∗Ai ∗A j.

Case 2: A1 ∗P∗A2. In this case, there are two things to show: that A1 ∗P∗A j for all
j > 2, and that P∗Ai ∗A j for j > i > 1. For the first,

A1 ∗P∗A2 & A1 ∗A2 ∗A j =⇒ A1 ∗P∗A j.

For the second,

A1 ∗P∗A2 & A1 ∗A2 ∗Ai =⇒ P∗A2 ∗Ai

P∗A2 ∗Ai & A2 ∗Ai ∗A j =⇒ P∗Ai ∗A j.

Case 3: A1 ∗A2 ∗P. In this final case, use the inductive argument to place P in order
with the n−1 points A2 ∗A3 · · ·An, so that

A2 ∗ · · ·∗Ak−1 ∗P∗Ak ∗ · · ·∗An.

It remains to show that P is in order with A1 and to do that, there are two things that
need to be verified: that A1 ∗Ai ∗P when i < k and that A1 ∗P∗A j when j ≥ k. For
the first

A1 ∗A2 ∗P & A2 ∗Ai ∗P =⇒ A1 ∗Ai ∗P

and for the second

A2 ∗P∗A j & A1 ∗A2 ∗A j =⇒ A1 ∗P∗A j.

"#

Definition 2.3. Line segment. For any two points A and B, the line segment (or just
segment for short) between A and B is defined to be the set of points P such that
A ∗P ∗B, together with A and B themselves. The notation for this line segment is
AB. The points A and B are called the endpoints of AB.

Definition 2.4. Ray and Opposite Ray. Let P be a point on a line !. Since not all
points lie on a single line, it is possible to pick another point Q which is not on !.
Since the line PQ intersects ! at P, by the Plane Separation Axiom, this separates
all the other points on ! into two sets. Each of these sets, together with the point P
is called a ray emanating from P along !. In other words, given a point P on a line !,
the points on ! can be separated to form two rays, one on one side of P, one on the
other, with P being the only point in common between them. The point P is called
the endpoint of the ray. If we have selected one of these rays, and say called it r,
then the other is called the opposite ray to r, and denoted rop.

It is important to note that while this definition requires a point not on !, the
actual separation of the line does not depend upon which point is chosen. For if A
and B are on opposite sides of P, then A ∗P ∗B, while if A and B are on the same
side, A∗B∗P or P∗A∗B. By the third axiom of betweenness, only one of these can
be true, and whichever is the case, the choice of Q will not affect it.

2. Incidence and Order 17
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The triangle ABC.The angle BAC.

A segment.A ray and its opposite.

P

A

B
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2 Incidence and Order 5

Nevertheless, there is something unsatisfactory about having to refer to a point
outside of the ray to establish that ray. So we provide an alternate and equivalent
definition. Let A and B be two points. The points of the ray emanating from A and
passing through B are the points of ! AB " which lie on the same side of A as B.
They are the points P such that either A∗B∗P or A∗P∗B. Hence we can define the
ray emanating from A and passing through B, written ·AB", as

·AB"=
{

P
∣∣A∗B∗P

}
∪
{

P
∣∣A∗P∗B

}
∪{A}∪{B}.

Observe that a ray is uniquely defined by its endpoint and another point on it. That
is, if B′ is any point on ·AB" other than A, then it will lie on the same side of A as
B, and hence ·AB"= ·AB′".

Definition 2.5. Angle. An angle is defined to be two non-opposite rays ·AB" and
·AC" with the same endpoint. This is denoted ∠BAC (or sometimes ∠A if there is
no danger of confusion).

The two rays which form an angle are uniquely defined by their endpoint A and
any other point on the ray. Therefore if B′ is a point on ·AB" (other than A), and C′
is a point on ·AC" (other than A), then

∠BAC = ∠B′AC′.

Definition 2.6. Triangle. For any three non-collinear points, A, B, and C, the trian-
gle *ABC is the set of line segments AB, BC, and CA. Each of these segments is
called a side of the triangle. The points A, B, and C are the vertices of the triangle,
and the angles ∠ABC, ∠BCA, and ∠CAB are the (interior) angles of the triangle.

At the most elementary level, the objects defined so far interact by intersecting
each other – that is, by having points in common. In proofs, it is critical that these
intersection points are where we think they are, and that they behave in the way we
expect. In this vein, the next few results are results about intersections.

Theorem 2.3. Pasch’s Lemma If a line ! intersects a side of a a triangle *ABC
at a point other than a vertex, then ! intersects another side of the triangle. If !
intersects all three sides of*ABC, then it must intersect two of the sides at a vertex.

Proof. Without loss of generality, assume that ! intersects AB and let P be the in-
tersection point. Then ! separates A and B. If C lies on !, the result is established.
Otherwise, C lies on either the same side of ! as A, or on the same side of ! as B. If
C lies on the the same side of ! as A, then it lies on the opposite side of B. By the
Plane Separation Postulate, BC intersects ! but AC does not. Likewise, if C lies on
the same side of ! as B, then it lies on the opposite side of ! as A. Hence, AC inter-
sects ! but BC does not. In all cases, ! intersects the triangle*ABC on two different
sides. "#

As we see here, Pasch’s lemma essentially follows from the Plane Separation
Axiom. In fact, the two statements are equivalent. It must be noted, however, that
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A
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P

Q

interior of BAC

p1

p2

Pasch�’s lemma. A line which enters 
a triangle must eventually leave it.

The interior of an angle as the 
intersection of two half-planes.

A ray based at P cannot �“re-cross�” 
any line through P (other than the 
line containing it).
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6 2 Incidence and Order

Pasch’s lemma does not address the situation in which a line which intersects a
triangle at a vertex. Indeed, such a line may or may not intersect the triangle at
another point. The next theorem, commonly called the Crossbar Theorem, addresses
this issue. To prepare for it, we require some further background.

Definition 2.7. Angle Interior. A point lies in the interior or is an interior point of
an angle ∠BAC if:

1. it is on the same side of AB as C and
2. it is on the same side of AC as B.

Lemma 2.1. Let ! be a line, let P be a point on !, and let Q be a point which is not
on !. All points of ·PQ" except P lie on one side of !.

Proof. Suppose p1 and p2 are two points on · PQ " (other than P) which lie on
opposite sides of !. In this case, ! intersects !PQ" somewhere between p1 and p2.
But P is the unique point of intersection of the lines ! and !PQ". This creates a
contradiction then, since the endpoint of a ray cannot lie between two points of the
ray. "#

Theorem 2.4. The Crossbar Theorem. If D is an interior point of angle ∠BAC,
then the ray ·AD" intersects BC.

Proof. The proof of this innocent looking statement is actually a little tricky. The
basic idea behind the proof is as follows. As it stands, Pasch’s lemma does not apply
since the ray intersects at a vertex. If we just bump the corner a little bit away from
the ray, though, Pasch’s axiom will apply. There are several steps to this process.

First choose a point A′ on !AC" so that A′ ∗A∗C. Any point on the opposite ray
(·AC")op other than A will do. The line !AD" intersects the newly formed*A′BC
at the point A. By Pasch’s lemma, then, it must intersect one of the other two sides,
either A′B or BC.

Now, consider the ray (·AD")op. Could it intersect either of those sides? Since
D is in the interior of ∠BAC, it is on the same side of AC as B. Referring to the
previous lemma, all the points of A′B and BC (other than the endpoints A′ and C) lie
on the same side of the line ! AC " as the point D does. Since ! AD " intersects
AC at A, all points of the opposite ray (·AD")op lie on the other side AC. In other
words, (·AD")op cannot intersect A′B or BC.

Lastly, to show that · AD " intersects BC, we must rule out the possibility that
it might instead intersect A′B. Note that A′ and C are on opposite sides of !AB",
while C and D are on the same side of !AB". By the Plane Separation Postulate, A′
and D must be on opposite sides of !AB". In this case, all points of A′B (except B)
must lie on one side of AB and all points of ·AD" (except A) must lie on the other.
Since A += B, the ray ·AD" does not intersect A′B. Therefore, ·AD" must intersect
BC. "#

Exercises

2.1. Prove that the intersection of the rays ·AB" and ·BA" is the segment AB.
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The Crossbar Theorem may be 
thought of as a limiting case of 
Pasch�’s lemma, in which one of 
the two points is a vertex.

Extend the triangle to 
use Pasch�’s lemma.

The second intersection 
cannot lie on the 
opposite ray.

The second intersection 
must be on the side BC.

The proof of the Crossbar Theorem.
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2 Incidence and Order 7

2.2. Prove that the intersection of the rays ·AB" and (·BA")op is (·BA")op.

2.3. Prove that if A ∗B ∗C ∗D, then the intersection of AC and BD is BC, and the
union of AC and BD is AD.

2.4. Prove that if A∗B∗C, then the union of ·BA" and ·BC" is !AC".

2.5. Is it true that if the union of ·BA" and ·BC" is !AC", then A∗B∗C?

2.6. Prove that if C is a point on the ray · AB " other than the endpoint A, then
·AB"= ·AC".

2.7. Prove that r1 and r2 are rays with different endpoints, then they cannot be the
same ray.

2.8. Using the axioms of incidence and order, prove that there are infinitely many
points on a line.

2.9. Prove that there are infinitely many lines in neutral geometry.

2.10. Prove that a ray is uniquely defined by its endpoint and any other point on it.
That is, let r be a ray with endpoint A. Let B be another point on r. Prove that the
ray
−→
AB is the same as the ray r.

2.11. Prove the second and third statements in the lemma on the ordering of four
points.

2.12. Consider n distinct points on a line. In how many possible ways can those
points be ordered?

2.13. Prove that if A and B are on opposite sides of ! and B and C are on the same
side of !, that A and C must be on opposite sides of !.

2.14. We have assumed, as an axiom, the Plane Separation Axiom and from that,
proven Pasch’s lemma. For this exercise, take the opposite approach. Assume
Pasch’s lemma and prove the Plane Separation Axiom.

2.15. Consider the following model for neutral geometry. The points are the coor-
dinates (x,y), where x and y are real numbers. The lines are given by equations
Ax+By = C, where A, B, and C are real numbers. Two such equations Ax+By = C
and A′x+B′y = C′ represent the same line if there is a constant k such that

A′ = kA B′ = kB C′ = kC.

A point is on a line if its coordinates satisfy the equation of the line. Verify that this
model satisfies each of the axioms of incidence. This is the model we will use for
most of the illustrations in this book– we will call this the Cartesian model, and will
extend it over the next several sections.
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8 2 Incidence and Order

2.16. Continuing with the model in the previous problem, we model the order of
points as follows. If points P1, P2 and P3 are represented by coordinates (x1,y1),
(x2,y2) and (x3,y3), we say that P1 ∗P2 ∗P3 if all three points lie on a line, and x2 is
in the interval with endpoints x1 and x3, and y2 is in the interval with endpoints y1
and y3. Verify that this model satisfies the axioms of order as well.

2.17. Modify the example above as follows. The points are the coordinates (x,y)
where x and y are integers. The lines are equations Ax + By = C where A, B and C
are integers. Incidence and order are as described previously. Explain why this is
not a valid model for neutral geometry.

2.18. Consider a model in which the points are the coordinates (x,y,z) for real num-
bers x, y and z, and the line are equations of the form Ax + By +Cz = D, for real
numbers A, B, C, and D. Say that a point is on a line if its coordinates satisfy the
equation of that line. Show that this model does not satisfy the Axioms of Incidence.

2.19. Consider a model in which points are represented by coordinates (x,y) with x
and y in R, and the lines are represented by equations Ax2 +By = C, with A, B, and
C in R. Show that this is not a valid model for neutral geometry.

2.20. Fano’s geometry is an example of a different kind of geometry called a finite
projective geometry. It has three undefined terms– point, line, and on, and these
terms are governed by the following axioms: (1) There is at least one line. (2) There
are exactly three points on each line. (3) Not all points lie on the same line. (4) There
is exactly one line on any two distinct points. (5) There is at least one point on any
two distinct lines.
Verify that in Fano’s geometry two distinct lines have exactly one point in common.

2.21. Prove that Fano’s geometry contains exactly seven points and seven lines. Re-
member that while you may look to the model for guidance, your proof should only
rely upon the axioms.

2. Incidence and Order24
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Chapter 3
Congruence

In this section, we will examine the axioms of congruence. These axioms describe
two types of relations, both of which are denoted by the symbol -: congruence
between a pair of line segments and congruence between a pair of angles. With
these axioms, we will be able to begin developing the kinds of results that people
will recognize as traditional Euclidean geometry.

3.1 Congruence

There are six congruence axioms– the first three deal with congruence of segments,
the next two deal with congruence of angles, and the last involves both.

The Axioms of Congruence
I. The Segment Construction Axiom. If A and B are distinct points and if A′ is any
point, then for each ray r emanating from A′, there is a unique point B′ on r such
that AB- A′B′.

II. If AB-CD and AB- EF , then CD- EF . Every segment is congruent to itself.

III. The Segment Addition Axiom. If A∗B∗C and A′ ∗B′ ∗C′, and if AB- A′B′ and
BC - B′C′, then AC - A′C′.

IV. The Angle Construction Axiom. Given ∠BAC and any ray ·A′B′", there is a
unique ray ·A′C′" on a given side of !A′B′" such that ∠BAC - ∠B′A′C′.

V. If ∠A- ∠B and ∠A- ∠C, then ∠B- ∠C. Every angle is congruent to itself.

VI. The Side Angle Side (S · A · S) Axiom. Consider two triangles: *ABC and
*A′B′C′. If both

AB- A′B′ BC - B′C′

127



Depiction of two congruent triangles. The marks on the 
sides and angles indicate the corresponding congruences.

The Segment Addition Axiom provides a connection 
between congruence and order.
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The S-A-S triangle 
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S-A-S axiom.
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2 3 Congruence

and ∠B- ∠B′, then ∠A- ∠A′.

First up is a result which relates congruence back to the idea of order from the
previous chapter.

Theorem 3.1. Congruence Preserves Order. Suppose that A1 ∗A2 ∗A3 and that
B1, B2, and B3 are three points on the ray ·B1B2". Suppose further that

A1A2 - B1B2 & A1A3 - B1B3.

Then B1 ∗B2 ∗B3.

Proof. First note that B2 += B3, for if it were, then A1A2 - A1A3, violating the first
congruence axiom. Of B1, B2 and B3, then, one must be between the other two,
but it cannot be B1 since it is the endpoint of the ray containing all three. Suppose,
then, that B1 ∗B3 ∗B2. In this case, we can mark a point A4 so that A2 ∗A3 ∗A4
and so that A3A4 - B3B2. By the segment addition axiom, A1A4 - B1B2. But we
know that B1B2 - A1A2, so by the transitivity of congruence A1A4 - A1A2. To avoid
violating the first congruence axiom, A4 and A2 must be the same point. This cannot
be though, since they lie on opposite sides of A3. The only remaining possibility is
B1 ∗B2 ∗B3. "#

Definition 3.1. Triangle Cogruence A triangle has three sides and three interior
angles. Two triangles*ABC and*A′B′C′ are said to be congruent, written

*ABC -*A′B′C′,

if all of their corresponding sides and angles are congruent. That is,

AB- A′B′ BC - B′C′ CA-C′A′

∠A- ∠A′ ∠B- ∠B′ ∠C - ∠C′.

The next few results are the triangle congruence theorems, theorems which de-
scribe the conditions necessary to guarantee that two triangles are congruent. The
starting point of this discussion is the last of the congruence axioms, the S ·A · S
axiom. That axiom describes a situation in which two sides and the intervening
angle of one triangle are congruent to two sides and the intervening angle of an-
other triangle. The S ·A · S axiom states that in such a case, there is an additional
congruence–namely one between the angles which are adjacent to the first listed
sides. This axiom is perhaps overly modest, for in fact, given matching S ·A ·S, we
can say more.

Theorem 3.2. S · A · S Triangle Congruence. In triangles*ABC and*A′B′C′, if

AB- A′B′ ∠B- ∠B′ BC - B′C′,

then*ABC -*A′B′C′.
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3.1 Congruence 3

Proof. We need to show the congruence of two pairs of angles, and one pair of
sides. To begin, the S ·A · S axiom implies that ∠A - ∠A′. Now the S ·A · S axiom
guarantees congruence of the pair of angles which are adjacent to the first listed
sides. Therefore, we can use a trick of rearrangement: since

BC - B′C′ ∠B- ∠B′ AB- A′B′,

once again by the S ·A ·S axiom, ∠C - ∠C′.
For the remaining side, we will use a technique which will reappear several times

in the next few proofs. Suppose the corresponding third sides are not congruent. It
is then possible to locate a unique point C" (which is not C) on · AC " so that
AC" - A′C′. Note that there are really two cases: either A ∗C ∗C" or A ∗C" ∗C. In
either case, though,

AB- A′B′ ∠A- ∠A′ AC" - A′C′

so by first the S ·A ·S axiom, ∠ABC" -∠A′B′C′, and then by the transitivity of angle
congruence (the fifth congruence axiom), ∠ABC" -∠ABC. Since it is only possible
to construct one angle on a given side of a line, C" must lie on ·BC". This means
that C" is the intersection point of !BC" and !AC". But we already know that these
two lines intersect at C, and since two distinct lines may have only one intersection,
C = C". This is a contradiction. "#

Theorem 3.3. A · S · A Triangle Congruence. In triangles*ABC and*A′B′C′, if

∠A- ∠A′ AB- A′B′ ∠B- ∠B′,

then*ABC -*A′B′C′.

Proof. First we show that AC - A′C′. Locate C" on ·AC" such that AC" - A′C′. By
the S ·A ·S theorem,*ABC" -*A′B′C′. Therefore ∠ABC" -∠A′B′C′ and so (since
angle congruence is transitive) ∠ABC" - ABC. According to the angle construction
axiom, there is only one way to construct this angle, so C" must lie on the ray
· AC ". Since C is the unique intersection point of ! AC " and ! BC ", and
since C" lies on both these lines, C" = C. Thus, AC - A′C′. By the S ·A ·S theorem,
*ABC -*A′B′C′. "#

Theorem 3.4. A · A · S Triangle Congruence. In triangles*ABC and*A′B′C′, if

∠A- ∠A′ ∠B- ∠B′ BC - B′C′,

then*ABC -*A′B′C′.

The proof of this result is left to the reader– its proof can be modeled on the proof
of the A ·S ·A Triangle Congruence Theorem.

It is possible for a single triangle to have two or three sides which are congru-
ent to one another. There is a classification of triangles based upon these internal
symmetries.
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4 3 Congruence

Definition 3.2. Isosceles, Equilateral and Scalene Triangles. An isosceles trian-
gle is a triangle with two sides which are congruent to each other. If all three sides
are congruent, the triangle is equilateral. If no pair of sides is congruent, the triangle
is a scalene triangle.

Theorem 3.5. The Isosceles Triangle Theorem. In an isosceles triangle, the an-
gles opposite the congruent sides are congruent.

Proof. Suppose*ABC is isosceles, with AB- AC. Then:

AB- AC ∠A- ∠A AC - AB.

By the S · A · S triangle congruence theorem, then, *ABC - *ACB. Comparing
corresponding angles, ∠B- ∠C. "#

In the preceding proof, we used the S ·A ·S triangle congruence theorem to com-
pare a triangle to itself, in essence revealing an internal symmetry of the isosceles
triangle. Although the triangle congruence theorems typically are used to compare
two different triangles, a careful reading of these theorems reveal that there is no
inherent reason that the triangles in question have to be different.

3.2 Angle Addition

Before proving the final triangle congruence theorem, we must take a small detour
to further develop the theory related to angles. Looking back at the axioms of con-
gruence, it is easy to see that the fourth and fifth axioms play the same role for
axioms that the first and second do for segments. There is, however, no correspond-
ing angle version of the third axioms, the Segment Addition Axiom. Such a result is
a powerful tool when working with angles, though, and is essential for further study.
The next several results lead up to the proof of the corresponding addition result for
angles.

In the proofs in this section we will frequently “relocate” points on a given line
or ray. This is purely for convenience, but it does make the notation a bit more
manageable. A brief justification of this technique is in order. Let B" be any point
on the ray ·AB" other than the endpoint A. Then ·AB"" and ·AB" are the same
ray, and we may refer to them interchangeably. Rather than introducing a new point
B" making the old point B obsolete, we will just say that we have relocated B.
Relocation can also be done on lines. If A" and B" are any two distinct points on
!AB", then we may relocate A to A" and B to B" without changing the line. The
purpose of this relocation is usually to make a matching pair of congruent segments
on a ray or line. For instance, if we are working with rays ·AB" and ·A′B′", we
may wish to relocate B′ so that AB- A′B′.

Definition 3.3. Supplementary Angles. Consider three collinear points A, B, and
C, and suppose that A is between B and C. In other words, · AB " and · AC " are
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3.2 Angle Addition 5

opposite rays. Let D be a fourth point, which is not on either of these rays. Then the
two angles ∠DAB and ∠DAC are called supplementary angles.

Theorem 3.6. The supplements of congruent angles are congruent. More precisely,
given two pairs of supplementary angles:

pair 1: ∠DAB and ∠DAC pair 2: ∠D′A′B′ and ∠D′A′C′,

if ∠DAB- ∠D′A′B′, then ∠DAC - ∠D′A′C′.

Proof. This is a nice proof in which we use the S ·A · S Triangle Congruence The-
orem several times to work our way from the given congruence over to the desired
result. To begin, we can relocate the points B′, C′, and D′ on their respective rays so
that

AB- A′B′ AC - A′C′ AD- A′D′.

In this case, by the S ·A ·S triangle congruence theorem,*ABD-*A′B′D′. Hence
BD- B′D′, and ∠B- ∠B′. Using the Segment Addition Axiom, BC - B′C′, so

BC - B′C′ ∠B- ∠B′ BD- B′D′

Again using S ·A · S, *CBD - *C′B′D′. Comparing the corresponding pieces of
these triangles, we see that CD-C′D′ and ∠C - ∠C′. Combine these two congru-
ences with the given AC - A′C′ and we are in position to use S ·A · S a final time:
*ACD-*A′C′D′, and so ∠ACD- A′C′D′. "#

Definition 3.4. Vertical Angles. Recall that the angle ∠BAC is formed from two
rays ·AB" and ·AC". Their opposite rays (·AB")op and (·AC")op also form an
angle. Taken together, these angles are called vertical angles.

Theorem 3.7. Vertical angles are congruent.

Proof. Consider ∠APB. On (·PA")op label a point C and on (·PB")op label a point
D, so that ∠APB and ∠CPD are vertical angles. Since both these are supplementary
to the same angle, namely ∠BPC, they must be congruent. "#

Earlier, when working with segments we proved a result concerning the relation-
ship between congruence and betweenness. We showed that if a point B lies on the
ray ·AC" between A and C, and if B′ lies on the ray ·A′C′" so that

AB- A′B′ & AC - A′C′

then B′ must lie between A′ and C′. In many ways there are some connections be-
tween the interior points of an angle and the between points on a line. Once again,
the triangle congruence theorems are the conduit connecting these new angle results
to corresponding betweenness results.

Theorem 3.8. Suppose that ∠ABC and ∠A′B′C′ are congruent angles. Suppose that
D is an interior point of ∠ABC. Let D′ be another point which is on the same side
of !A′B′" as C′. If
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6 3 Congruence

∠ABD- ∠A′B′D′,

then D′ is in the interior of ∠A′B′C′.

Proof. First, relocate A′ on ·B′A′" so that AB - A′B′ and C′ on ·B′C′" so that
BC - B′C′. By the Crossbar Theorem, since D is in the interior of ∠ABC, the ray
·BD" intersects the segment AC. We label this point of intersection E, noting that,
since it lies on ·BD", it is also in the interior of ∠ABC. By the Segment Construction
Axiom, there is a point E ′ on ·B′D′" so that BE - B′E ′. Then

AB- A′B′ ∠ABE - ∠A′B′E ′ BE - B′E ′

so by S ·A ·S triangle congruence,*ABE -*A′B′E ′. Hence AE -A′E ′, but of more
immediate usefulness, ∠A - ∠A′. Combine this with two previously established
congruences:

AB- A′B′ & ∠ABC - ∠A′B′C′

and the A · S ·A triangle congruence theorem gives another pair of congruent tri-
angles: *ABC - *A′B′C′. In particular, the corresponding sides AC and A′C′ are
congruent. Now if we assemble all this information:

(1) A∗E ∗C,
(2) AE - A′E ′,
(3) AC - A′C′, and
(4) E ′ and C′ lie on a ray emanating from A′,

we see that A′ ∗E ′ ∗C′. Therefore E ′ lies on the same side of !B′C′" as A′. Since
we were initially given that D′, and hence E ′ lie on the same side of !B′A′" as C′,
we can now say that E ′ is in the interior of ∠A′B′C′. All other points on ·B′E ′",
including D′ must also be in the interior of ∠A′B′C′. "#

Theorem 3.9. Angle Subtraction Let D and D′ be interior points of ∠ABC and
∠A′B′C′ respectively. If

∠ABC - ∠A′B′C′ and ∠ABD- ∠A′B′D′,

then ∠DBC - ∠D′B′C′.

Proof. By the Crossbar Theorem, ·BD" intersects AC. Relocate D to this intersec-
tion. Relocate A′ and C′ so that BA- B′A′ and BC- B′C′. Finally, relocate D′ to the
intersection of ·B′D′" and B′C′. Since

AB- A′B′ ∠ABC - ∠A′B′C′ BC - B′C′,

by the S ·A ·S triangle congruence theorem,*ABC -*A′B′C′. This provides three
congruences:

(1) ∠A- ∠A′,
(2) AC - A′C′, and
(3) ∠C - ∠C′,

the first two of which will be useful in this proof. Combine (1) with the previously
constructed congruences
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3.2 Angle Addition 7

AB- A′B′ ∠ABD- ∠A′B′D′.

By the A · S · A triangle congruence theorem, *ABD - *A′B′D′ and therefore,
AD - A′D′. Using the Segment Subtraction Theorem, this together with (2) gives
the congruence CD -C′D′. Since supplements of congruent angles are congruent,
∠BDC-∠B′D′C′. Combine this with (3) and recall we located C′ so that BC-B′C′.
Once again, by S ·A ·S,*BCD-*B′C′D′. Hence the corresponding angles ∠CBD
and ∠C′B′D′ are congruent. "#

Theorem 3.10. Angle Addition Let ∠ABC and ∠A′B′C′ be two angles, and let D
and D′ be points in their respective interiors. If

∠ABD- ∠A′B′D′ & ∠DBC - ∠D′B′C′,

then ∠ABC - ∠A′B′C′.

Proof. We know, thanks to the Angle Construction Axiom, that there is a unique ray
·A′C"" which is on the same side of !A′B′" as C′ and for which ∠ABC -∠A′B′C".
Because of the Angle Subtraction Theorem, we know that ∠D′B′C" is congruent
to ∠DBC, which is congruent to ∠D′B′C′. By the transitivity of angle congruence,
then, ∠D′B′C" -D′B′C′. Since the two rays ·B′C′" and ·B′C"" both lie on the same
side of !B′D′", they are in fact the same. Therefore

∠A′B′C′ = ∠A′B′C" - ∠ABC. "#

Finally, we are able to prove the last of the triangle congruence theorems.

Theorem 3.11. S · S · S Triangle Congruence. In triangles*ABC and*A′B′C′ if

AB- A′B′ BC - B′C′ CA-C′A′,

then*ABC -*A′B′C′.

Proof. Unlike the previous congruence theorems, this time there is no given pair
of congruent angles, so the method used to prove those will not work. This proof
instead relies upon the Isosceles Triangle Theorem and the Angle Addition and
Subtraction Theorems. Let ·AB"" be the unique ray so that B and B" are on opposite
sides of !AC" and ∠B"AC - ∠B′A′C′. Additionally, locate B" on that ray so that
AB" - A′B′. By the S ·A · S theorem, *AB"C - *A′B′C′. It therefore suffices to
show that*ABC -*AB"C.

Since B and B" are on opposite sides of ! AC ", BB" intersects ! AC ". Label
this intersection P. The exact location of P in relation to A and C cannot be known
though: any of P, A, or C may lie between the other two. Here we will consider the
case in which P is between A and C, and leave the other two cases for the reader.
Observe that since AB- AB", the*BAB" is isosceles. Thus, by the Isosceles Trian-
gle Theorem, ∠ABB" -∠AB"B. Similarly BC- B"C, and so ∠CBB" -∠CB"B. By
the Angle Addition Theorem then ∠ABC - ∠AB"C. We have already established
that AB- AB" and BC - B"C, so, by the S ·A ·S theorem,*ABC -*AB"C. "#
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Exercises

3.1. Prove the Segment Subtraction Theorem: Suppose that A∗B∗C and A′ ∗B′ ∗C′.
If AB- A′B′ and AC - A′C′, then BC - B′C′.

3.2. Prove the A ·A ·S triangle congruence theorem.

3.3. Suppose that A∗B∗C and A′ ∗B∗C′, that AB- BC, and that both *ABA′ and
*CBC′ are isosceles triangles with ∠A- ∠A′ and ∠C - ∠C′. Prove that*ABA′ -
*CBC′.

3.4. Let A, B, C, and D be four non-collinear points and suppose that *ABC -
*CBA. Prove that*ABD-*BCD.

3.5. Let A, B, C, and D be four non-collinear points and suppose that *ABC -
*DCB. Prove that*BAD-*CDA.

3.6. Let P be a point and let AB be a segment. Prove that there infinitely points Q
such that PQ- AB.

3.7. Prove that an equilateral triangle is equiangular (that is, all three angles are
congruent to one another).

3.8. Show that, given a line segment AB, it is possible to find a point C between A
and B (called the midpoint) for which AC - BC.

3.9. Show that, given any angle ∠ABC, it is possible to find a point D in its interior
for which

∠ABD- ∠DBC.

The ray ·AD" is called the angle bisector of ∠ABC.

3.10. Complete the proof of the S ·S ·S Triangle Congruence Theorem by verifying
that the theorem holds when P does not lie between A and C.

3.11. Let us continue the verification that the Cartesian model satisfies the axioms
of neutral geometry. We define segments to be congruent if they are the same length
(as measured using the distance formula). That is, write A = (ax,ay), B = (bx,by),
C = (cx,cy) and D = (dx,dy). Then AB-CD if and only if

√
(ax−bx)2 +(ay−by)2 =

√
(cx−dx)2 +(cy−dy)2.

With this definition, verify the first three axioms of congruence.

3.12. Calculating angle measure in the Cartesian model is a little bit trickier. This
formula involves a little vector calculus. Consider angle ∠ABC with A = (ax,ay),
B = (bx,by) and C = (cx,cy). Let v1 be the vector from B to A and let v2 be the
vector from C to A. Then

v1 · v2 = |v1||v2|cosθ

where θ is the angle between v1 and v2. Use this to derive a formula for θ in terms
of the coordinates of A, B, and C.
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3.2 Angle Addition 9

3.13. Define two angles to be congruent if and only if they have the same angle
measure as calculated using the formula derived in the last problem. Show that with
this addition, the Cartesian model satisfies the fourth and fifth axioms.

3.14. Verify the S ·A ·S Axiom for the Cartesian model.

3.15. Suppose that we replace the standard distance formula above with the alternate
formula for calculating the distance between (x1,y1) and (x2,y2)

dA((x1,y1),(x2,y2)) = 1+
√

(x2− x1)2 +(y2− y1)2.

Are the first three congruence axioms still satisfied when distance is calculated in
this way?

3.16. Another popular metric is the “taxicab metric.” In that metric, the distance
from between (x1,y1) and (x2,y2) is calculated with the formula

dT ((x1,y1),(x2,y2)) = |x2− x1|+ |y2− y1|.

Are the first three congruence axioms satisfied with this metric?

3.17. Draw two triangles in the Cartesian model with congruent A ·A ·A which are
not themselves congruent.

3.18. Draw two triangles in the Cartesian model with congruent S · S ·A which are
not themselves congruent.
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Chapter 4
Continuity

The last two axioms of neutral geometry are the axioms of continuity. They are of
a more technical nature, but they provide the mechanism for associating a line with
the real number line. In the exercises in the previous chapters, we have been devel-
oping a model of neutral geometry in which lines in the Cartesian plane represent
(geometric) lines. In that model congruence is described in terms of segment length.
Generally speaking, properties of one particular model may or may not translate
into properties of the geometry itself. In this chapter we will see that a notion of
segment length is intrinsic to neutral geometry itself. This takes a little work. First
we will extend the idea of congruence to one which allows us to say whether one
segment is longer or shorter than another. Then (and this is the difficult part), we
will establish a natural correspondence between the points on a ray and the points
on R+, the positive half of the real number line. From that we can define the length
of a segment. In the second part of the chapter, we outline a similar argument for
the construction of the measure of an angle.

The Axioms of Continuity
I Archimedes’ Axiom If AB and CD are any two segments, there is some number n
such that n copies of CD constructed contiguously from A along the ray ·AB" will
pass beyond B.

II Dedekind’s Axiom Suppose that all points on line ! are the union of two nonempty
sets Σ1 and Σ2 such that no point of Σ1 is between two points of Σ2 and vice versa.
Then there is a unique point O on ! such that P1 ∗O∗P2 for any points P1 ∈ Σ1 and
P2 ∈ Σ2.

4.1 Comparison of segments

Hilbert’s axioms provide the framework for a synthetic geometry. That is, there is
no explicit definition of distance or angle measure in the axioms. This is in keeping
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with Euclid’s approach and the spirit of much of classical geometry. Thus far, we
have talked about segments or angles being congruent to one another, but we have
not talked about one being bigger or smaller than another. As might be expected,
even without a mechanism for measuring segments or angles, it is not too hard to
set up a system for comparing the relative sizes of segments or angles. In the next
definition, we tackle the issue for segments.

Definition 4.1. Let AB and CD be segments. Let X be the point on the ray ·CD" such
that AB -CX . We say that AB is shorter than CD, written AB ≺CD, if C ∗X ∗D.
We say that AB is longer than CD, written AB0CD, if C ∗D∗X .

With this definition, the relations ≺ and 0 behave as you might expect. For in-
stance, note that exactly one of the three must hold:

AB≺CD or AB-CD or AB0CD.

We will not really do a thorough examination of these two relations though, since
we will ultimately be developing a measuring system which makes it possible to
compare segment by looking at their lengths. The following theorem lists a few of
the properties of the ≺ and 0 relations.

Theorem 4.1. Comparison of Segments.
If AB≺CD and CD-C′D′, then AB≺C′D′.
If AB0CD and CD-C′D′, then AB0C′D′.

AB≺CD if and only if CD0 AB.

If AB≺CD and CD≺ EF, then AB≺ EF.
If AB0CD and CD0 EF, then AB0 EF.

Suppose that A1 ∗A2 ∗A3 and B1 ∗B2 ∗B3.
If A1A2 ≺ B1B2 and A2A3 ≺ B2B3, then A1A3 ≺ B1B3.
If A1A2 0 B1B2 and A2A3 0 B2B3, then A1A3 0 B1B3.

Proof. We will only provide the proof of the first of these. The proofs of the re-
maining statements are in a similar vein and we leave them to the diligent reader.
So now, for the first, assume AB≺CD and CD-C′D′. By the segment construction
axiom, there exists a unique point X on ·CD" such that AB-CX . Since AB≺CD,
this point X is between C and D. As well, there is a point X ′ on ·C′D′" such that
AB-C′X ′. Because of the transitivity of congruence, CX -C′X ′. We have seen that
congruence preserves order, and so this means that X ′ must be between C′ and D′.
Hence AB≺C′D′. "#

These synthetic comparisons can be taken further. For instance, there is a straight-
forward construction which “doubles” or “triples” a segment.
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Definition 4.2. The n-copy of a point Let r be a ray with endpoint P0 and let P be
another point on r. By the segment construction axiom, there is a unique point P(2)
which satisfies the two conditions

P0 ∗P∗P(2) & P0P- PP(2)

Again there is a unique point P(3) satisfying

P0 ∗P(2) ∗P(3) & P0P- P(2)P(3)

and another P(4) satisfying

P0 ∗P(3) ∗P(4) & P0P- P(3)P(4)

and so on. In this manner it is possible to construct, end-to-end, an arbitrary number
of congruent copies of P0P. We will call P(n), the n-th iteration of this construction,
the n-copy of P along r.

It is easy to verify that this n-copy process satisfies the following properties
(whose proofs are left to the reader):

Lemma 4.1. Properties of the n-copy. Let r be a ray with endpoint P0 and let m
and n be positive integers. (1) For any point P on r,

(P(m))(n) = P(mn) = (P(m))(n).

(2) If P and Q are points on r, then

P0P≺ P0Q ⇐⇒ P0P(n) ≺ P0Q(n)

P0P0 P0Q ⇐⇒ P0P(n) 0 P0Q(n)

(3) If P and Q are points on r and if P(n) = Q(n), then P = Q.

With this process then, integer multiples of a segment can be constructed. It is a
little more work though, to construct rational multiples– how would you construct a
third of a segment, for instance? And irrational multiples are even more difficult. In
the next section, we will work our way through that problem.

4.2 Distance

Developing a full-fledged system of measuring segment length is not an easy matter,
but the idea is simple. At the very least, we would want two congruent segments to
have the same length, and because of this, we can narrow our focus considerably. Let
r be a ray and let P0 be its endpoint. By the segment construction axiom, any segment
is congruent to a segment from P0 along r. Therefore, any measurement system
for the points on r can be extended to the entire plane. Now the way that we will
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establish that measurement system on r will be by constructing a correspondence
between r and R+ (the positive real numbers).

Unfortunately, parts of this section are fairly technical. This is because the real
number line, in spite of our familiarity with it, is itself a pretty complicated item.
The key idea in the construction of a real number line is that of the Dedekind cut,
that each number on the real number line corresponds to the division of the line into
two disjoint subsets Σ− and Σ+ so that all the numbers in Σ− are less than those of
Σ+ and all the numbers in Σ+ are greater than those of Σ−. For those unfamiliar with
Dedekind cuts, a more detailed explanation is available in Appendix A. The idea of
the Dedekind cut is clearly mirrored in the Dedekind axiom which is the key to
much of this argument. All told, this is a three part construction. First we match up
the points which correspond to integer values on R+. Then we do the points which
correspond to rational values. And finally we deal with the irrational values.

Choose a ray r. We will define a bijection

Φ : R+ = {x ∈ R|x≥ 0}−→ r.

To begin, define Φ(0) = P0, the endpoint of r. Then let Φ(1) be any other point on r.
The choice of Φ(1) is entirely arbitrary: its purpose is to establish the unit length for
this measurement system. Now beyond being a bijective correspondence, we would
also like Φ to satisfy a pair of conditions:

The order condition. Φ should transfer the ordering of the positive reals to the or-
dering of the points on r. In other words,

0 < x < y ⇐⇒ P0 ∗Φ(x)∗Φ(y).

The congruence condition. The n-copy of a point should result in a segment which
is n times as long as the original segment. In order for this to happen, the n-copy of
Φ(x) will have to be the same as Φ(nx) for all x. With those two fairly restrictive
conditions, Φ is completely determined by the choice of Φ(1).

Defining Φ for integer values.
The integer values are the easy ones. Because of the congruence condition, for any
positive integer m, Φ(m) must be the m-copy of Φ(1). Defined this way, it is easy to
check that Φ maps each integer to a unique point on r and that it satisfies the order
condition. The congruence condition is also met since for any positive integer n,

Φ(m)(n) = (Φ(1)(m))(n) = Φ(1)(mn) = Φ(nm).

Defining Φ for rational values.
Moving on to the rationals, write a rational number as a quotient of (positive) in-
tegers m/n. The idea here is that, because of the congruence condition, the n-copy
of Φ(m/n) should be Φ(m). But how do we know that there is a point on r whose
n-copy is exactly Φ(m)? This is where Dedekind’s axiom comes into play. Define
two subsets of r (using P(n) to represent the n-copy of P):
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Σ< =
{

P on r
∣∣∣P0 ∗P(n) ∗Φ(m)

}

Σ≥ =
{

P on r
∣∣∣P(n) = Φ(m) or P0 ∗Φ(m)∗P(n)

}

Note that Σ< and Σ≥ are disjoint and that together they form all of r. Furthermore,
because of the Archimedean axiom, both of these sets are nonempty. There is one
other condition required to use the Dedekind axiom.

Lemma 4.2. No point of Σ< lies between two points of Σ≥. No point of Σ≥ lies
between two points of Σ<.

Proof. Let Q1 and Q3 be distinct points of Σ< and suppose that Q2 lies between
them. Since P0 is the endpoint of r, it cannot lie between Q1 and Q3, and so one of
two possibilities occurs:

P0 ∗Q1 ∗Q3 or P0 ∗Q3 ∗Q1.

By switching the labels of Q1 and Q3, if necessary, we may assume the first case.
On r, then, the points must be configured as follows:

P0 ∗Q1 ∗Q2 ∗Q3

Hence P0Q2 ≺ P0Q3. We know that joining two relatively smaller segments results
in a relatively smaller segment (this was the last in our list of properties of the ≺
relation). By extension, n copies of P0Q2 must be smaller than n copies of P0Q3.
Therefore

P0Q2(n) ≺ P0Q3(n) ≺ P0Φ(m)

and so P0 ∗Q2(n) ∗Φ(m), meaning that Q2 ∈ Σ<. The second statement in the lemma
is, of course, proved similarly. "#

According to the Dedekind axiom, there is a unique point which lies between
these two sets (more precisely, there is a unique point which is not between any two
elements of Σ<, nor is it between any two elements of Σ≥). We set Φ(m/n) to be
this point. Note that the image of two distinct rationals will be two distinct points,
so thus far Φ is a one-to-one map.

Lemma 4.3. Φ satisfies the order condition for rational values.

Proof. Suppose that m/n and m′/n′ are rationals with m/n < m′/n′ (assume further
than n and n′ are positive). Cross multiplying, this means mn′ < m′n. Look at the
nn′-copies of the corresponding points:

Φ(m/n)(nn′) = Φ(mn′)

Φ(m′/n′)(nn′) = Φ(m′n).

Since m′n < m′n,
P0 ∗Φ(m′n)∗Φ(mn′).

4. Continuity 49



1/2

43

2/3

) (

)(

x x

S xS x

Px

An example of how the ordering of the rationals corre-
sponds to the ordering of the points on r. The six-copy of 
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3 421 ...

Archimedes�’ axiom rules out the scenario shown above, 
in which no number of congruent copies would reach 
beyond a certain point on the line.
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We made the same number of copies, so it follows that

P0 ∗Φ(m/n)∗Φ(m′/n′)

as desired. "#

Lemma 4.4. Φ satisfies the congruence condition for rational values.

Proof. To compare Φ(p/q)(n) and Φ(n · p/q), look at their q-copies:

(Φ(p/q)(n))(q) = (Φ(p/q)(q))(n) = Φ(p)n = Φ(np)

(Φ(n · p/q))(q) = Φ(np).

Since the q-copies are the same, the initial values must be the same, verifying the
congruence condition. "#

Defining Φ for irrational values.
Finally we turn out attention to the irrationals. Let x be a positive irrational number.
Since Φ has already been defined for rational numbers we may the sets:

S<x =
{

Φ(m/n) on r
∣∣∣m/n < x

}
S≥x =

{
Φ(m/n) on r

∣∣∣m/n≥ x
}

.

Now this set will have “gaps” between the rational values. To fill those gaps,
extend the sets: define Σ<x to be the set consisting of all the points of S<x together
with all the points of r which are between two points of S<x. Define another set,
Σ≥x, to be the remaining points on r (note that it contains all of the points of S≥x.
These two sets are disjoint, and together they comprise all of r. It is clear from the
construction that no point from one lies between two points of the other. Hence, by
Dedekind’s axiom, there is a unique point between Σ<x and Σ≥x. Define Φ(x) to be
this point.

Lemma 4.5. Φ is one-to-one.

Proof. We have already shown this when Φ is restricted to the rationals. Therefore,
we turn out attention to Φ(x) where x is a positive irrational number. First observe
that Φ(x) cannot be be the same as any of the points corresponding to Φ(p/q). All
of these rational points must be in either S<x or S≥x, and Φ(x) is not in either of
these sets. Now suppose that x and y are two distinct irrational values with x < y.
Could Φ(x) = Φ(y)? Because the rationals are dense in R, there is a rational number
p/q between x and y. This mean that Φ(p/q) is in S>x and in S≥y, so

Φ(x)∗Φ(p/q)∗Φ(y)

and therefore Φ(x) += Φ(y). Therefore Φ assigns to each element of R a unique
element of r. "#

Lemma 4.6. Φ satisfies the order condition for irrational values.
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Proof. First, compare x to a rational value p/q. Suppose for instance that p/q < x
(the case where p/q > x would work similarly). Then Φ(p/q) ∈ S<x ⊂ Σ<x so

P0 ∗Φ(p/q)∗Φ(x)

as desired.
Now compare x to another irrational value y, and suppose that x < y. Because the

rational numbers form a dense subset of R, there is a rational value p/q which is
between x and y. This means that Φ(p/q) is in S≥x but that it is in S<y. Therefore

P0 ∗Φ(x)∗Φ(p/q)
P0 ∗Φ(p/q)∗Φ(y)

Combining these two results gives the desired result that

P0 ∗Φ(x)∗Φ(y). "#

Lemma 4.7. Φ satisfies the congruence condition for irrational values.

Proof. For an irrational value x, Φ(nx) is the unique point between Σ<nx and Σ≥nx,
while Φ(x)(n) is the n-copy of the unique point between Σx and Σ≥x. From our
analysis of the rational case, the n-copies of all rational values of Σ<x are all the
rational values of Σ<nx while the n-copies of all the rational values of Σ≥x are all the
rational values of Σ≥nx. The n-copy of Φ(x) must be between these values, but the
only point between them is Φ(nx). Therefore Φ(x)(n) = Φ(nx) as desired. "#

At this point, Φ is a well-defined one-to-one function which satisfies both the
order and congruence conditions. The one remaining issue– Φ must be onto in order
for the map to be a bijection.

Lemma 4.8. Φ is onto (a surjection).

Proof. To address this issue, take a point P on r and let us assume that P is not the
image of any of the rational numbers. Let

S<P =
{

x ∈ R
∣∣∣x is rational and P0 ∗Φ(x)∗P

}

S>P =
{

x ∈ R
∣∣∣x is rational and P0 ∗P∗Φ(x)

}

Since P0 is in S<P it is clear that S<P is nonempty. According to the Archimedes’
axiom, there is some integer n so that the n-copy of Φ(1) is on the opposite side
P from P0. Hence n is in S>P, and therefore S>P is also nonempty. Furthermore,
because Φ maps the ordering of the rationals to the ordering of the points of r, all
the elements of S< must be less than all elements of S>P. In other words, the two
sets S<P and S>P form a Dedekind cut, and hence define a real number x.

We now have a really good candidate for the real value which is mapped to P.
But is Φ(x) = P? Moving back to r, let Σ<P be the image of S<P together with all
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the points between them. Let Σ≥P consist of the rest of the points on r. Both P and
Φ(x) lie between Σ<P and Σ≥P. As the Dedekind axiom provides room for but one
point between Σ<P and Σ≥P, P and Φ(x) must be the same. Therefore every point
on r is the image of some positive real number, and so Φ is onto. "#

4.3 Segment Length

With the correspondence between a ray and R+ established, it is now possible to
define the length of a segment. Let AB be a segment. By the Segment Construction
Axiom, there is a unique point P on the ray r such that AB- P0P. Define the length
of AB, denoted |AB|, as

|AB| = Φ−1(P).

Note that with this definition,

AB-CD ⇐⇒ |AB| = |CD|.

Likewise
AB≺CD ⇐⇒ |AB| < |CD|,

AB0CD ⇐⇒ |AB| > |CD|.

Lemma 4.9. If A and B are on r with P0 ∗A∗B, then

|AB| = Φ−1(B)−Φ−1(A).

Proof. There are three cases to consider. First suppose that both A and B are integer
points, say A = Φ(m) and B = Φ(n), with m < n. Since P0A consists of m end-to-
end congruent copies of P0Φ(1) and P0B consists of n end-to-end congruent copies
of P0Φ(1), by Segment Subtraction, AB must consist of n−m end-to-end congruent
copies of P0Φ(1). Since P0Φ(n−m) also consists of n−m end-to-end congruent
copies of P0Φ(1),

AB- P0Φ(n−m).

By definition then,
|AB| = n−m = Φ−1(B)−Φ−1(A).

Now suppose that A and B both correspond to rational values (including, possibly,
integer values). We may then write A and B in the form:

A = Φ(m/n) B = Φ(m′/n′)

for positive integers m, m′, n, and n′. The nn′-copy of A is Φ(mn′) and the nn′-copy
of B is Φ(m′n). Therefore nn′ congruent copies of AB, placed end-to-end, form
a segment congruent to Φ(mn′)Φ(m′n). From the previous analysis of the integer
case,

|Φ(mn′)Φ(m′n)| = m′n−mn′.
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Because of the congruence condition, this must be nn′ times the length of |AB|, so

|AB| = 1
nn′

|Φ(mn′)Φ(m′n)|

=
1

nn′
(m′n−mn′)

= m′/n−m/n′

= Φ−1(B)−Φ−1(A).

Finally, suppose one or both of A and B are irrational points, and write A = Φ(x)
and B = Φ(y) with x < y. For this part we will attempt a proof by contradiction.
Suppose that |AB| += y− x. Let ε be the positive difference between |AB| and y− x.
What we will do here is bracket the two irrational values with rational values and
then use the previously result for rational values. Since there are rational numbers
arbitrarily close to any real number, there are rationals q1, q2, q3, and q4 satisfying

q1 < x < q2, q2−q1 < ε/2
q3 < y < q4, q4−q3 < ε/2.

Note then that
q3−q2 < y− x < q4−q1.

Let Qi = Φ(qi). Then P0 ∗Q1 ∗A∗Q2 ∗Q3 ∗B∗Q4, and so

Q2Q3 ≺ AB≺ Q1Q4.

In terms of segment lengths, this translates into the inequality

|Q2Q3| < |AB| < |Q1Q4|.

So we see that both y− x and |AB| are between |Q2Q3| and |Q1Q4|. But the differ-
ence between |Q2Q3| and |Q1Q4| is less than ε . Therefore, the difference between
|AB| and y− x must be less than ε . This contradicts our supposition. "#

Recall that one of the axioms of order, the Segment Addition Axiom, describes
putting together two segments to get a longer segment. With the preceding lemma
now proved, we are in a position to prove a much stronger formulation of that axiom.
It tells us the relationship between the lengths of the respective pieces.

Theorem 4.2. Segment Addition, Measured Version. If A∗B∗C, then

|AB|+ |BC| = |AC|.

Proof. Locate P1 on r so that P0P1 - AB. Locate P2 on r so that P0 ∗P1 ∗P2 and
P1P2 - BC. Then
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|AB|+ |BC| = |P0P1|+ |P1P2|
= Φ−1(P1)+Φ−1(P2)−Φ−1(P1)

= Φ−1(P2)
= |P0P2|
= |AC|. "#

4.4 Angle Comparison

The mechanisms of angle measurement can be constructed similarly, although there
are some notable differences. This time around, we will leave most of the details
to the reader. Consider two angles ∠ABC and ∠A′B′C′. By the Angle Construction
Axiom, it is possible to construct on the same side of ·A′B′" as C′, an angle which
is congruent to ∠ABC. Label this angle ∠A′B′C".

Definition 4.3. We say that ∠ABC is smaller than ∠A′B′C′, written

∠ABC ≺ ∠A′B′C′,

if C" lies in the interior of ∠A′B′C′. We say that ∠ABC is larger than ∠A′B′C′,
written

∠ABC 0 ∠A′B′C′,

if ∠ABC is not congruent to ∠A′B′C′ and if C" does not lie in the interior of ∠A′B′C′.

Note that exactly one of the three must hold:

∠ABC ≺ ∠A′B′C′

or ∠ABC - ∠A′B′C′

or ∠ABC 0 ∠A′B′C′.

As might be anticipated, there are several basic properties of the ≺ and 0 relations
(whose proofs will be omitted).

Theorem 4.3. Angle Comparison. If ∠A≺ ∠B and ∠B- ∠B′, then ∠A≺ ∠B′.
If ∠A0 ∠B and ∠B- ∠B′, then ∠A0 ∠B′.

∠A≺ ∠B if and only if ∠B0 ∠A.

If ∠A≺ ∠B and ∠B≺ ∠C, then ∠A≺ ∠C.
If ∠A0 ∠B and ∠B0 ∠C, then ∠A0 ∠C.
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The start of the segment length argument involved a choice– the value of Φ(1)
defined a unit measure, but the choice of that point was arbitrary. With angles, the
situation is a little different. Rather than using an arbitrary angle as the basis for
measurement, we will use a right angle.

Definition 4.4. An angle is called a right angle if it is congruent to its supplement.

There are some issues of existence and uniqueness that we need to get out of the
way before we can dive into the construction of angle measure.

Theorem 4.4. Right angles exist.

Proof. Let ! be a line, and let P be a point which is not on !. In this case, label an
arbitrary point A on !. On the off chance that the two angles formed are congruent,
then of course the right angles have been created. Assuming this does not happen, it
is possible to create a ray ·AQ" duplicating the angle between PA and !, but lying on
the other side of !. Further, it is possible to choose P′ on this ray so that AP′ - AP.
Since P and P′ are on opposite sides of !, PP′ intersects ! at a point B. We have
constructed the following congruences:

AB = AB ∠BAP- ∠BAP′ AP- AP′

By the S ·A ·S triangle congruence axiom,*ABP-*ABP′, and therefore

∠ABP- ∠ABP′.

Since these two angles are supplementary, they are right angles. "#

Theorem 4.5. Any angle which is congruent to a right angle is itself a right angle.

Proof. Let ∠A be a right angle, and let ∠Ac be its complementary angle. Suppose
∠B is another angle, which is congruent to ∠A. Let ∠Bc be its complement. Since
complements of congruent angles are congruent,

∠Ac - ∠Bc.

Because angle congruence is transitive:

∠B- ∠A- ∠Ac - ∠Bc.

Since ∠B is congruent to its supplement, it is a right angle. "#

Theorem 4.6. All right angles are congruent to each other.

Proof. Let ∠ABC be a right angle, with supplementary angle ∠CBD. Let ∠A′B′C′ be
another angle with supplementary angle ∠C′B′D′. Suppose that ∠ABC and ∠A′B′C′
are not congruent. Then exactly one of the two is true:

∠ABC 0 ∠A′B′C′ or ∠A′B′C′ 0 ∠ABC.
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12 4 Continuity

Suppose the former. According to the Angle Construction Axiom, there is a ray
·BC"" on the same side of !AB" as C so that

∠ABC" - A′B′C′

and since ∠A′B′C′ is less than ∠ABC,

∠ABC" ≺ ∠ABC.

This means C" lies in the interior of ∠ABC. Furthermore C" cannot lie in the interior
of the supplementary angle ∠CBD, so

∠C"BD0 ∠CBD.

Combining all this (and using the fact that supplements of congruent angle are con-
gruent):

∠A′B′C′ - ∠ABC"

≺ ∠ABC - ∠CBD
≺ ∠C"BD- ∠C′B′D′

Since ∠A′B′C′ is smaller than its complement, it cannot be a right angle. The proof
for the other case, when ∠A′B′C′ 0 ∠ABC, is of course the same, with ≺ and 0
signs reversed. Therefore all right angles must be congruent. "#

Definition 4.5. An angle ∠A is called acute if it is smaller than a right angle.
An angle ∠A is called obtuse if it is larger than a right angle.

4.5 Angle Measure

Now we are in position to describe measurement of angles. For now, we will use
the (basically arbitrary, but well-established) degree measurement system. Later,
we will see that there advantages to the radian measurement system, and we will
switch to that system. Our starting point, in this case will be a right angle. In the
degree measurement system a right angle ∠A is said to measure 90 degrees. This is
written

(∠A) = 90◦.

In this book we will use the notation (∠A) to denote the measure of ∠A. It is im-
portant to distinguish between an angle and its measure, but the more traditional
notation m(∠A) often feels a bit cumbersome. The (∠A) notation is a compromise.
We will provide an outline of the construction of angle measure following the ap-
proach used for measuring segments, but the details will be left to the reader.

The end-to-end segment copying process was essential in the establishment of
distance. As much as possible we would like to imitate that process when working
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4.5 Angle Measure 13

with angles. Fundamental differences necessitate some changes though. Let ∠P0OP1
be an acute angle. According to the angle construction axiom, we may construct a
ray ·OP2" on the opposite side of !OP1" from P0 so that

∠P1OP2 - ∠P0OP1.

The combined angle ∠P0OP2 can and should be thought of as a doubling of the
initial angle. Suppose however, that the initial angle ∠P0OP1 is a right angle. In this
case, the two together will form a supplementary pair. In other words, P0, O, and
P2 will be points lying on a line and will not form a proper angle. The situation is
worse when the initial angle is obtuse: in this case the ray ·OP1" will not even lie
in the interior of the constructed angle ∠P0OP2. To avoid having to confront these
problems, we will stick to acute angles for the moment.

After doubling an angle, assuming the resulting angle is still acute, the process
can be continued. There is a ray ·OP3" on the other side of !OP2" from P0 so that

∠P2OP3 - ∠P2OP3.

The combined angle ∠P0OP3 ought to be thought of as a triple of the initial angle.
And so on. We will call the resulting angle ∠P0OPn an n-tuple of the original angle
∠P0OP1, and as long as the (n−1)-tuple is acute, the n-tuple can be formed.

Now that the process of making an n-tuple of an angle has been established, it
is back to the 90◦ right angle, which we label ∠P0OP90. Imagine performing the
n-tupling procedure on each angle ∠P0OP where P is a point on the segment P0P90.
For some of the points, the resulting angle will still be acute, whereas for others,
the resulting angle will be right or obtuse, or the procedure will terminate prema-
turely because a previous iteration was not acute. Hence, the points of P0P90 can be
arranged into two sets: S< consisting of the set of points for which the n-tupling pro-
cess results in an acute angle and S≥ consisting of the other points of P0P90. Points
of P0P90 which are quite close to P0 will be in S< while points of P0P90 which are
quite close to P90 will be in S≥. We may extend these two sets to the rest of the line
!P0P90":

Σ< = S< ∪ (·P0P90")op

Σ≥ = S≥ ∪ (·P90P0")op

It is clear that these two sets constitute the entire line !P0P90 ". Furthermore (al-
though it is not as clear) no point of one set lies between two of the other. Therefore,
by Dedekind’s axiom, there is a unique point between Σ< and Σ≥ which we denote
P90/n. We say that (

∠P0OP90/n
)

= 90/n◦

From this, the angle ∠P0OP90∗m/n may be formed– it is the m-tuple of ∠P0OP90/n.
In this manner, all rational angles may be formed.

Now suppose that x is some irrational number. Following Dedekind’s definition,
x is a cut of the rationals into a set R< and R≥. Define
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14 4 Continuity

S< =
{

Pm/n on P0P90

∣∣∣(∠P0OPm/n) < x
}

Let Σ< consist of all points of S<, together with all points which are between two
points of S<, together with the points on (·P0P90")op. Let Σ≥ be the set of all points
on !P0P90" which are not in S<. No points of S< lie between two of S≥ and vice
versa. By Dedekind’s axiom, there is a unique point Px between Σ< and Σ≥. Define

(∠P0OPx) = x◦

Finally, we point out that while this argument only holds for acute angles, note
that an obtuse angle ∠A can be decomposed into a right angle and an acute angle
and we may define its measure to be the sum of the measures of those two angles.
Furthermore, as with segments

∠A- ∠B ⇐⇒ (∠A) = (∠B)
∠A≺ ∠B ⇐⇒ (∠A) < (∠B)
∠A0 ∠B ⇐⇒ (∠A) > (∠B)

The Angle Addition Theorem also has an extremely useful measured version (whose
proof we will not include here).

Theorem 4.7. Angle Addition, Measured Version If D is in the interior of ∠ABC,
then

(∠ABD)+(∠BDC) = (∠ABC).

Exercises

4.1. Prove that the complements of congruent angles are congruent.

4.2. Prove that the supplement of an acute angle is obtuse and the supplement of an
obtuse angle is acute.

4.3. Prove the remaining segment comparison properties in Theorem 1.

4.4. Verify the properties of the n-copy stated in Lemma 1.

4.5. Prove the angle comparison properties listed in Theorem 3.

4.6. Prove the measured version of the Angle Addition Theorem.

4.7. A triangle is called a right triangle if one of its angles is a right angle. In that
case, the side opposite that right angle is called the hypotenuse of the right triangle.
The two sides adjacent to the right angle are called the legs of the right triangle.
Prove that if *ABC and *A′B′C′ are right triangles with congruent hypotenuses
and one pair of congruent legs, then *ABC - *A′B′C′. This result is called the
H ·L triangle congruence theorem.

4.8. Prove that the angle bisectors of the interior and exterior angle at a particular
vertex of a triangle (as shown) form a right angle.
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4.5 Angle Measure 15

4.9. To complete the verification that the Cartesian model is a valid model for Eu-
clidean geometry, show that it satisfies the two axioms of continuity by establishing
a correspondence between a Cartesian line and the real number R.

4.10. Consider a model in which the points are coordinate pairs (x,y) where x and y
are rational numbers, and where lines, incidence, order and congruence are defined
as in the Cartesian model. Explain why this is not a valid model for neutral geometry.
Can you give an explanation that does not rely on either of the axioms of continuity?
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Chapter 5
Neutral Geometry

Thus far we have studied the axioms of incidence, order, congruence, and continuity.
Euclidean geometry requires just one more axiom, an axiom of parallels. Histori-
cally, it was suspected that this final axiom might not be necessary– that it might be
derivable from the previous axioms. Ultimately, this turned out not to be case, but
a significant amount of effort was dedicated to attempting to prove this axiom, and
in the process, geometry without the parallel axiom was studied quite thoroughly.
This type of geometry, geometry which does not depend upon the parallel axiom,
is called neutral or absolute geometry. We will look at a few of the fundamental
theorems of neutral geometry in this chapter.

Definition 5.1. Exterior Angles. An exterior angle of a triangle is an angle supple-
mentary to one of the triangle’s interior angles.

Theorem 5.1. The Exterior Angle Theorem The measure of an exterior angle of
a triangle is greater than the measure of either of the nonadjacent interior angles.

Proof. Consider a triangle *ABC and a point D on ·AC " so that A ∗C ∗D. Then
∠ACD is an exterior angle of *ABC. We will show that this angle is greater than
the interior angle ∠B.

Construct a ray · AE " where E is the midpoint of BC. Label F on AE so that
A∗E ∗F and AE - EF . Note that ∠AEB and ∠FEC are vertical angles, and so are
congruent. This construction yields:

BE -CE ∠BEA- ∠CEF EA- EF.

By the S ·A ·S axiom,
∠B- ∠ECF.

Now because F and D are on the same side of BC, and F and B are on the same side
of CD, F must be in the interior of ∠BCD, and so

(∠ECF) < (∠BCD). "#
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2 5 Neutral Geometry

There are a couple stronger versions of this theorem. One says that the measure
of the exterior angle is greater than or equal to the sum of the nonadjacent interior
angles. This stronger version is also true in neutral geometry (and is an exercise).
The version that most students are familiar with is even stronger: it says that the
exterior angle is exactly equal to the sum of the nonadjacent interior angles. But
it must be cautioned that this version cannot be proved without the parallel axiom.
That is, it is a valid theorem in Euclidean geometry, but it is not a valid theorem in
neutral geometry.

Definition 5.2. Transversals. Given a set of lines, {!1,!2, . . . ,!n}, a transversal is a
line which intersects all of them.

Definition 5.3. Alternate and Adjacent Interior Angles. Let t be a transversal to
!1 and !2. Alternate interior angles are pairs of angles formed by !1, !2, and t, which
are between !1 and !2, and on opposite sides of t. Adjacent interior angles are pairs
of angles on the same side of t.

Theorem 5.2. The Alternate Interior Angle Theorem. Let !1 and !2 be two lines,
crossed by a transversal t. If the alternate interior angles formed are congruent,
then !1 and !2 are parallel.

Proof. Label A and B, the points of intersection of !1 and !2 with the transversal t.
Suppose !1 and !2 are not parallel, intersecting at a point P (P may be on either side
of t). Consider angles ∠1 and ∠2, the pair of congruent alternate interior angles. One
is interior to *ABP, and one is exterior (and they are nonadjacent). Since (∠1) =
(∠2), this violates the weak exterior angle theorem. "#

Students who have worked with Euclidean geometry are most likely familiar
with the converse of this theorem, that if lines are parallel then a crossing transversal
creates congruent alternate interior angles. But the converse is only true in Euclidean
geometry– it is not a valid theorem in neutral geometry. Hence, when working in
neutral geometry, you must be very careful to avoid the converse of this statement.

A really foundational result in neutral geometry is called the Saccheri-Legendre
Theorem. It gives an upper bound for the sum of the interior angles of a triangle.
Before attacking that theorem, we prove a pair of lemmas.

Lemma 5.1. The sum of measures of any two angles of a triangle is less than 180◦.

Proof. Label interior angles ∠1 and ∠2, and label ∠3, exterior to ∠2. Because they
are supplementary,

(∠2)+(∠3) = 180◦.

By the weak exterior angle theorem, (∠1) < (∠3) so

(∠1)+(∠2) < 180◦. "#

Definition 5.4. Angle sum. We define the angle sum s of a triangle to be the sum of
the measures of the three interior angles:

s(*ABC) = (∠A)+(∠B)+(∠C).
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5 Neutral Geometry 3

Lemma 5.2. Given *ABC, there exists another triangle with the same angle sum,
but with an angle which measures at most 1

2 (∠A).

Proof. As in the proof of the weak exterior angle theorem, construct the ray ·AD"
where D is the midpoint of BC. Then label E on ·AD" so that A∗D∗E and AD-DE.
For notational convenience, identify the angles 1-4:

∠1 = ∠DAC
∠2 = ∠DAB
∠3 = ∠DCE
∠4 = ∠DCA.

This establishes congruences

AD- ED ∠ADB- ∠EDC DB- DC

and so according to the S ·A · S theorem, ∠2 - ∠E and ∠3 - ∠B. The angle sums
of*ABC and*AEC are the same:

s(*ABC) = (∠A)+(∠B)+(∠4)
= (∠1)+(∠2)+(∠B)+(∠4)
= (∠1)+(∠E)+(∠3)+(∠4)
= s(*AEC).

Since (∠E)+(∠2) = (∠A), both of these angles cannot measure more than 1
2 (∠A).

"#

Theorem 5.3. The Saccheri-Legendre Theorem. The angle sum of a triangle is at
most 180◦.

Proof. Suppose there exists some triangle *ABC with an angle sum of (180+ x)◦,
where x > 0. By lemma 2 there exist triangles with the same angle sum:

*A1B1C1 with (∠A1)≤ 1
2 (∠A);

*A2B2C2 with (∠A2)≤ 1
2 (∠A1);

*A3B3C3 with (∠A3)≤ 1
2 (∠A2);

... and so on. For a large enough n, (∠An) < x. Therefore, in*AnBnCn,

(∠Bn)+(∠Cn) > 180◦,

violating Lemma 1. "#

Note that the Saccheri - Legendre Theorem implies that a triangles may have at
most one angle measuring greater than or equal to 90◦. A triangle is called obtuse
if one of its angles measures more than 90◦. A triangle is called right if one of its
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4 5 Neutral Geometry

angles measures exactly 90◦. A triangle is called acute if all three interior angles
measure less than 90◦.

Theorem 5.4. The Scalene Triangle Theorem. Consider two sides of a triangle,
and their opposite angles. The larger angle is opposite the longer side.

Proof. In *ABC, suppose that |AB| < |AC|. Locate the point B′ on · AB " so that
AB′ - AC. Since B is between A and B′,

(∠ACB) < (∠ACB′).

By the isosceles triangle theorem

(∠ACB′) = (∠AB′C).

Since ∠ABC is exterior to*BB′C, and ∠CB′B is a nonadjacent interior angle of that
triangle, by the Exterior Angle Theorem,

(∠AB′C) < (∠ABC).

Putting it together,
(∠ACB) < (∠ABC). "#

Note that in spite of the name, this theorem is not restricted to scalene triangles,
but works to compare unequal sides and angles in any triangle.

Knowing only two sides of a triangle, it is still possible to place upper and lower
bounds upon the length of the third side. The following fundamental result, the
Triangle Inequality, occurs is various guises throughout mathematics.

Theorem 5.5. The Triangle Inequality. For any triangle*ABC,

|AC| < |AB|+ |BC|

|AC| >
∣∣∣|AB|− |BC|

∣∣∣.

Proof. The first statement is clearly true unless AC is the longest side. Assuming
then that AC is the longest side, locate the point D on AC so that AB - AD. By the
isosceles triangle theorem, ∠ABD - ∠ADB. No two angles in a triangle can sum
to 180◦, and thus, (∠ADB) < 90◦. It follows that the supplementary angle ∠BDC
is obtuse, and as such, it must be the largest angle in *BCD. Using the scalene
triangle theorem just proved, BC is the longest side of that triangle. In particular,
|BC| > |DC|, and so

|AB|+ |BC| > |AD|+ |DC| = |AC|

The second statement can be proved with a similar argument. It is left as an
exercise. "#
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It should be noted that by specifying a triangle *ABC at the start, we are im-
plicitly stating that A, B, and C are not collinear. At times, though, it is convenient
to consider this case where all three points lie along a line as a sort of degenerate
triangle. The above inequalities are in fact equalities if and only if A, B, and C are
collinear.

Exercises

5.1. Prove a stronger version of the exterior angle theorem: The measure of an ex-
terior angle of a triangle is greater than the sum of measures of the two nonadjacent
interior angles.

5.2. Prove that if two lines are both perpendicular to the same line, they must be
parallel.

5.3. Spherical geometry is geometry on the surface of a sphere. The “lines” in this
geometry are great circles on the sphere. It is easy to see that the angle sum of a
triangle in this geometry exceeds 180◦. Since this is contrary to the Saccheri - Leg-
endre theorem, spherical geometry must not be a valid model of a neutral geometry.
Which neutral axioms do not hold in spherical geometry?

5.4. The converse of Euclid’s formulation of the axiom on parallels is a theorem in
neutral geometry, and can be stated as: if two lines crossed by a transversal t meet
on one side of t, then the sum of the measures of the adjacent interior angles on that
side of t is less than 180◦. Prove this.

5.5. Consider triangles *ABC and *A′B′C′, where B′ is on the segment AB and C′
is on the segment AC. Compare the angles sums of these two triangles, and prove
that

s(*ABC)≤ s(*AB′C′).

5.6. Prove that given any point P and line !, there are points on ! arbitrarily far away
from P.

5.7. if P1 ∗O∗P2 and Q1 and Q2 are two distinct points such that

∠P1OQ1 - ∠P2OQ2

then Q1 ∗O∗Q2.

5.8. Consider a line !, a point P not on !, and a point Q on !. Show that the length of
the segment PQ is minimized when Q is the foot of the perpendicular. This length
is called the distance from P to !.

5.9. Prove the second half of the triangle inequality. Namely, in any triangle*ABC,

|AC| >
∣∣∣|AB|− |BC|

∣∣∣.
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5.10. Another popular proof of the Isosceles Triangle Theorem. Suppose *ABC is
isosceles with AB - AC. Bisect ∠A and use the S ·A ·S congruence axiom to prove
the Isosceles Triangle Theorem. You will need to invoke the Crossbar Theorem in
your proof.

5.11. Consider two isosceles triangles with a common side:*ABC and*A′BC with

AB- AC and A′B- A′C

Prove that !AA′" is perpendicular to !BC".

5.12. Given a triangle*ABC, and a point C∗ between B and C. Prove that the angle
sum of*ABC cannot be greater than the angle sum of*ABC∗.

5.13. Prove the second statement in the Triangle Inequality.

5.14. Consider triangles*ABC and*A′B′C′ with

AB- A′B′ BC - B′C′ ∠C - ∠C′

(in other words, the given information is S · S ·A). Suppose further that *ABC and
*A′B′C′ are acute triangles. Show that*ABC -*A′B′C′.

5.15. Consider triangles*ABC and*A′B′C′ with

AB- A′B′ BC - B′C′ ∠C - ∠C′.

Suppose further that |AB| > |BC| (and therefore that |A′B′| > |B′C′|). Show that
*ABC -*A′B′C′. This is sometimes referred to as the S · s ·A triangle congruence
theorem.

5.16. The Saccheri-Legendre procedure requires at each step that the smaller of two
angles be chosen, one at the vertex that was just subdivided and another. Describe
the types of triangles for which the smaller angle is at the subdivided vertex and the
types of triangles for which the smaller angle is at the other vertex.

5.17. In the Saccheri-Legendre procedure, the lengths of the sides of the triangle
grow without bound. Show that in the Cartesian model the ratio of two of the sides
approaches the golden ratio (−1+

√
5)/2.
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Chapter 6
Polygons and Quadrilaterals

In the chapter on congruence, we looked at several theorems involving, in one form
or another, triangles. The triangle is the simplest of the polygons, but in this chapter
we will expand our discussion to polygons beyond the triangle. This chapter is di-
vided into two parts. The first part deals with polygons in general, while the second
part specializes on quadrilaterals.

Definition 6.1. Polygons. Given a finite set of ordered points {p1, p2, . . . , pn}, a
polygon is the collection of line segments between consecutive points

{p1 p2, p2 p3, . . . , pn−1 pn}

together with the segment connecting the last point to the first pn p0.

Note that a cyclic permutation of the points will leave the polygon unchanged,
as will a permutation which reverses the order of the points, but other re-orderings
will not. The points pi are called the vertices of the polygon, and the connecting line
segments are called the sides or edges of the polygon.

In general, the edges of a polygon may have numerous intersections. A polygon
is called simple if each edge only intersects the two adjacent edges (at the vertices).
While it is relatively easy to count the number of polygons on a set of n vertices, it
is not known how many possible simple polygons can be constructed on a configu-
ration of n vertices.

Theorem 6.1. Every simple polygon separates the rest of the plane into two con-
nected regions, an interior and an exterior.

Proof. This is in fact a special case of the celebrated Jordan curve theorem, which
states that every simple closed curve in the plane separates the plane into an interior
and an exterior. Although this seems like a fairly innocuous statement, the proof
of the Jordan curve theorem is notoriously nontrivial. There are, however, simpler
proofs in the case of polygons. We briefly describe the idea behind one such proof
from What is Mathematics? by Courant and Robbins.
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2 6 Polygons and Quadrilaterals

Let P be a simple polygon, and let p be a point not on that polygon. Let Rp
be a ray emanating from p. As long as Rp does not run exactly along an edge, it
will intersect the edges of P a finite number of times (perhaps none). Each such
intersection is a crossing of Rp into or out of P . Since P is contained in a bounded
region, we know that eventually Rp will be outside P . By counting intersections
we can trace back to figure out whether the ray began inside or outside of P . When
counting, we will need to be careful if Rp intersects at a vertex, so we attach the
following proviso: if Rp intersects P at a vertex, we will count that intersection

{
once if Rp separates the two neighboring edges;
twice if Rp does not separate them.

The number of intersections typically depends not just upon the point p, but also
the chosen direction of Rp. What does depend solely upon p, though, is whether
this number of intersections is odd or even, the “parity” of p. Points with odd parity
are classified as interior points; taken together they form the interior of P . Further-
more, by tracing just to one side of the edges of P , it is possible to lay out a path
of line segments connecting any two interior points so the interior is a connected
region. Similarly, points with even parity are classified as exterior points, and taken
all together they form a connected region, the exterior of P . "#

In this text we are primarily interested in simple polygons. Therefore, unless we
specify otherwise, when we refer to a polygon we mean a simple polygon.

Definition 6.2. Convex polygons. A polygon P is convex if, for any two points p
and q in the interior of P , the entire line segment pq is in the interior of P .

Theorem 6.2. Let P be a polygon. If the interior of P lies entirely on one side or
the other of the line formed by extending each edge of P , then P is convex.

Proof. Let p and q be two points in the interior of P . In accordance with the condi-
tions of the theorem, they must lie on the same side of each line formed by extending
the edges of P . By the Plane Separation Axiom, the segment pq cannot intersect
any of those lines. Therefore pq does not intersect any of the edges of P . This
means that all points of pq lie in the interior of P , and hence P is convex. "#

Definition 6.3. Types of Polygons. An equilateral polygon is one in which all sides
are congruent. A cyclic polygon is one in which all vertices are equidistant from
a fixed point (hence, all vertices lie on a circle, to be discussed later). A regular
polygon is one in which all sides are congruent and all angles are congruent.

Theorem 6.3. A polygon P which is both equilateral and cyclic is regular.

Proof. We need to show that the interior angles of P are all congruent. Let C be
the point which is equidistant from all points of P . Divide P into a set of triangles
by constructing segments from each vertex to C. For any of these triangles, we wish
to distinguish the angle at C, the central angle, from the other two angles in the
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triangle. Note that the two constructed sides of these triangles are congruent. By the
Isosceles Triangle Theorem, the two non-central angles are congruent. As well, by
the S ·S ·S triangle congruence theorem, all of these triangles are congruent to each
other. In particular, all non-central angles of all the triangles are congruent. Since
adjacent pairs of such angles comprise an interior angle of P , the interior angles of
P are congruent. "#

An n-gon is a polygon with n sides. For small n, it is common to refer to these
polygons by their traditional monikers:

No. of sides Polygon name
3 triangle
4 quadrilateral
5 pentagon
6 hexagon
7 heptagon
8 octagon
9 nonagon
10 decagon

For the remainder of this chapter, we will focus our attention on quadrilaterals.
There is a sub-classification of the different types of quadrilaterals.

Quadrilateral A quadrilateral with
trapezoid a pair of parallel sides
parallelogram two pairs of parallel sides
rhombus two pairs of parallel sides,

all four of which are congruent
rectangle four right angles
square four right angles

and four congruent sides

Although these are all familiar objects to elementary school students, we will
see in the next chapter that it is not possible to guarantee that rectangles (and hence
squares) exist in neutral geometry. It is possible to form a quadrilateral with three
right angles, and in Euclidean geometry that means the fourth also must be a right
angle. But in non-Euclidean geometry, that fourth angle cannot be a right angle.

As with congruence of triangles, we say that two polygons are congruent if all
their corresponding sides and angles are congruent. As with triangles, there are a
few congruence theorems that make it a little easier to determine if two polygons are
congruent. The most important of these is the S·A·S·A·S Quadrilateral Congruence
Theorem.

Theorem 6.4. S·A·S·A·S Quadrilateral Congruence. Let ABCD and A′B′C′D′ be
quadrilaterals and suppose that the following congruences of sides and angles hold:
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AB- A′B′ BC - B′C′ CD-C′D′

∠B- ∠B′ ∠C - ∠C′.

Then ABCD- A′B′C′D′.

Proof. We need to show that ∠A- ∠A′, AD- A′D′, and ∠D- ∠D′. We are given

AB- A′B′ ∠B- ∠B′ BC - B′C′

Therefore, by the S ·A ·S triangle congruence theorem,*ABC -*A′B′C′ and so

AC - A′C′ ∠ACB- ∠A′C′B′ ∠BAC - ∠B′A′C′

By angle subtraction then, ∠ACD- ∠A′C′D′. We then have

AC - A′C′ ∠ACD- ∠A′C′D′ CD-C′D′

Again using the S ·A ·S triangle congruence theorem,

AD- A′D′ ∠DAC - ∠D′A′C′ ∠D- ∠D′

Angle addition gives the final required congruence:

(∠A) = (∠BAC)+(∠CAD)
= (∠B′A′C′)+(∠C′A′D′)
= (∠A′) "#

The Italian geometer Girolamo Saccheri was aware that rectangles existed only in
Euclidean geometry. Because of this, he began studying certain types of rectangle-
like quadrilaterals in neutral geometry. A Saccheri quadrilateral PQRS is con-
structed as follows: on a segment PQ extend congruent perpendicular segments
from P and Q to points S and R respectively. The sides of a Saccheri quadrilat-
eral are named: PQ is the base, PS and QR are the legs, and RS is the summit. The
two angles ∠R and ∠S are called the summit angles. In Euclidean geometry, a Sac-
cheri quadrilateral is a rectangle. In neutral geometry, though, it is not possible to
prove that the summit angles are in fact right angles. There are however, a few rel-
atively simple results that we can prove, and these provide yet more insight into the
world of neutral geometry and how a non-Euclidean geometry might differ from a
Euclidean one.

Theorem 6.5. The summit angles of a Saccheri quadrilateral are congruent.

Proof. This proof uses the same idea of internal symmetry as the proof of the Isosce-
les Triangle Theorem. Observe that

SP- RQ PQ- QP QR- PS

and that
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∠P- ∠Q ∠Q- ∠P

Therefore, by the S ·A · S ·A · S quadrilateral congruence theorem, RPQS - SQPR,
and so ∠R- ∠S. "#

Definition 6.4. In a Saccheri quadrilateral, the line segment joining the midpoints
of the summit and base is called the altitude.

Theorem 6.6. The altitude is perpendicular to both the base and the summit.

Proof. Let PQRS be a Saccheri quadrilateral with base PQ and summit RS. Let M
and N be the midpoints of the base and summit, respectively. By definition, the legs
PS and QR are congruent, and ∠P and ∠Q are both congruent since they are both
right angles. Since N is the midpoint, SN - NR, and by the previous theorem, the
summit angles ∠S and ∠R are congruent. Therefore, by the S ·A ·S ·A ·S quadrilateral
congruence theorem, PSNM - QRNM. Since ∠PMN and ∠QMN are congruent
supplementary angles, they must be right. Hence the altitude is perpendicular to the
base. Similarly, ∠SNM and ∠RNM are congruent and supplementary, so the altitude
is perpendicular to the summit. "#

Theorem 6.7. The summit angles cannot be obtuse.

Proof. Let PQRS be a Saccheri quadrilateral with summit angles ∠R and ∠S. If
these summit angles were obtuse, then the angle sum of the quadrilateral would
exceed 360◦. That would mean that at least one of the triangles *PQR or *PSR
would have to have an angle measure exceeding 180◦, in violation of the Saccheri -
Legendre theorem. "#

Theorem 6.8. The base cannot be longer than the summit.

Proof. Suppose PQRS is a Saccheri quadrilateral which has a longer base PQ than
summit RS. Let MN be the altitude of this quadrilateral, with M on the base and N
on the summit. Locate the point T on the ray

−→
NR so that NT -MQ. Note that MQ

is longer than NR, so T will lie past R on this ray. Therefore,

(∠MQT ) > (∠MQR).

Since ∠MQR is a right angle, that makes ∠MQT obtuse.
Now consider the quadrilateral T NMQ: because MN is an altitude of PQRS, ∠M

and ∠N are right angles. By construction NT -MQ. This means that T NMQ is a
Saccheri quadrilateral. But that makes ∠MQT a summit angle, and as such, it cannot
be obtuse. "#

Exercises

6.1. Prove that there is only one simple polygon with vertices on a given convex set
of points.
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6.2. A diagonal of a polygon is a line segment connecting two of its nonadjacent
vertices. How many diagonals are there in a convex n-sided polygon (as a function
of n)?

6.3. Consider a convex quadrilateral ABCD in which AB - CB and AD - CD (a
“kite”). Show that the diagonals of ABCD intersect each other at right angles.

6.4. What is the maximum angle sum of a convex n-gon (as a function of n)?

6.5. What is the maximum measure of an interior angle of a regular n-gon?

6.6. Prove the A ·S ·A ·S ·A quadrilateral congruence theorem.

6.7. Prove the S ·A ·S ·S ·S quadrilateral congruence theorem.

6.8. Prove the S ·A ·S ·A ·A quadrilateral congruence theorem.

6.9. Sketch an example of a pair of quadrilaterals in Cartesian model with equivalent
S ·A ·A ·A ·A that are not congruent.

6.10. A Lambert quadrilateral is a quadrilateral with three right angles. Prove that,
in neutral geometry, the fourth angle in a Lambert quarilateral is acute.

6.11. Let ABCD and ABEF be Lambert quadrilaterals with right angles at A, B, C,
and E (so the two quadrilaterals share a side). Suppose further that BC - BE. Show
that CDFE is a Saccheri quadrilateral.

6.12. Prove that the diagonals of a Saccheri quadrilateral are congruent.

6.13. Show that the fourth angle in a Lambert quadrilateral (the non-right one) can-
not be obtuse.

6.14. Let ABCD be a quadrilateral with ∠A - ∠B = 90◦ and ∠C - ∠D. Prove that
ABCD is a Saccheri quadrilateral.

6.15. The defect of a triangle is the measure of how much its angle sum falls short
of 180◦. In other words,

d(*ABC) = 180◦ − (∠A)− (∠B)− (∠C).

The defect of a convex quadrilateral is the measure of how far its angle sum falls
short of 360◦,

d(ABCD) = 360◦ − (∠A)− (∠B)− (∠C)− (∠D).

A diagonal of the quadrilateral divides it into two triangles. Show that the sum of
the defects of the two triangles is equal to the defect of the quadrilateral. The two
diagonals of a quadrilateral divide it into four triangles. Show that the sum of the
defects of the four triangles is equal to the defect of the quadrilateral.
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Chapter 7
The Parallel Axiom

In addition to all the axioms of neutral geometry, one final axiom is required to fully
develop Euclidean geometry. This is an axiom about the state of parallel lines. There
are several acceptable variants of this axiom, but for our starting point, we will use
the variant known as Playfair’s axiom.

Playfair’s axiom
Given a line ! and a point P not on !, there is exactly one line through P parallel to !.

Euclid’s original parallel axiom is not quite as concise, and it is not clear why
he chose this complicated formulation. In any case, the seeming complexity of this
statement is a large part of the reason mathematicians were drawn to try to prove it
as a theorem. It states

Theorem 7.1. Euclid’s Fifth Postulate If lines !1 and !2 are crossed by transversal
t, and the sum of adjacent interior angles on one side of t measure less than 180◦,
then !1 and !2 intersect on that side of t.

Proof. Begin by recreating the conditions in which Euclid’s Parallel Postulate ap-
plies. That is, let !1 and !2 be two lines crossed by transversal t at points P1 and P2,
so that, on one side of t, the adjacent interior angles sum to less than 180◦. Label
these adjacent interior angles ∠1 and ∠2, and their supplements ∠3 and ∠4.

Note that ∠1 and ∠3 are alternate interior angles, but they are not congruent.
There is, however, another line through P2 which does form an angle congruent
to ∠3 (because of the Angle Construction Postulate), and by the Alternate Interior
Angle theorem, this line must be parallel to !1. If Playfair’s Postulate is true, it must
be the only parallel. Hence !1 and !2 intersect.

Having determined that !1 and !2 do intersect, it only remains to decide upon
which side of t they do so. Suppose that they intersect at a point Q on the side
of ∠3 and ∠4. This creates a triangle, *P1P2Q, with two interior angles, ∠3 and
∠4, summing to more than 180◦. Since this is a violation of the Saccheri-Legendre
theorem, !1 and !2 must not intersect on this side, but rather on the side of ∠1 and
∠2. "#
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Recall that the Alternate Interior Angle theorem is a theorem of neutral geometry.
It states that if two lines are crossed by a transversal, and the alternate interior angles
formed by that crossing are congruent, then the two lines are parallel. We stated at
the time that the converse cannot be proved using the axioms of neutral geometry.
Now with the addition of Playfair’s Axiom, we can.

Theorem 7.2. If !1 and !2 are parallel lines crossed by transversal t, then pairs of
alternate interior angles are congruent.

Proof. We will use the Euclid’s Fifth Postulate to prove this result. Consider two
parallel lines crossed by a transversal. Label adjacent interior angles: ∠1 and ∠2,
and ∠3 and ∠4, so that ∠1 and ∠4 are supplementary. From the two pairs of sup-
plementary angles: {

(∠1)+(∠4) = 180◦

(∠2)+(∠3) = 180◦

Adding these two equations together yields:

(∠1)+(∠2)+(∠3)+(∠4) = 360◦.

Now, since !1 and !2 are parallel, they do not meet on either side of t. Thus, on
neither side may the sum of adjacent interior angles be less than 180◦:

{
(∠1)+(∠2)≥ 180◦

(∠3)+(∠4)≥ 180◦

In order for the angles to satisfy the previous equation, though, these must in fact be
equalities: {

(∠1)+(∠2) = 180◦

(∠3)+(∠4) = 180◦

Combining the first system of equations with the last, we see that (∠1) = (∠3) and
(∠2) = (∠4). In other words, the alternate interior angles are congruent. "#

In neutral geometry it cannot be proved that it is possible to construct a quadrilat-
eral with four right angles (a rectangle). In fact, we will see that in non-Euclidean ge-
ometry rectangles do not exist. With the addition of the parallel axiom here, though,
rectangles with side lengths of arbitrary lengths can now be constructed.

Theorem 7.3. There are rectangles of any size. That is, given any two positive real
numbers b and h, there is a rectangle with adjacent sides of length b and h.

Proof. We will construct a rectangle with a base measuring b and height measuring
h, where b and h are arbitrary positive real numbers. To begin, pick a point A on a
line !1. Mark a point B which is a distance b from A.

Erect lines t1 and t2 through these points and perpendicular to !1. Since both t1
and t2 are perpendicular to !1, they are parallel to each other. Mark two points on
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the same side of !1: C on t1 and D on t2 so that |AC| = |BD| = h. The constructed
quadrilateral ABDC is a Saccheri quadrilateral, and hence its summit angles ∠C and
∠D are congruent. By the converse of the Alternate Interior Angle Theorem, ∠C is
congruent to the supplement of ∠D. Hence ∠D is congruent to its own supplement.
By definition ∠D (and therefore ∠C) is a right angle. All four angles of ABDC are
right angles, and so ABDC is a rectangle. "#

The Saccheri-Legendre theorem guarantees that the measures of the three angles
of a triangle sum to at most 180◦. From the parallel axiom it may be proved that the
sum is exactly 180◦.

Theorem 7.4. The angle sum of a triangle is 180◦.

Proof. The argument has two parts, dealing first with the special case of right trian-
gles, and then moving to the general case.
Part 1. Consider*ABC where ∠B is a right angle. We can then construct a rectangle
with sides AB and BC. Let D be the fourth vertex of that rectangle. Now look at some
angle sums:

s(*ABC)+ s(*ADC) = s(ABCD) = 360◦.

By the Saccheri-Legendre theorem, neither *ABC nor *ADC may have an angle
sum exceeding π . Thus, they both must have an angle sum of exactly 180◦.
Part 2. The basic idea here is to break a non-right triangle down into a couple of
right triangles and then use the previous result. Suppose that AC is the longest side
of*ABC. Draw the perpendicular line through B to this side, dividing ∠B into two
angles, ∠1 and ∠2. Label the foot of this perpendicular as D. Note that both*ADB
and*CDB are right triangles and consider their angle sum:

360◦ = s(*ABD)+ s(*CDB)
= (∠A)+(∠1)+90◦+(∠C)+(∠2)+90◦

= (∠A)+(∠B)+(∠C)+180◦

= s(*ABC)+180◦

Therefore s(ABC) = 180◦. "#

In each step along this path of theorems, we have used the previous theorem to
define the next one. We will now close this chain, looping our logical progression of
statements back to the starting point. This means that all the statements in the chain
are logically equivalent formulations of the parallel axiom.

Theorem 7.5. If the angle sum of a triangle is 180◦, then Playfair’s Axiom must be
true.

Proof. Let P be a point not on line !. First construct the perpendicular line t to !
through P, labeling the foot of the perpendicular Q. Then construct the perpendicular
line through P to that, !‖. It is parallel to ! (by the Alternate Interior Angle Theorem).

Let !" be any line through P other than !‖. To establish Playfair’s axiom, we need
to show that it intersects !. Consider the two rays emanating from P along the line
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!. One of them must make an acute angle with PQ. For this proof we will focus our
attention on that side of t, and label that ray r. We now create a sequence of isosceles
triangles *PQiQi+1 with PQi - QiQi+1, and using the fact that the angle sum of a
triangle is 180◦, work out each interior angle as shown:

Note that
(∠Qn−1PQn) = (90/2n)◦.

Taken together, all these triangles form a large right triangle, *PQQn and in this
triangle,

(∠P) =
n

∑
i=1

90◦

2i .

These are the first terms in a geometric series which may be evaluated as:

∞

∑
i=1

90◦

2i =
90◦

2
·

∞

∑
i=0

1
2i = 45◦ · 1

1− 1
2

= 90◦

As n approaches infinity, the sum approaches 90◦. Therefore ∠P in the right triangle
*PQQn can be made arbitrarily close to a right angle by choosing a large enough
value of n. This means that there is some value of n, beyond which the ray r will
be interior to ∠QPQn. By the Crossbar Theorem, then, r intersects ! somewhere
between Q and Qn. "#

Exercises

7.1. Show that parallelism is transitive in Euclidean geometry. That is, show that if
!1 ‖ !2 and !2 ‖ !3, then !1 ‖ !3.

7.2. Let t be a transversal of a set of n parallel lines. List the parallel lines !1, !2,
. . . , !n and their points of intersection p1, p2, . . . , pn so that pi lies on !i and so that

p1 ∗ p2 ∗ p3 ∗ · · ·∗ pn.

Let t ′ be another transversal, and for each i, let qi be the intersection of t ′ and !i.
Show that

q1 ∗q2 ∗q3 ∗ · · ·∗qn.

This means that in Euclidean geometry we can put parallel lines in order.

7.3. Show that if the converse of the Alternate Interior Angle Theorem holds, then
there exist non-congruent triangles*ABC and*A′B′C′ with ∠A-∠A′, ∠B-∠B′,
and ∠C - ∠C′.

7.4. Prove directly that the converse of the Alternate Interior Angle Theorem implies
that the angle sum of a triangle is 180◦.

7.5. Let ! be a line, and P a point not on !. Prove that if there are two lines through
P parallel to ! (in other words, if Playfair’s postulate does not hold), then there are
infinitely many.
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7.6. Show that if the converse of the Alternate Interior Angle Theorem is true, then
parallel lines are everywhere equidistant. That is, suppose that lines !1 and !2 are
parallel, P is a point on !1, and Q is the foot of the perpendicular line to !2 through
P. Then the value |PQ| is independent of the choice of of P.

7.7. Prove that if parallel lines are equidistant (as defined in the previous problem),
then rectangles exist.

7.8. Prove that a cyclic parallelogram is a rectangle.

7.9. Let ABCD be a parallelogram. Prove that opposite angles are congruent– that
is, ∠A- ∠C and ∠B- ∠D.

7.10. Show that opposite angles of a rhombus are congruent.

7.11. Let ABCD be a parallelogram. Show that ABCD is a rectangle if AC - BD.
Note: carpenters use this theorem to ensure that their angles are “true”.

7.12. Let ABCD be a convex quadrilateral. Prove that the diagonals of a ABCD bisect
one another if and only if ABCD is a parallelogram.

7.13. Prove that opposite sides of a parallelogram are congruent. Is it true that if
opposite sides of a quadrilateral are congruent then the quadrilateral must be a par-
allelogram? What if the opposite angles of a quadrilateral are congruent?

7.14. Show that the angle sum of a convex quadrilateral is 360◦.

7.15. Suppose that the diagonals of a quadrilateral ABCD intersect one another at a
point P and that

AP- BP-CP- DP.

Prove that ABCD is a rectangle.

7.16. Suppose that the diagonals of a convex quadrilateral ABCD bisect one another
at right angles. Prove that ABCD must be a rhombus.

7.17. Consider a triangle *ABC and three points A′, B′ and C′. Prove that if AA′,
BB′ and CC′ are all congruent and parallel to one another, then*ABC -*A′B′C′.

7.18. Verify that the Cartesian model (developed in the exercises in chapters 2, 3,
and 4) satisfies Playfair’s Axioms.
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Chapter 8
Similarity

In neutral geometry, the idea of congruence of polygons is a useful and intuitive
equivalence relation. In this chapter, we will look at a more general equivalence
relation, that of similarity. Unlike congruence, though, similarity only “works” in
Euclidean geometry. In this chapter, we will develop the basics of similar polygons
in two parts. The first part is dedicated to the idea of parallel projection. The main
goal is to show that a parallel projection scales all segment lengths by a constant
factor, but the methods employed are a little technical. Readers who are not inter-
ested in those technicalities might want to push on quickly to the second section, in
which we develop the triangle similarity theorems.

Definition 8.1. Similarity of polygons. Two polygons PA = A1A2 . . .An and PB =
B1B2 . . .Bn are similar, written

PA ∼ PB,

if two sets of conditions are met. First, corresponding angles must be congruent:

∠Ai - ∠Bi 1≤ i≤ n.

Second, all corresponding side lengths must differ by a single scaling constant; that
is, there must be a constant k such that

|AiAi+1| = k|BiBi+1| 1≤ i≤ n−1
|AnA0| = k|BnB0|

From this definition, it is easy to see that similarity of polygons is an equiva-
lence relation. That is, it is a reflexive, symmetric, transitive relationship between
polygons. Congruence is a special case of similarity, where the scaling constant k is
1.
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8.1 Parallel Projection

An underlying mechanism in the study of similarity is the idea of parallel projection,
and it is the necessary next step. It should be noted that parallel projection is only
a well-defined operation if there is a unique parallel to a line through a point. For
this reason, parallel projection is very much a Euclidean construction. As the name
suggests, parallel projection projects points from one line onto another and it does
so via a set of parallel lines.

Definition 8.2. Parallel Projection. Let Ai be a set of points on the line !α and
let Bi be a set of points on the line !β . If the transversals ti connecting Ai to Bi are
parallel to each other, then we say that the Bi are parallel projections of the points
Ai onto the line !β .

Now how does parallel projection interact with the previously developed terms
incidence, order, and congruence? The first question is easy since parallel projection
associates point on one line with points on another line. The other two are a little
more complicated though. We turn first to congruence.

Theorem 8.1. Let a0, a1, A0 and A1 be points on the line !α with

|a0a1| = |A0A1|.

Let b0, b1, B0, and B1 be their parallel projections onto line !β . Then

|b0b1| = |B0B1|.

In other words, parallel projection preserves congruence.

Proof. We begin by labeling some lines and points. Let t be the transversal con-
necting a0 and b0. Let T be the transversal connecting A0 and B0. The lines which
pass through b1 and B1 and are parallel to !α intersect t and T at points p and P,
respectively.

The constructed quadrilaterals a0a1b0 p and A0A1B0P are parallelograms. There-
fore, opposite sides are congruent (exercise 7.13 in the quadrilaterals section), and
so

|b1 p| = |a0a1| = |A0A1| = |B1P|.

In those same parallelograms, opposite angles are also congruent; this, together with
the converse of the Alternate Interior Angle Theorem yields:

∠a0 pb1 - ∠a0a1b1 - ∠A0A1B1 - ∠A0PB1.

The supplements to ∠a0 pb1 and ∠A0PB1 then, ∠b0 pb1 and ∠B0PB1, must also
be congruent. Another application of the converse of the Alternate Interior Angle
Theorem yields one more congruence:

∠pb0b1 - ∠PB0B1.
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f is monotonic.

Comparing f(0) and f(1), we see that f is increasing.
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By the A ·A ·S triangle congruence theorem,

*b0 pb1 -*B0PB1

and so |b0b1| = |B0B1|. "#

Theorem 8.2. Let a1, a2, and a3 be three points on !α with a1 ∗a2 ∗a3. Let b1, b2, b3
be their parallel projections onto line !β . Then b1 ∗b2 ∗b3. In other words, parallel
projection preserves order.

Proof. Suppose that b2 is not between b1 and b3. Without loss of generality, we may
assume that b1 ∗b3 ∗b2. Then

|b1b3|+ |b3b2| = |b1b2|,

and so |b1b2| > |b1b3|. But |a1a2| < |a1a3|. Since parallel projection preserves con-
gruence, this is a contradiction. "#

Here is where things start to get a little technical. What we would like to show is
that when segments of one line are parallel projected onto another, their lengths are
all scaled by the same amount. Recall from the chapter on continuity that we can
associate the points on a geometric line with the points on the real number line R.
This means that a parallel projection from one line to another describes a function
f : R→ R. It is this function which we will study. The details are next.

Let a0 and b0 be two distinct points, the first on line !α and the second on line
!β . Let t be the transversal to !α and !β which passes through a0 and b0. Any other
point on !α has a unique transversal passing through it which is parallel to t (be-
cause of Playfair’s Axiom). This one transversal intersects !β at exactly one point.
In this way, we can establish a correspondence F between the points of !α and those
of !β . Let a1 be one of the two points on !α which are a distance of one away from
a0 (the choice is arbitrary), and let b1 = F(a1). In the section on continuity, we de-
fined distance by constructing a correspondence between the points on a ray and the
positive real numbers. Here we return to that idea. Every positive real number x+
corresponds to a unique point ax+ on ·a0a1" such that |a0ax+ |= x+. This correspon-
dence can be extended to the entire real line: any negative number x− corresponds to
a unique point ax− on (·a0a1")op so that |a0ax− |=−x−. Similarly, each real number
y corresponds to a unique point by on !β . Let F be the correspondence between the
points of !α and !β defined by the parallel projection which maps a0 to b0. This map
generates a function f : R→ R between the indices of the points on those lines:

f (x) = y ⇐⇒ F(ax) = by.

The function f inherits some important properties from F .

Theorem 8.3. f is an odd function. That is, f (−x) =− f (x).

Proof. Note that a0ax - a0a−x. Since parallel projection preserves congruence,
b0b f (x) - b0b f (−x). There are only two points which are a distance of f (x) from
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b0, namely b f (x) and b− f (x). But a−x += ax and parallel projection is a one-to-one
mapping, so b f (−x) += b f (x). The only remaining possibility is that b f (−x) = b− f (x)
and so

f (−x) =− f (x). "#

Theorem 8.4. f is increasing.

Proof. Since f is odd, it is sufficient to show that it is increasing for positive num-
bers (it would be a good exercise to verify this). So suppose that 0 < x < y. In this
case,

a0 ∗ax ∗ay

and since parallel projection preserves order,

b0 ∗b f (x) ∗b f (y).

Therefore, either 0 < f (x) < f (y) or 0 > f (x) > f (y), but in any case f is a mono-
tonic function. Furthermore, f (0) = 0 while f (1) = |b0b f (1)| is a positive number.
Hence f must be increasing. "#

Theorem 8.5. f (x+ y) = f (x)+ f (y)

Proof. Let x and y be real numbers and let z = −x. Returning for a moment to the
geometric line, note that ayaz - a0ay−z. Since parallel projection maps congruent
segments to congruent segments, the parallel projections are congruent

b f (y)b f (z) - b f (0)b f (y−z).

Therefore the distances between endpoints of these segments is the same

| f (y)− f (z)| = | f (y− z)− f (0)|.

There are two cases to consider, depending upon whether y ≥ z or y < z. If y ≥ z,
then since f is increasing f (y)≥ f (z) and f (y− z)≥ f (0) = 0, so

f (y)− f (z) = f (y− z).

Plugging in z =−x gives

f (y)− f (−x) = f (y− (−x))

so, because f is an odd function,

f (y)+ f (x) = f (y+ x).

If, on the other hand, y < z, then since f is increasing

− f (y)+ f (z) =− f (y− z)

Again plugging in z =−x gives
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Parallel projection scales distances by a constant factor.

Ratios of corresponding sides are equal (two versions).
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− f (y)+ f (−x) =− f (y+ x)

and because f is odd
f (y)+ f (x) = f (y+ x). "#

With these properties, we can now be very specific about the form of the function
f . The proof of this next result has a bit of a real analysis flavor to it.

Theorem 8.6. f = kx, for some positive real number k.

Proof. Let k = f (1). For any positive integer n, then

f (n) = f (1+1+ · · ·+1)
= f (1)+ f (1)+ · · ·+ f (1)
= f (1) ·n
= k ·n.

Now suppose that there is some real number x such that f (x) += k ·x; that is, | f (x)−
kx| > ε for some ε > 0. For a sufficiently large integer N, N · ε > k. Let x = N · x.
Then

f (x) = f (N · x)
= f (x)+ f (x)+ · · ·+ f (x)
= N · f (x).

and so

| f (x)− k · x| = |N · f (x)− k ·Nx|
= N · | f (x)− kx|
= N · ε
> k.

Let n be the greatest integer which is less than x, so that n < x < n+1. Because f is
increasing,

f (n) < f (x) < f (n+1)
k ·n < f (x) < k · (n+1).

Now compare this to
k ·n < k · x < k · (n+1).

Since the interval [k ·n,k(n+1)] has length k and contains both f (x) and kx, | f (x)−
kx| < k, contradicting the previous calculation. "#

Return now to the parallel projection F : !α → !β , with associated real valued
function f (x) = kx. A segment axay has length |x− y|, while its image bkxbky has
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length |kx−ky|= k|x−y|. In other words, parallel projection scales segment lengths
by a constant amount. We state this more precisely in the following main theorem
of parallel projection.

Theorem 8.7. Let a0, a1, A0 and A1 be points on the line !α and let b0, b1, B0 and
B1 be parallel projections of each onto a line !β . Let k be the (positive) number so
that

|A0A1| = k|a0a1|.

Then
|B0B1| = k|b0b1|.

Simple algebra reveals some useful equivalences of ratios. With points defined
as above, solving for k gives:

|a0a1|
|A0A1|

=
|b0b1|
|B0B1|

.

Cross multiplication then reveals

|a0a1|
|b0b1|

=
|A0A1|
|B0B1|

.

8.2 Triangle Similarity Theorems

We next examine a few of the triangle similarity theorems. In basic structure, these
resemble the triangle congruence theorems proved earlier.

Lemma 8.1. Given a triangle *ABC, and points B′ and C′ on · AB " and · AC "
respectively, with

|AB′| = k|AB| & |AC′| = k|AC|

for some constant k. Then B′C′ ‖ BC.

Proof. Extend a line from B′ which is parallel to BC and label its point of intersec-
tion with !AC" as C". Then A, C, and C" are the parallel projections of A, B and
B′, and so

|AC"|- k|AC|

Since C" and C′ are the same distance from the point A along the same ray ·AC",
C" = C′. Therefore, B′C′ and BC are parallel. "#

Lemma 8.2. Given a triangle *ABC and points B′ and C′ on · AB " and · AC "
respectively, suppose that BC - B′C′. Then

*ABC ∼*AB′C′.
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use the alternate interior angle theorem.
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8.2 Triangle Similarity Theorems 7

Proof. We will consider the case in which A ∗B ∗B′ and therefore A ∗C ∗C′. The
other case is similar. First note, by the converse of the Alternate Interior Angle
Theorem, that ∠B - ∠B′ and ∠C - ∠C′. Therefore, the two triangles have corre-
sponding congruent angles. Since A, C and C′ are parallel projections of A, B and B′
from !AB" onto !AC", there is a constant k such that

|AB|- k|AB′| & |AC|- k|AC′|.

It remains to compare the third pair of sides. To do this, extend a line from C parallel
to AB, and let A" be the intersection with B′C′. Segments BC and B′A" are opposite
sides of a parallelogram, so they are congruent. Furthermore, this establishes another
parallel projection, this time from !AC" to !B′C′" as shown. Then

|BC|
|B′C′| =

|B′A"|
|B′C′| =

|AC|
|AC′| = k

so
|BC| = k|B′C′|. "#

Theorem 8.8. S·A·S Similarity. Consider two triangles*ABC and*A′B′C′ with

|AB| = k|A′B′|
|AC| = k|A′C′|

and ∠A- ∠A′. Then*ABC and*A′B′C′ are similar.

Proof. Locate B" and C" on the rays · AB " and · AC " so that AB" - A′B′ and
AC" - A′C′. By the S ·A ·S triangle congruence theorem,

*AB"C" -*A′B′C′.

By lemma 1, the lines B"C" and BC are parallel. Therefore, by lemma 2, *ABC is
similar to*AB"C", and so

*ABC ∼*A′B′C′. "#

Theorem 8.9. A·A·A Similarity. Two triangles,*ABC and*A′B′C′ with

∠A- ∠A′ & ∠B- ∠B′ & ∠C - ∠C′

are similar.

Proof. Locate B" on ·AB" and C" on ·AC" so that

AB" - A′B′

AC" - A′C′

Using the S ·A ·S triangle congruence theorem,*AB"C" and*A′B′C′ are congruent,
so
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∠AB"C" - ∠A′B′C′ - ∠ABC.

By the alternate interior angle theorem, then, B"C" is parallel to BC. Using Lemma
2, then,

*AB"C" ∼*ABC,

and hence
*A′B′C′ ∼ *ABC. "#

Theorem 8.10. Triangles*ABC and*A′B′C′ with

|A′B′| = k|AB| & |B′C′| = k|BC| & |A′C′| = k|AC|

are similar.

The proof of this result is left as an exercise. We end this chapter with, at long
last, the Pythagorean Theorem.

Theorem 8.11. The Pythagorean Theorem. Let *ABC be a right triangle whose
right angle is at the vertex C. Mark the lengths of the sides as a = |BC|, b = |AC|,
c = |AB|. Then

c2 = a2 +b2.

Proof. There are many proofs of this celebrated theorem. This one relies on a divi-
sion of the triangle into two similar triangles. Let D be the foot of the perpendicular
to AB through C. The point D divides AB into two segments, AD and DB. Let

c1 = |AD| c2 = |BD| d = |CD|

(and note that c = c1 + c2). Now *ADB shares ∠A with *ABC, and both triangles
have a right angle. The three angles of both triangles must add up to 180◦, so the
remaining angles ∠ACD and ∠B must be congruent. By A ·A ·A triangle similarity,
then,*ADC ∼*ACB. For the same reason,*CBD∼*ACB.

These triangle similarities set up several equivalent ratios of corresponding sides.
In particular, the two that we need are

a
c

=
c2

a
=⇒ a2 = c · c2 &

b
c

=
c1

b
=⇒ b2 = c · c1.

Adding these two equations together

a2 +b2 = c · c2 + c · c1 = c(c2 + c1) = c2. "#

Exercises

8.1. Prove the S ·S ·S triangle similarity theorem.

8.2. Prove the A ·S ·A and A ·A ·S triangle similarity theorems.

8.3. Show that if*ABC -*ABC, then*ABC ∼*ABC.
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8.4. Prove the A ·S ·A ·S ·A similarity theorem.

8.5. Prove the S ·A ·S ·A ·S similarity theorem.

8.6. For a triangle *ABC, let !A be the line through A and parallel to BC, let !B be
the line through B and parallel to AC and let !C be the line through C and parallel to
AB. Show that !A, !B, and !C intersect one another.

8.7. For triangle*ABC and lines !A, !B, and !C defined as in the previous problem,
let a be the intersection of !B and !C, let b be the intersection of !A and !C and let c
be the intersection of !A And !B. Show that*abc is similar to*ABC.

8.8. Suppose that ABCD with |AB| < |BC|, and suppose that this rectangle has the
following special property: that if a square ABEF is constructed inside ABCD, the
remaining rectangle CDFE is similar to the original ABCD. A rectangle with this
property is called a golden rectangle. Find the value of |AB|/|BC|, a value known as
the golden ratio.

8.9. This is a modification of the previous problem on the golden ratio. Suppose
that two side-by-side squares are removed ABCD and the remaining rectangle is
similar to ABCD. Find the value of |AB|/|BC| in this case. Generally, if n side-by-
side squares are removed from a rectangle and the resulting rectangle is similar to
the initial one, what is the value of |AB|/|BC| (as a function of n)?

8.10. Consider a right triangle *ABC whose right angle is at C. Let D be the foot
of the altitude to the hypotenuse. This altitude divide the triangle into two triangles
*ACD and*BCD. Show that each of these triangles is similar to*ABC.

8.11. Suppose that *ABC is not a right triangle. Let D be a point anywhere on the
triangle, dividing it into two pieces, *ACD and *BCD (as above). Show that at
most one of those triangles can be similar to*ABC.

8.12. Is there any configuration of a triangle*ABC and a point D inside that triangle
so that each of*ABD,*ACD, and*BCD is similar to the original*ABC?

8.13. The geometric mean of two numbers a and b is defined to be
√

ab. Consider a
right triangle. Consider the altitude to the hypotenuse, which divides the hypotenuse
into two pieces. Show that the length of this altitude is the geometric mean of the
lengths of these two pieces of the hypotenuse.

8.14. Prove Pappus’ theorem: Let lines !1 and !2 be two lines which meet at a point
O. Let P, Q, and R be points on !1 and S, T , and U be points on !2. If PT ‖ QU and
QS ‖ RT , then PS ‖ RU . [Hint: use similar triangles.]

8.15. Suppose that A∗B1 ∗B2, A∗C1 ∗C2 and*AB1C1 ∼*AB2C2. Prove that

AB1

AC1
=

B1B2

C1C2
.
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8.16. In the continuity chapter, one of the main accomplishments was the construc-
tion of a correspondence between the points on a ray and the positive real numbers.
As part of that construction we found the points which corresponded to each rational
number. In Euclidean geometry, there is a different construction which uses parallel
projection. Let r be a ray, with integer points P1, P2, . . . , marked on it. Now choose
another ray r′ (other than rop, and mark the integer points Q1, Q2, . . . on it. Suppose
we want to find the point on r which corresponds to the rational number p/q. Let
! be the line through Pp and Qq. Let !′ be the line which passes through Q1 and is
parallel to !. We claim that the intersection of !′ and r corresponds to the rational
number p/q. To verify this, show that the q-copy of this point is Pp.

8.17. Verify that if an odd function f : R → R is increasing for x > 0, then it is
increasing for all all x.
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Chapter 9
Concurrence

Playfair’s postulate suggests that it is a fairly special occasion for a pair of lines
to be parallel. So if you were to pull two lines !1 and !2 out of a bag, you would
expect them to intersect one another. A third line !3 pulled from that bag could be
parallel to either of the first two lines (or both if the first two are parallel). The
expected behavior, though, is that !3 will intersect both !1 and !2. Now what of
those intersections? Generally !3 will intersect !1 and !2 at two different points. It
is possible though, that !3 will intersect !1 and !2 at their point of intersection. This
special kind of behavior is the subject of this chapter.

Definition 9.1. Concurrence. When three (or more) lines all intersect at the same
point, the lines are said to be concurrent. The intersection point is called the point
of concurrence.

The focus of this chapter is upon concurrences of lines which are related to tri-
angles. Now that might seem like a fairly small topic, but thousands of these types
of concurrences have been catalogued. We will look at some of the most basic con-
currences in this chapter. While they represent some of the most important results
in this field of study, they are only the tip of a very substantial iceberg.

Definition 9.2. Perpendicular Bisectors. Recall that the midpoint of a segment
AB is the point M on AB which is the same distance from A as it is from B. The
line which passes through M and is perpendicular to AB is called the perpendicular
bisector to AB.

Lemma 9.1. A point X lies on the perpendicular bisector to AB if and only if it is
the same distance from A as it is from B.

Proof. This is a straightforward application of the triangle congruence theorems.
Note that the result is immediately true in the special case where X = M. Assume
then that X += M. If X lies on the perpendicular bisector to AB, then

AM - BM ∠AMX - ∠BMX MX = MX .

1121



The altitudes of three triangles.

The altitudes concur because they are the perpendicular bisectors of a 
larger triangle.
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2 9 Concurrence

Therefore, by the S ·A · S triangle congruence theorem *AMX - *BMX , and so
XA- XB.

For the converse, suppose that AX - BX . We need to show that the line XM
is perpendicular to AB. Note that corresponding sides of *AMX and *BMX are
all congruent. By the S · S · S triangle congruence theorem, the two triangles are
congruent. It follows that ∠AMX -∠BMX . Those two angles are supplementary to
each other though, which means they must be right angles. "#

Theorem 9.1. The Circumcenter. The perpendicular bisectors to the three sides
of a triangle intersect at a single point. This point of concurrence is called the
circumcenter of the triangle.

Proof. The proof uses the previous lemma’s characterization of points on a perpen-
dicular bisector. The segments AB and BC are not parallel, so their perpendicular
bisectors will also not be parallel. Let P denote their point of intersection. It remains
to show that P lies on the third perpendicular bisector. Since P is on the perpendic-
ular bisector to AB, |PA| = |PB|. Since P is on the perpendicular bisector to BC,
|PB| = |PC|. Therefore, |PA| = |PC|, and so P is on the perpendicular bisector to
AC. "#

The second concurrence is of the altitudes of a triangle. Most people of are fa-
miliar with the altitudes of a triangle from area calculations in elementary geometry.

Definition 9.3. Altitudes. An altitude of a triangle is a line which passes through a
vertex and is perpendicular to the opposite side.

It should be observed that an altitude of a triangle might not cross into the interior
of the triangle at all– this happens when the triangle is right or obtuse.

Theorem 9.2. The Orthocenter. The three altitudes of a triangle intersect at a
single point. This point of concurrence is called the orthocenter of the triangle.

Proof. The basic idea behind this proof is to show that the altitudes of a triangle
are the perpendicular bisectors of another larger triangle, and then to rely upon the
previous result. From a given triangle,*ABC, extend three lines:

!1 through A, parallel to BC
!2 through B, parallel to AC
!3 through C, parallel to AB

Because AB, AC, and BC are not parallel, !1, !2 and !3 will not be parallel either.
Label the intersections:

!1∩ !2 = c
!2∩ !3 = a
!3∩ !1 = b.
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The medians of three triangles.

To prove that the medians concur, we use a sequence of parallel 
projections to show that the intersection of medians occurs 2/3 of 
the way from the vertex to the opposite side.
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Because AB and ab are parallel, there are congruent alternate interior angles:

∠cAB- ∠CBA
∠cBA- ∠CAB

Therefore, by A ·S ·A triangle congruence,

*ABC -*BAc.

By a similar argument, we can see that all of these four triangles are congruent:

*ABC -*BAc-*CbA-*aCB,

and by matching corresponding sides,

Ab- Ac Ba- Bc Ca-Cb.

In other words, A, B, and C are the midpoints of the three sides of*abc. In addition,
because each of these altitudes is perpendicular to a side of *ABC, and that side is
parallel to the corresponding side of *abc, the altitude must be perpendicular to
that side of *abc. Thus, the altitudes of *ABC are the perpendicular bisectors of
*abc. By the previous result, we know that the perpendicular bisectors of *abc
must be concurrent, and so the altitudes of*ABC are as well. "#

Definition 9.4. Medians. A median of a triangle is a line which passes through a
vertex of the triangle and the midpoint of the opposite side.

Theorem 9.3. The Centroid. The three medians of a triangle intersect at a single
point. This point of concurrence is called the centroid of the triangle.

Proof. On *ABC, label the three midpoints, a, b, and c so that Aa, Bb, and Cc are
the medians. Now consider the intersection P of two of the medians, say Aa and Bb.
The key to this proof is the location of that point P– that it lies exactly 2/3 of the
way down the segment Aa from A. To prove this, we will make use of the fact that
parallel projection maps congruent segments to congruent segments.

First extend a line from c which is parallel to Bb. Label its intersection with
median Aa as Q, and label its intersection with side AC as c′. Then points A, c′ and
b are parallel projections of A, c, and B from AB to AC. Since c is the midpoint of
AB, Ac- Bc, and so their projections create a pair of congruent sides Ac′ - bc. Now
do the same thing projecting from the side BC. Extend a line through the midpoint
a which is parallel to Bb and label its intersection with AC as a′. Then b, a′ and C
are parallel projections of B, a, and C. Once again, since a is the midpoint of BC,
we see that ba′ - a′C.

Since b is the midpoint of AC, and c′ and a′ are midpoints of Ab and bC respec-
tively, all four segments are congruent:

Ac′ - c′b- ba′ - a′C.
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There is one more projection to go. On the median Aa, the points A, Q, P and a
are parallel projections of A, c′, b and a′. This projection transfers the first two
congruences listed above to

AQ- QP- PA,

and so P must be located 2/3 of the way down from A.
So Bb intersects Aa exactly 2/3 of the way down from the vertex A. Since nothing

distinguishes the choice of Aa and Bb at the beginning of this proof, Cc will also
intersect Aa at the same 2/3 mark. Therefore, all three medians are concurrent at the
point P. "#

Calculus students will likely already be familiar with the term centroid as the
point of balance of a flat shape. This geometric definition is a special case of that
one, in the case when the shape is a triangle.

Theorem 9.4. The Incenter. The three angle bisectors of a triangle intersect at a
single point. This point of concurrence is called the incenter of the triangle.

Proof. Let P be the point of intersection of the bisectors of ∠A and ∠B. We will
show that the line through P and C bisects ∠C. Begin by labeling a, b, and c, the
feet of the perpendicular bisectors through P to BC, AC, and AB respectively. Then

∠PaB- ∠PcB
∠aBP- ∠cBP

BP = BP

so by the A ·A · S triangle congruence theorem, *BaP - *BcP. Thus, aP - cP.
Similarly,*BaP-*BcP so cP- bP.

Therefore, two right triangles *PaC and *PbC have congruent legs aP and bP
and share the same hypotenuse PC. By the H ·L congruence theorem (Exercise 4.7),
these two right triangles are congruent. Thus,

∠aCP- ∠bCP.

In other words, the bisector of ∠C also passes through the point P. "#

Exercises

9.1. Show that if the triangle is acute, then the circumcenter is in the interior of the
triangle. Show that if the triangle is right, it is on the triangle itself. Show that if the
triangle is obtuse, it lies outside the triangle.

9.2. Under what circumstances does the orthocenter of a triangle lie outside of the
triangle?

9.3. Let O be the circumcenter and Q the orthocenter of a triangle *ABC. We are
interested in the segment s1 = QB and the segment s2 from O to the midpoint of AC.
Show that if B is a right angle, then s1 = s2. Show that AB = BC, then s1 and s2 lie
on the same line.
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9.4. Under what circumstances do the orthocenter and circumcenter coincide? What
about the orthocenter and centroid? What about the circumcenter and centroid?

9.5. Let *ABC be an acute triangle. Triangle *DEF has as its vertices the feet of
the three altitudes of *ABC. Show that the orthocenter of *ABC is the incenter of
*DEF .

9.6. Given*ABC, let*abc be the similar triangle constructed as in the proof of the
concurrence of the altitudes. Prove that the distance from the circumcenter of*abc
to ac must be twice the distance from the circumcenter of*ABC to AC.

9.7. Ask a person (other than a geometer) to locate the “center” of several triangles.
Are their picks closest to the circumcenter, orthocenter, centroid, or incenter?

Let ! be a line and let A be a point not on !. For any point P, we define the signed
distance from P to ! with respect to A as follows. If P lies on the same side of ! as
A, then the signed distance is just the regular distance from P to ! (the distance from
P to the foot of the perpendicular). If P lies on the opposite side of ! from A, then
the signed distance is negative of the distance from P to !.

Now let *ABC be a triangle. In relation to this triangle, each point P can be
recorded by an equivalence class of triples [x : y : z] where [x : y : z] and [x′ : y′ : z′]
are equivalent if there is a real number k such that x′ = kx, y′ = ky and z′ = kz.
The values of x, y, and z are as follows: x is the signed distance from AB to P with
respect to C, y is the signed distance from AC to P with respect to B, and z is the
signed distance from BC to P with respect to C.

Suppose that *ABC and *A′B′C′ are similar triangles. Suppose that D and D′
are points such that

*ABD∼*A′B′D′ *ACD∼ A′C′D′ *BCD∼*B′C′D′

Show that the trilinear coordinates for D in the triangle ABC are the same as the
trilinear coordinates for D′ in the triangle A′B′C′. The trilinear coordinates of the
three vertices are (1,0,0), (0,1,0), and (0,0,1). Since the incenter is equidistant
from each of the three sides, it has trilinear coordinates (1,1,1).

9.8. What are the trilinear coordinates of the midpoints of the sides of a triangle?

9.9. For*ABC, show that the trilinear coordinates of the orthocenter are

[secA : secB : secC].

9.10. For*ABC, show that the trilinear coordinates of the circumcenter are

[cosA : cosB : cosC].

9.11. For*ABC, show that the trilinear coordinates of the centroid are
[

1
a

:
1
b

:
1
c

]
.
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9.12. For *ABC, show that the trilinear coordinates of the centroid can also be
written as

[cscA : cscB : cscC].
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Chapter 10
Circles

In this chapter we introduce a new object, the circle and look at some of its proper-
ties. The first half of this chapter is dedicated to deriving some important elementary
results including, perhaps most importantly, the Inscribed Angle Theorem. The sec-
ond half of the chapter is dedicated to deriving a formula for the circumference of a
circle.

10.1 Circles

To start this chapter, we must list several basic definitions, many of which are likely
already familiar.

Definition 10.1. Circle and radius. For any point O and positive real number r, the
circle C with center O and radius r is the set of points which are a distance r from
O. The interior of C is the set of points whose distance from the center O is less
than r. The exterior of C is the set of points whose distance from the center O is
greater than r.

Definition 10.2. Central Angles. If points A and B lie on a circle C with center O,
then ∠AOB is called a central angle. To help identify central angles, we will use the
notation #AOB or simply #AB when the center O is implied.

Definition 10.3. Arcs. Let A and B be two points on a circle. These points divide
the points of the circle into two sets. The points of C which lie in the interior of
the central angle #AOB, along with the two endpoints A and B, form the minor arc
#AB. The points of C which do not lie in the interior of #AOB, together with the
endpoints A and B, form the major arc $AB. When there is no chance of confusion,
we may refer to an arc #AB by its associated central angle #AB, or we may refer
to the central angle #AB by its associated arc #AB.

Definition 10.4. Inscribed Angles. If A, B, and C are all points on a circle, then
∠ABC is an inscribed angle. More specifically, it is called an inscribed angle on the
arc #AC. To help identify inscribed angles, we will use the notation $ABC.
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2 10 Circles

Definition 10.5. Chords and Diameters. A chord of a circle C is a line segment
whose endpoints are points on C . A diameter is a chord which passes through the
center of the circle.

The circle is the first object we have studied which is not composed of some
combination of segments, rays, and lines. Hence our first result will be a very basic
statement about the kind of interaction that a circle may have with a line. It should
be compared to a similar result for triangles, Pasch’s lemma.

Theorem 10.1. Intersections of Circles. Consider a line ! and a circle C with ra-
dius r centered at the point P. There are three possible cases:

1. ! and C do not intersect (they have no points in common).
2. ! and C intersect at a single point– the foot of the perpendicular line to ! through P. In
this case ! is called the tangent line to C at the point P.
3. ! and C intersect at two points. In this case, ! is called a secant line to C .

Proof. Let O and r be the center and radius, respectively, of the circle in question.
There is a unique line passing through O and perpendicular to !. Let P be the inter-
section of this line with ! (so P is the foot of the perpendicular). Now let Q be any
other point on !. The angle ∠OPQ is a right angle, and hence the largest angle in
the triangle*OPQ. By the scalene triangle theorem, then, OQ is the largest side of
*OPQ. In particular

|OQ| > |OP|.

Therefore, if P lies outside the circle (so |OP|> r), then so will all other points of !.
If P lies on the circle (so |OP| = r), then all other points of ! will be further from O,
and P will be the sole point of intersection of the circle and !. Finally, if P lies inside
the circle (so |OP| < r), any intersection Q of ! and C will create a right triangle
*OPQ and by the Pythagorean theorem,

r2 = |OP|2 + |PQ|2

so
|PQ| =

√
r2− |OP|2.

There are exactly two points which are this distance from P, on opposite sides of P.
These are the two (and only two) intersection of ! and C . "#

Theorem 10.2. The Circumscribing Circle. There is exactly one circle through
any three non-collinear points. This is called the circumscribing circle, or circum-
circle, of those points.

Proof. Existence. Let A, B, and C be three non-collinear points. First we establish
that there is, in fact, a circle through these points. Let P be the circumcenter of
*ABC, the point of concurrence of the three perpendicular bisectors. In the proof of
that concurrence, we used pairs of congruent triangles to show that P is equidistant
from all three vertices of *ABC (see [??]). Therefore, the points A, B, and C lie on
a circle with center P and radius |PA|.
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10.1 Circles 3

Uniqueness. Now we show that the circumcircle is the only circle through A, B,
and C. Let C be a circle with center Q which passes through the points A, B, and C.
Since both A and B are the same distance from Q, Q must lie on the perpendicular
bisector of AB. Similarly, Q must lie on the perpendicular bisectors of BC and AC.
Therefore Q must be the circumcenter of *ABC. The radius must be the distance
from the circumcenter to a vertex, sothere is only one circle through A, B, and C. "#

The circumscribing circle of a triangle is the smallest circle which encloses that
triangle. It is natural to ask whether the relationship can be reversed. That is, what
is the largest circle which can be completely enclosed in a triangle? This is resolved
in the following theorem.

Theorem 10.3. The Inscribed Circle. For any triangle *ABC, there is a unique
circle which intersects each of the three sides AB, AC, and BC exactly once, and is
otherwise in the interior of the triangle. This circle is called the inscribed circle, or
incircle, of*ABC.

Proof. Existence. We saw in the concurrences chapter that the three angle bisectors
of a triangle intersect at a point P, the incenter. Let a, b, and c be the feet of the
three perpendiculars from P to each of the sides. In the proof of that concurrence,
we used triangle congruences to show that

Pa- Pb- Pc.

Hence a circle C with center at P and radius |Pa| will intersect each of the three
sides at a, b, and c.

Let x be another point on C . The ray emanating from P and passing through x will
intersect one of the sides of the triangle. Without loss of generality, let us assume that
it intersects BC and let α be this point of intersection. In*Pαa, ∠a is a right angle,
so it must be the largest angle of that triangle. By the Scalene Triangle Theorem, the
opposite side Pa must be the largest side of *Pαa. In particular, |Pα| > |Pa|, and
since |Px| = |Pa|, x must be in the interior of the triangle. Therefore a, b, and c are
the only intersections of*ABC and C .

Uniqueness. Now to show that the incenter is the only such circle. Let C ′ be a
circle which lies entirely in the interior of *ABC, except for three points a′ on AB,
b′ on AC, and c′ on AB. Let P′ be the center of that circle, so that

P′a′ - P′b′ - P′c′

Since the rest of the triangle lies outside of C ′, a′, b′, and c′ are the closest points
on *ABC to P′. Therefore P′a′, P′b′, and P′c′ are perpendicular to the three sides
of the triangle. By the H ·L right triangle congruence theorem, *Aa′P′ - *Ab′P′,
and so AP′ is an angle bisector. Likewise, BP′ and CP′ are bisectors. Hence P′ is at
the concurrence of angle bisectors, and so P′ is the incenter. Any circle centered at
P′ with radius less than the radius of the incenter will not intersect the three sides
of the triangle. Any circle centered at P′ with radius greater than the radius of the
incenter will intersect each side twice. Hence C ′ must be the incircle. "#
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4 10 Circles

A pivotal and useful result in the study of circles is the Inscribed Angle Theorem,
which relates the measure of an inscribed angle with the measure of the correspond-
ing central angle.

Theorem 10.4. The Inscribed Angle Theorem. Given a circle with center O, the
measure of an inscribed angle $BAC is half the measure of the central angle #BOC.

Proof. It is actually easier to prove this for a special case, and then to relate the
other cases back to that. We will prove that special case here, but defer the rest to
the reader. Suppose that the center O of the circle lies on one of the rays of $BAC
(without loss of generality, let us assume it lies on AB). In this case, since A, O and
B are collinear:

(#AB)+(#BC) = 180◦.

Segments OA and OB are the same length since they are radii, so *AOB is isosce-
les. By the Isosceles Triangle Theorem, ($A) = ($B). Adding the three angles of
*AOB

2($A)+(#BC) = 180◦.

Subtracting this second equation from the first yields

(#AB)−2($A) = 0

and therefore (#AB) = 2($A).
The two other cases to consider, depending upon whether or not the center O lies

in the interior of $BAC, can be verified by properly dissecting the inscribed and
central angles into two pieces and using this first case (see Exercise [??]). "#

There are two important and immediate corollaries to this theorem.

Corollary 10.1. Since all inscribed angles of a given arc share the same central
angle, all inscribed angles on a given arc are congruent.

Corollary 10.2. A triangle inscribed in a circle with one edge on the diameter must
be a right triangle.

Using the Inscribed Angle Theorem, we can establish several nice relationships
between chords, secants, and tangent lines associated with a circle.

Theorem 10.5. The Chord–Chord Theorem. Let AC and BD be two chords of a
circle which intersect at a point P inside that circle. Label their angle of intersection:
θ = ∠APD- ∠BPC. Then

(θ) =
(#AD)+(#BC)

2
.

Proof. First look at the angles of*ADP:

(θ)+($A)+($D) = 180◦.
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Now add up all the central angles around the circle:

(#AB)+(#BC)+(#CD)+(#AD) = 360◦.

We see that the left hand side of the first equation is half the left hand side of the
second, so

2(θ)+2($A)+2($D) = (#AB)+(#BC)+(#CD)+(#AD).

By the Inscribed Angle Theorem,

2($A) = (#CD),
2($D) = (#AB).

Canceling out those terms on each side yields

2(θ) = (#BC)+(#AD).

Dividing through by two completes the calculation. "#
Theorem 10.6. The Secant–Secant Theorem. Let AB and CD be two secant lines
to a circle which intersect at a point P outside that circle, on the same side of !AD"
as B and C. Label the angle of intersection of these two secant lines: θ = ∠APD =
∠BPC. Then

(θ) =
(#AD)− (#BC)

2
.

Proof. The basic strategy in this proof is identical to the previous one– only a few
details change. In*PAD,

($A)+($D)+(θ) = 180◦,

and adding up the central angles of the circle:

(#AB)+(#BC)+(#CD)+(#AD) = 360◦.

Twice the first is equal to the second

2(θ)+2($A)+2($D) = (#AB)+(#BC)+(#CD)+(#AD).

By the Inscribed Angle Theorem,

2($A) = (#BC)+(#CD)
2($D) = (#AB)+(#BC)

Substituting in,

2(θ)+(#BC)+(#CD)+(#AB)+(#BC)
= (#AB)+(#BC)+(#CD)+(#AD).
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Canceling common terms and solving for (θ) gives the desired result

(θ) =
(#AD)− (#BC)

2
.

"#
Theorem 10.7. On the Length of Chords. Let AC and BD be two chords of circle
which intersect at a point P inside that circle. Then

|AP| · |CP| = |BP| · |DP|.

Proof. Since $A and $B inscribe the same arc (the arc #CD), they are congruent.
Likewise, both $C and $D inscribe #AB, so they are congruent. The vertical angles
∠APD and ∠BPC are congruent, so by A ·A ·A triangle similarity,

*APD∼*BPC.

The ratios of corresponding sides are then equal

|AP|
|DP| =

|BP|
|CP|

and cross multiplication gives the desired result. "#

10.2 Circumference

The goal of this section is to establish that fundamental relationship between the
radius and the circumference of a circle, C = 2πr. While this may be one of the few
formulas generally known outside of mathematical circles, there are a number of
nuances that make this result a little tricky to establish rigorously.

To this point, we have only considered the linear distance between points. In
order to calculate the distance around a circle, though, we need a way to calculate
distance along a curved arc. To get our bearings, we describe the process used (in
calculus, for example) to describe the length of a parametrized curve C . A number
of points p1, p2, . . . , pn are chosen along C . Connecting consecutive line segments
between these points forms a polygonal approximation P to C , whose total length
is the sum of the lengths of the segments:

|P| =
n−1

∑
i=1

|pi pi+1|.

Since a line segment is the shortest distance between two points, the actual length
of C should be greater than this approximation. Note that any further subdivision
of P will provide a better approximation. Therefore, we define the length of C to be
the supremum of all such possible linear approximations:
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10.2 Circumference 7

|C | = sup{|P|}.

Fractal curves (such as the Koch curve) caution that this supremum may not in fact
exist, but if it does, the curve is said to be rectifiable.

Definition 10.6. Circumference. Now let’s look at how these ideas can be used to
calculate the distance around a circle C . In this case, our polygonal approximations
will be cyclic polygons. In light of the preceding discussion, we define the circum-
ference of C to be

|C | = sup
{
|P|
∣∣P: cyclic polygon on C

}

where |P| denotes the perimeter of P, the sum of the lengths of the sides of P.

Before attempting to find a formula for this circumference, we must begin by
checking that this supremum does exist.

Lemma 10.1. A circle C is a rectifiable curve.

Proof. Let P be an inscribed cyclic polygon. Select a pair of perpendicular lines
which pass through the center of C . These will play the role of an informal set of
coordinate axes. Let !i be one of the segments of P. Unless !i is parallel to one
of these axes, it is the hypotenuse of a right triangle whose two legs xi and yi are
parallel to these axes (in the same way that a vector may be decomposed into its
horizontal and vertical components). If !i is parallel to an axis, it is the “hypotenuse”
of a degenerate triangle with either xi or yi equal to zero. Because of the Triangle
Inequality,

|!i|≤ |xi|+ |yi.|

Summing these gives an upper bound for |P|:

|P| ≤ ∑ |xi|+∑ |yi|.

Moving the segments in that make up P, both the xi’s and the yi’s traverse across at
most the length of the diameter and then back. Therefore, any linear approximation
of C has a total length less than 8r, and so C is rectifiable. "#

Theorem 10.8. The Circumference Formula. The circumference of a circle C
with radius r is given by the formula |C | = 2πr where

π = lim
m→∞

2m · sin
(

180◦

2m

)
≈ 3.14159.

Proof. As this proof is a bit long, it is broken into three parts.
Part 1: Improving approximations. Given any approximating cyclic n-gon

P = {p1, p2, . . . , pn},

a new cyclic polygon P+ may be created by adding points to those of P, and |P+|
provide a better approximation to |C | than |P| does. This can be seen by adding
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8 10 Circles

one point at a time to P. Let L = pi pi+1 be one of the sides of P and let θ be the
corresponding central angle. Take a ray which emanates from the center of C and
lies inside θ . This ray will intersect C at a point, p+. We can construct a cyclic
n+1-gon:

P+ = {p1, p2, . . . , pi, p+, pi+1, . . . , pn}.

By the Triangle Inequality,

|pi pi+1| < |pi p+|+ |p+ pi+1|,

and since P and P+ share all their remaining sides,

|P+| > |P|.

Part 2: Regular Polygons Suffice. The class of all polygons inscribed in a circle
is quite large. Fortunately, as we will see, we only need to worry about regular
polygons, a much more manageable class. In fact, to make it even easier, we now
show that we can focus solely on regular 2m-gons. Take any cyclic polygon

P = {p1, p2, . . . , pn}.

Let L = pi pi+1 be one of its sides and let θ be the corresponding central angle. Now
take a regular cyclic 2m-gon Q but consider only its sides which lie entirely in the
interior of θ :

l j = q jq j+1

l j+1 = q j+1q j+2

...
lk−1 = qk−1qk

This sets up a couple of approximations. On the one hand, |q jqk| approximates |L|.
On the other,

k−1

∑
α= j

|lα |

approximates the length of the portion of C between pi and pi+1. Note that |q jqk|
will always be less than both |L| and ∑ |lα |. As m increases though, |q jqk| will
approach |L|, while ∑ |lα | will continue to increase. Therefore, for a sufficiently
large value of m,

∑ |lα | > |L|.

We only looked at one side of P, but the same argument holds for all other sides.
In other words, for large enough m, the perimeter of the regular 2m-gon provides a
better approximation to |C | than the perimeter of P does.
Part 3: The Approximation by Regular 2m-gons. At last, inscribe a regular 2m-gon
Pm on C , a circle with radius r and center O. Let L be a side of Pm. To calculate |L|,

10. Circles 145



L

r

Calculate the perimeter of a regular polygon. By 
taking a limit, this gives the circumference of the 

circle.

10. Circles146



10.2 Circumference 9

triangulate Pm into 2m radial triangles *Opi pi+1. Note that these are all congruent
isosceles triangles and that

(∠O) = 360◦/2m.

Bisecting ∠O in any one of these creates a pair of congruent right triangles, and
then, using trigonometry, we can calculate:

L
2

= r · sin
(

360◦/2m

2

)

It then follows that the total perimeter of Pm is given by the equation

|Pm| = 2m ·L = 2m ·2r · sin
(

180◦

2m

)
.

Increasing m further subdivides the approximating polygon. From part 1 we know
that this only increases the approximating perimeter. From part 2 we know that the
values of |Pm| will eventually surpass any other cyclic approximation. Therefore

sup
{
|P|
∣∣P: cyclic on C

}
= lim

m→∞
|Pm|.

We have also seen that the circle is rectifiable, so {Pm} is bounded above. Therefore,
this limit must exist. In particular, the term

lim
m→∞

2m · sin
(

180◦

2m

)

must be a constant. This is how we define that most famous mathematical constant
π . And from this we arrive at the familiar formula:

|C | = 2πr.

"#

The previous argument may be modified to calculate the length of a portion of a
circle as well.

Theorem 10.9. Length of a Circular Arc. If #AB is an arc of a circle with radius
r corresponding to a central angle of θ , then | #AB| is

| #AB| = r ·θ · π
180◦

.

Proof. As before, the length of this arc is the supremum of all possible polygonal
approximations. And as before, this may be computed by subdividing θ into 2m

pieces and then taking a limit as m approaches infinity, resulting in

| #AB| = lim
m→∞

r ·2m+1 sin
(

θ
2m+1

)
.
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In order to calculate this, we return to our definition

π = lim
m→∞

2m · sin
(

180◦

2m

)
.

Substituting x = 180◦/2m into this equation (noting that as m approaches infinity, x
will approach zero) we get:

π = lim
x→0

180◦

x
sin(x)

and so
lim
x→0

sinx
x

=
π

180◦
.

Similarly, in the equation for | #AB|, by making the substitution x = θ/2m,

| #AB| = lim
x→0

r · θ
x
· sin(x)

= r ·θ · π
180◦

.

"#

10.3 Radian Measure

Until now, we have used degrees to measure angles. The are several advantages to
the degree system, not the least of which is its general familiarity. Nevertheless,
these last few calculations suggest a more intrinsic unit for angle measurement.
Define a radian as follows

1 radian =
π

180◦
.

In this new measurement system, a 90◦ angle measures π/2 radians, a 180◦ angle
measures π radians, and a complete turn of 360◦ is 2π radians. In the radian mea-
surement system, the formula for the length of arc becomes

| #AB| = r ·θ .

Exercises

10.1. Prove the remaining two cases of the Inscribed Angle Theorem.

10.2. Prove the converse of the second corollary to the Inscribed Angle Theorem.

10.3. Let C be a circle and P be a point outside of C. There are two lines which are
tangent to C through P. Let Q and R be the points of tangency. Prove that PQ and
PR are congruent.
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10.4. Prove the following theorem. Let AC and BD be two chords of a circle with
center O which intersect at a point P inside that circle as shown. Label their angle
of intersection: θ = ∠APD- ∠BPC. Then

(θ) =
(∠AOD)+(∠BOC)

2

10.5. Prove the following theorem. Let AC and BD be two chords of circle which
intersect at a point P inside that circle as shown. Then

|AP| · |CP| = |BP| · |DP|.

10.6. Let ABC and ABC be two similar triangles with a k : 1 ratio of correspond-
ing sides of *ABC to *ABC. Prove that the radius of the circumscribing circle of
*ABC is in a k:1 ratio to the radius of the circumscribing circle to*ABC.

10.7. Let C1 and C2 be circles with radii r1 and r2 respectively. Furthermore, sup-
pose that the center of C2 lies on C1. Describe the angle formed by the two radii at
the intersection point as a function of r1 and r2. [Hint: Law of Cosines]

10.8. Prove that if a quadrilateral is inscribed in a circle, then its opposite angles are
supplementary.

10.9. Consider a circle with center O. Let BA be a line tangent to the circle, with
the point of tangency at A. This means that BA⊥ OA. Let C be another point on the
circle. Show that:

(∠BAC) =
1
2
(∠AOC)

10.10. Prove the “tangent-tangent” theorem. Let P be a point exterior to circle C .
Consider the two tangent lines to C which pass through P. Let A and B be the points
of tangency. Then

(∠APB) =
($AOB)− (#AOB)

2
.

10.11. The Koch curve is constructed as follows. Start with a segment A0A1 of
length one, and mark two points A1/3 and A2/3 on it which divide the segment into
thirds. On the middle third A1/3, A2/3, construct an equilateral triangle*A1/3A2/3B.
Now remove the segment A1/3A2/3. What is left is four connected segments, A0A1/3,
A1/3B, BA2/3, and A2/3A1, each with a length of 1/3. The total length after this first
step is then 4/3. Now repeat the process: each of those four segments is subdi-
vided into thirds, the middle third is removed and replaced with two segments. All
together, after the second step, we have 16 pieces. This process is continued indefi-
nitely. The limiting shape is called the Koch curve. Show that it is not rectifiable (its
length is infinite).

10.12. Consider a triangle *ABC. Let D and E be the feet of the altitudes on the
sides AC and BC. Prove that there is a circle which passes through the points A, B,
D, and E.
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There is a great tradition in Euclidean geometry of compass and straight-edge
constructions. The goal of such a construction is to construct certain geometric
shapes in the Cartesian model using only two tools: a compass and a straight edge.
The rules for how these tools may be used are as follows. The straight edge is the tool
for drawing lines. Given any two points, it can be used to draw the line through those
points. The straight edge can also be used to extend segments and rays. However,
unlike most contemporary straight-edges which also function as rulers, and hence
have measurements on them, the classical straight-edge has no markings. Therefore
it cannot be used to measure any distances. So for instance, if you want to find the
midpoint of a section, you cannot simply measure the segment, divide by two, and
then measure out a new segment. The compass it is used for drawing circles. Given
any two points P and Q, the compass will draw a circle with P as its center and
Q as its radius. Traditionally, compasses were “collapsing,” meaning that as soon
as the circle was drawn, the compass was folded up before any more constructions
were done. This meant that distances could not be transferred via the compass. For
these exercises, we will use a less restrictive set of rules– our compasses will not
automatically collapse. Therefore, if we are given a segment PQ and a ray ·OR",
we can set the radius of our compass to PQ, then move the compass to r, and mark
a point S on ·OR" so that OS- PQ. It can be proved that every construction which
is possible with a non-collapsing compass is possible with a collapsing compass–
sometimes, though, additional steps are required.

In each of the following problems, you are asked to perform a compass and
straight-edge construction. You will, of course, need a compass and straight edge
to do this properly. Begin by drawing the given components. Of course, your com-
pass and straight-edge are only physical approximations of the idealized compass
and straight-edge. Therefore you need to be careful to make these components are
manageably sized. Then proceed using only allowed constructions to your goal. You
may need to draw on theorems we have covered thus far in order to perform some
of these constructions.

10.13. Given a segment, AB, construct another segment CD which is twice as long
as AB. Construct EF which is three times as long as AB.

10.14. Given an ∠ABC and a ray r, construct an angle on r which is congruent to
∠ABC.

10.15. Given a segment AB, construct its midpoint. This one is a little tricker. The
easiest way probably will require to find the perpendicular bisector.

10.16. Give a line ! and a point P which is not on !, construct the line through P
perpendicular to !.

10.17. Give a line ! and a point P which is on !, construct the line through P per-
pendicular to !.

10.18. Given a line !, and a point P not on !, construct the line through P parallel to
!.
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10.19. Given an angle ∠ABC, construct the ray r which bisects it. As a historical
note, in the nineteenth century, Evariste Galois proved (using what is now called
Galois theory) that it is impossible to trisect an arbitrary angle using a compass
and straight-edge. This resolved a puzzle that had been puzzling mathematicians for
centuries and also provided an early indication of the power of what we now call
abstract algebra.

10.20. Given a segment AB, construct a segment which is 1/3 as long. Construct a
segment which is 3/5 as long. For an idea of how to do this, look at the alternate
approach to the construction of rational points on a line given in the exercises of the
similarity chapter.
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Chapter 11
Advanced Euclidean Results

In this final section on Euclidean geometry, we will look at a few of the more ad-
vanced results concerning concurrence in triangles. It is hoped that these few the-
orems will give an indication of the wealth of results and the rich tradition of Eu-
clidean geometry. We begin with a simple lemma, the converse of the Vertical Angle
Theorem.

Lemma 11.1. If P1 ∗O∗P2 and Q1 and Q2 are two distinct points on opposite sides
of !P1P2" such that

∠P1OQ1 - ∠P2OQ2

then Q1 ∗O∗Q2.

Proof. Suppose that Q1, Q2 and O are not collinear, and label the point of intersec-
tion of !P1P2" and !Q1Q2" as O". This creates a triangle*OQ1O" which has an
interior and nonadjacent exterior angle (one at O and one at O") both of which are
congruent to ∠P2OQ2. These angles would then be congruent to one another, but
this would contradict the Exterior Angle Theorem. Therefore Q1, Q2 and O must be
collinear, and since Q1 and Q2 lie on opposite sides of the line through O, O must
be between Q1 and Q2. "#

Theorem 11.1. The Euler Line. For any triangle, the orthocenter, circumcenter,
and centroid are collinear. The line through these three points is called the Euler
line.

Proof. Consider*ABC, with circumcenter P, orthocenter Q and centroid R. Let M
be the midpoint of AC, so that ! PM " is one of the perpendicular bisectors of
*ABC. There are a few special cases which we need to consider first. The segment
BM is a median of the triangle. By definition, the centroid R will lie on this segment.
Therefore, if the points P and Q also lie on the !BM", then P, Q and R are collinear
(there are two scenarios where this happens: when ∠B is a right angle or when
*ABC is isosceles, with AB- BC).

To prove the result outside of those special cases, we will need to rely upon a
couple of facts which were integral in establishing earlier concurrences. First, recall
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The 9-point circle of a triangle.

The segment M1N1 is a diameter of the nine-point circle. With several 
pairs of similar triangles, we establishing some right angles. As a 
corollary to the Inscribed Angle Theorem, M2, M3, N2, and N3 must be 
on the circle with diameter M1N1.

The feet of the altitudes also form right triangles whose hypotenuse 
lies on the diameter. Therefore they also lie on the circle.
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that the proof of the concurrence of the altitudes involved the construction of a
triangle*abc which was similar to*ABC, with a 2:1 ratio of corresponding sides.
In that proof, we showed that the orthocenter of*ABC is the circumcenter of*abc.
Roughly speaking, since*abc is*ABC scaled by a factor of two, the distance from
the circumcenter of *abc to ac must be twice the distance from the circumcenter
of*ABC to AC (it was problem 9.6 in that chapter to make that statement precise ).
Thus |BQ| = 2|PM|.

Second, recall from the proof of the concurrence of the medians that the centroid
R is located two-thirds of the way down the segment BM from B. This means that
|BR| = 2|MR|.

Third, observe that ! MP " and ! BQ " are both perpendicular to ! AC ".
Furthermore, since we dealt initially with the case where these two lines coincide,
we may now assume that they are distinct. Therefore ! MP " and ! BQ " are
parallel and so the alternate interior angles ∠PMR and ∠QBR are congruent. By the
S ·A ·S triangle similarity theorem, then, *MPR ∼*BQR. In particular, there is a
congruence of the corresponding angles ∠MPR - ∠BQR. By the previous lemma,
then P, Q, and R must be collinear. "#

Recall that any three non-collinear points uniquely determine a circle. In the next
theorem we describe a circle associated to any triangle which passes through nine
distinguished points (arranged in three sets of three). Six of these points were iden-
tified by Feuerbach (among others) and it is his name which is most often attached
to this result. Subsequently, several other points of significance for the triangle have
been associated with the circle in one way or another. Coxeter and Greizter give a
brief history of this theorem in their book Geometry Revisited. Before going any
further, we pause to review a few facts.

Lemma 11.2. Let B′ be a point on ·AB", and let C′ be a point on ·AC". If

|AB| = k|AB′| & |AC| = k|AC′|

for some constant k, then BC is parallel to B′C′.

Proof. By the S ·A · S triangle similarity theorem, *ABC ∼ *AB′C′. This means
that ∠ABC - ∠AB′C′, so, by the Alternate Interior Angle Theorem, BC is parallel
to B′C′. "#

Lemma 11.3. If ∠ACB is a right angle, then C lies on the circle with diameter AB.

Recall that one of the corollaries of the Inscribed Angle Theorem states that if C
is a circle with diameter AB, and C is a point on C other than A or B, then ∠ACB
is a right angle. This lemma is the converse of that statement. It was an exercise to
prove this result in the chapter on circles (exercise 10.2), and so we will not prove it
here.

Theorem 11.2. The Nine Point Circle. For any triangle*ABC, the following nine
points all lie on one circle:
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The center of the nine point circle lies on the Euler 
line. The illustration of the proof is shown below.
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L1, L2, L3, the feet of the three altitudes;
M1, M2, M3, the midpoints of the three sides; and
N1, N2, N3, the midpoints of the three segments connecting the orthocenter R to

the vertices. This circle is called the 9-point circle of*ABC.

Proof. There are quite a few ways to prove this theorem. The key to this particular
approach is that the line segment M1N1 is a diameter of the nine point circle. We can
use the first lemma four times:

|BA| = 2|BM1| and |BC| = 2|BM2| so M1M2 ‖ AC
|CB| = 2|CM2| and |CR| = 2|CN2| so M2N1 ‖ BR
|RA| = 2|RN2| and |RC| = 2|RN1| so N1N2 ‖ AC
|AR| = 2|AN2| and |AB| = 2|AM1| so M1N2 ‖ BR

The altitude BR is perpendicular to AC. Hence

M1M2 ⊥M2N1 and N1N2 ⊥M1N2,

and so both ∠M1M2N1 and ∠M1N2N1 are right angles. Calling upon the second
lemma above, M2 and N2 are on C . A similar argument can be employed to show
that M3 and N3 lie on C .

We have established that six of the nine points lie on a circle. Nothing in the
original statement of the theorem distinguishes M1 from M2 or M3, or N1 from N2
or N3. Therefore M2N2 is also the diameter of a circle containing all six points, as
is M3N3. Since three points uniquely define a circle, M1N1, M2N2 and M3N3 are all
diameters of the same circle. Note that each Li and Mi lies on a side of the triangle,
while each Li and Ni lies on the corresponding perpendicular altitude. Thus each of
the angles ∠MiLiNi is a right angle, and so according to the second lemma above
each of the Li also lies on C . "#

Theorem 11.3. The center of the nine point circle lies on the Euler line.

Proof. In *ABC, let P be the circumcenter, Q the orthocenter, and O the center of
the nine point circle. We will show that P, Q, and O are collinear. Since we already
know that P and Q lie on the Euler line, O will have to lie on that line as well. Some
additional points need to be labeled first. Let N be the midpoint of AQ, and let M
be the midpoint of BC. In the proof of the existence of the nine point circle, we saw
that MN is a diameter of that circle. From this, then, O is the midpoint of MN and
so OM - ON.

Both AQ and MP are perpendicular to BC, so the transversal MN creates a pair
of congruent alternate interior angles,

∠QNO- ∠PMO.

Also, PM and NQ are both half as long as AQ (recall that the distance from the
orthocenter to a vertex is twice the distance from the circumcenter to the oppo-
site side). Therefore PM - NQ. By the S ·A · S triangle congruence theorem, then,
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*QON -*POM. In particular, ∠QON -∠POM. Since M, O, and N are collinear,
this means that P, O, and Q must also be (lemma 11.1). Hence O lies on the line
!PQ", the Euler line. "#

In several of the concurrence results so far, the proof has hinged upon a hidden
set of similar triangles. These can be difficult to find though. For a certain class of
concurrence, Ceva’s theorem can be used to simplify this process by reducing it to
a more formulaic calculation.

Theorem 11.4. Ceva’s Theorem. Given a triangle *ABC, let a be a point on BC,
b be a point on AC, and c be a point on AB. The three segments Aa, Bb, and Cc
intersect in a single point if and only if

Ab
bC

· Ca
aB

· Bc
cA

= 1.

Proof. We will only prove one direction of this theorem (the other is left as an
exercise). Suppose that P is the point of concurrence of Aa, Bb, and Cc. We will
show that the above equation holds. Let ! be the line through A which is parallel to
BC. Let b′ and c′ be the intersections of the lines !Bb" and !Cc" respectively with
!. As the goal equation involves three ratios, one might suspect that this argument
involves similar triangles, and this is in fact the case.

The vertical angles at b are congruent, as are the alternate interior angles ∠CBb
and ∠Ab′b. Therefore,*CBb∼*Ab′b, and so

|Ab|
|bC| =

|Ab′|
|BC| .

Likewise, the vertical angles at c are congruent, as are the alternate interior angles
∠BCc and ∠Ac′c. Therefore*BCc∼*Ac′c, and so

|Bc|
|cA| =

|BC|
|Ac′| .

Making these substitutions,

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| =

|Ab′|
|BC| ·

|Ca|
|aB| ·

|BC|
|Ac′| =

|Ab′|
|Ac′| ·

|Ca|
|aB| . (11.1)

In a similar fashion (vertical angles and a pair of alternate interior angles),
*Ac′P∼*aCP and*Ab′P∼*aBP. Comparing ratios, we see that

|aP|
|AP| =

|Ca|
|c′A| &

|aP|
|AP| =

|Ba|
|b′A| .

Equating the right hand sides of these equations yields:

|Ca|
|c′A| =

|Ba|
|b′A|
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The proof of Menelaus Theorem, again 
using similar triangles.
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or equivalently,
|Ca|
|aB| =

|c′A|
|b′A| .

In equation (11.1) we may replace |Ca|/|aB| with |c′A|/|b′A|. Upon canceling, we
then have:

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| = 1. "#

From Ceva’s Theorem, we move on to a theorem which is intimiately related to
Ceva’s Theorem. Menelaus’ Theorem looks very much like Ceva’s Theorem, and
these similarities are not merely superficial. The two theorems are in fact projective
duals of one another, meaning that the roles of points and lines are interchanged
in the two theorems. While projective geometry is not covered in this book, it is a
geometry in which the roles of points and lines can be interchanged freely. Before
proving Menelaus’ theorem, we will tackle a preparatory lemma.

Lemma 11.4. Let b be a point on AB and let c be a point on AC. If bc is parallel to
BC, then

|bB|
|cC| =

|Ab|
|Ac| .

Proof. Since bc is parallel BC, ∠b - ∠B and ∠c - ∠C. By the A ·A ·A triangle
similarity theorem*Abc∼*ABC, and hence there is a positive real number k such
that

|AB| = k|Ab| & |AC| = k|Ac|.

Subtracting segments

|bB| = |AB|− |Ab| = k|Ab|− |Ab| = (k−1)|Ab|
|cC| = |AC|− |Ac| = k|Ac|− |Ac| = (k−1)|Ac|,

and so
|bB|
|cC| =

(k−1)|Ab|
(k−1)|Ac| =

|Ab|
|Ac| . "#

Theorem 11.5. Menelaus’ Theorem. Let ! be a line which intersects two sides of
the triangle *ABC, and is not parallel to the third side. Let a be the intersection of
! with BC, b be the intersection of ! with AC, and c be the intersection of ! with AB.
Then

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| = 1.

Proof. Suppose that ! intersects *ABC on the segments AB and AC as described
above. In this case, it will intersect !BC ", but not on the segment BC. Let !" be
the line through C which is parallel to !. One of the two rays of !" emanating from
C lies in the interior of ∠ACB, so by the Crossbar Theorem, !" and AB intersect at a
point P. Using the previous lemma, since bc is parallel to CP in*ACP,
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|cP|
|bC| =

|Ac|
|Ab|

and since CP is parallel to ac in*Bac,

|cP|
|aC| =

|Bc|
|Ba| .

Solving each of these equations for |cP|:

|cP| = |Ac|
|Ab| · |bC| & |cP| = |Bc|

|Ba| · |Ca|.

Therefore

1 =
|cP|
|cP| =

(|Bc|/|Ba|) · |Ca|
(|Ac|/|Ab|) · |bC| =

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| . "#

Now let us examine a situation where we can use Ceva’s Theorem to establish
a concurrence. We have seen that the incenter of a triangle *ABC is the point in
the interior of the triangle which is equidistant from each of the three sides of the
triangle. This means that there is a circle centered at the incenter which is tangent
to each of the sides of the triangle. This circle is called the incircle of *ABC. We
will now show that there are three other circles which are tangent to all three lines
!AB", !AC", and !BC". These are called the excircles of*ABC, and the centers
of these circles are called the excenters of*ABC.

Theorem 11.6. Excircles. There is a point on the opposite side of !BC" from A
which is equidistant from !AB", !AC", and !BC".

Proof. Let !1 and !2 be the bisectors of the angles supplementary to ∠B and ∠C,
and let P be their point of intersection. Let:

F1 be the foot of the perpendicular to !BC" through P,
F2 be the foot of the perpendicular to !AB" through P, and
F3 be the foot of the perpendicular to !AC" through P.

Note the following three congruences between triangles *PBF1 and *PBF2. First,
since BP is an angle bisector, ∠F1BP-∠F2BP; second, both ∠F1 and ∠F2 are right
angles; and third, the segment BP is shared by both triangles. By the A ·A ·S triangle
congruence theorem,*PBF1 -*PBF2, and so PF1 - PF2. Likewise, we can show
that*PCF1 -*PCF3, so PF1 - PF3. Therefore, P is the center of a circle which is
tangent to line !BC" at F1, tangent to !AB" at F2 and tangent to !AC" at F3. "#

Theorem 11.7. The Nagel Point. Let a be the intersection of BC with the excircle
which lies in the interior of ∠A; let b be the intersection of AC with the excircle
which lies in the interior of ∠B; and let c be the intersection of AB with the excircle
which lies in the interior of ∠C. The three segments Aa, Bb, and Cc intersect at a
single point. This is called the Nagel point of of*ABC.
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Feuerbach�’s Theorem. The incircle and the excircles are 
tangent to the nine point circle.
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Proof. We will evaluate the expression

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| .

According to Ceva’s theorem, if this expression evaluates to one, then the segments
Aa, Bb, and Cc must share a point. Let a′, b′ and c′ be the centers of the three
excircles. Recall that these centers are located at the intersection of the (exterior
angle bisectors). Therefore

∠a′Ca- ∠b′Cb.

Further, both ∠Caa′ and Cbb′ are right angles. Hence the triangles *a′aC and
*b′bC are similar, and so

|aC|
|bC| =

|aa′|
|bb′| .

Similarly,
|bA|
|cA| =

|bb′|
|cc′| &

|cB|
|aB| =

|cc′|
|aa′| ,

and so we may substitute,

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| =

|bb′|
|cc′| ·

|cc′|
|aa′| ·

|aa′|
|bb′| = 1.

By Ceva’s theorem, Aa, Bb, and Cc must have a point in common. "#

Before ending this section, we mention a final theorem which further ties together
the ideas of the section. It states that certain pairs of circles are tangent to each other–
that is, they share a tangent line.

Theorem 11.8. Feuerbach’s Theorem. For any triangle, the nine point circle is
tangent to the incircle and each of the excircles.

We will defer the proof of this result until a much later point, when we have de-
veloped the geometry of inversion.

Exercises

11.1. Consider an isosceles triangle *ABC with AB - AC. Let D be a point on the
arc between B and C of the circumscribing circle. Show that DA bisects the angle
∠BDC.

11.2. In the exercises in the concurrences chapter, we defined trilinear coordinates.
Show that the trilinear coordinates for the centers of the excircles are [−1 : 1 : 1],
[1,−1,1], and [1,1,−1].

11.3. Under what conditions does the Euler line pass through one of the vertices of
the triangle?
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11.4. Under what conditions does the incenter lie on the Euler line?

11.5. Let P be a point on the circumcircle of triangle*ABC. Let L be the foot of the
perpendicular from P to AB, M be the foot of the perpendicular from P to AC, and N
be the foot of the perpendicular from P to BC. Show that L, M, and N are collinear.
This line is called a Simson line. Hint: look for cyclic quadrilaterals and use the fact
that opposite angles in a cyclic quadrilateral are congruent.

11.6. We only proved one direction in the if and only if statement in Ceva’s Theo-
rem. Prove the reverse direction.

11.7. Use Ceva’s Theorem to provide an alternate proof that the medians are con-
current. Similarly, use Ceva’s Theorem to show that the altitudes are concurrent.

These problems continue with the compass and straight-edge constructions in-
troduced in the last chapter. As these constructions become more complicated, you
may find that the pencil and paper approach is becoming cumbersome. If that is
the case, there are a number a nice computer programs (both commercial and free)
which reproduce the compass and straight-edge environment. They offer the addi-
tional advantage that constructions are dynamic– as points are moved around on the
screen, the rest of the construction automatically updates.

11.8. Given a segment AB, construct an equilateral triangle with that as one of its
sides.

11.9. Given a segment AB, construct a square with that as one of its sides.

11.10. Given a segment AB, construct a regular hexagon with that as one of its sides.

11.11. Construct a regular octagon.

11.12. Given a triangle, construct its circumcenter. Construct the circumscribing
circle.

11.13. Given a triangle, construct its orthocenter.

11.14. Given a triangle, construct its centroid.

11.15. Given a triangle, construct its incenter. Construct the inscribed circle.

11.16. On a single triangle, construct the orthocenter, circumcenter and centroid.
Use them to draw the Euler line.

11.17. Construct the nine point circle for a given triangle, and mark each of the nine
points.

11.18. Construct the three excircles to a given triangle.
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Depiction of an isometry (in this 
case, a rotation). Each point in the 
plane is mapped to another. The 
arrows in this picture illustrate that 
correspondence. By definition, an 
isometry maps a segment to a 
congruent segment.
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Chapter 12
Isometries

In the course of our development of Euclidean geometry we constructed two
metrics– one for measuring segments and one for measuring angles. For this portion
of the book, we move those notions to the center of attention, as we consider map-
pings under which those metrics are invariant. By studying these mappings, we get
a different understanding of the underlying space that our points, lines, polygons,
and circles inhabit.

At this point we need to name the space in which we are working. One typically
thinks of this space as being one of points, and that is in fact often convenient, but
there is more to Euclidean space than just points. In addition, there is a second type
of fundamental object, the line. Interactions between points and lines are described
by a list of axioms describing three relations: incidence, order, and congruence.
All together, this structure is called the Euclidean plane. We will use the symbol
E to denote it. Any kind of mapping involving E must take into account not just
the behavior of the mapping on the points, but also those other components of the
structure of E (either explicitly or implicitly).

Definition 12.1. Isometries. When working with sets, an automorphism is a bi-
jective map (that is, a map which is both one-to-one and onto) from a set to itself.
A Euclidean isometry τ : E → E is an automorphism of the points of E with the
property that for any two points A and B in E,

|τ(A)τ(B)| = |AB|.

Because of this definition, if two segments AB and CD are congruent, the seg-
ments τ(A)τ(B) and τ(C)τ(D) will be congruent as well. In other words, an isom-
etry preserves the relationship of segment congruence. In this light, how does an
isometry act on the other basic relationships: incidence, order, and angle congru-
ence?

Theorem 12.1. Let τ be an isometry. If A∗B∗C, then τ(A)∗τ(B)∗τ(C) That is, an
isometry preserves the relation of order.
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Because of the triangle inequality, 
an isometry preserves incidence and 
order.

SSS congruence means that a map 
which does not change segment 
length cannot change angle measure 
either.
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2 12 Isometries

Proof. According to the triangle inequality, for any three points P1, P2 and P3,
|P1P3| = |P1P2|+ |P2P3| if and only if P1 ∗P2 ∗P3. Since a transformation preserves
segment length,

|τ(A)τ(C)| = |AC|
= |AB|+ |BC|
= |τ(A)τ(B)|+ |τ(B)τ(C)|

and it follows that τ(A)∗ τ(B)∗ τ(C). "#

Any two distinct points A and B define a unique line L. If C is another point on L,
either A∗B∗C, A∗C∗B, or C∗A∗B, and so either τ(A)∗τ(B)∗τ(C), τ(A)∗τ(C)∗
τ(B), or τ(C)∗ τ(A)∗ τ(B). In any case, though, τ(C) lies on the line through τ(A)
and τ(B). Therefore τ maps all of the points of one line of E to points on another
line of E, and so it is possible to use τ to define an automorphism τ! of the lines of
E by

τ!(!AB") =!T (A)T (B)" .

Furthermore, if a point P is on a line L, then τ(P) is on τ!(L), so a transformation
preserves the relation of incidence.

Theorem 12.2. For any angle ∠ABC,

∠τ(A)τ(B)τ(C)- ∠ABC.

Proof. Because τ does not change segment lengths,

τ(A)τ(B)- AB τ(B)τ(C)- BC τ(A)τ(C)- AC.

By the S ·S ·S triangle congruence theorem,

*τ(A)τ(B)τ(C)-*ABC

and so
∠τ(A)τ(B)τ(C)- ∠ABC

as desired. Note, as a consequence of this, if ∠ABC - ∠A′B′C′, their images
∠τ(A)τ(B)τ(C) and ∠τ(A′)τ(B′)τ(C′) will be congruent as well. "#

To review, we now know how an isometry interacts with those fundamental terms
of Euclidean geometry: it preserves incidence and order (points which are on a line
are mapped to other points which are on a line and the ordering of those points
is preserved) and it preserves congruence, mapping congruent objects to congruent
objects, whether those objects are segments or angles.

The basic operation for combining isometries is function composition. The
composition τ1 ◦ τ2 of two isometries τ1 and τ2 is itself an isometry. The map
τ : E → E : τ(P) = P is an isometry called the identity isometry. For any isome-
try τ , there is a isometry τ−1 such that both of the compositions τ ◦ τ−1 and τ−1 ◦ τ
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A translation is defined by a distance and a direction.

An alternate characterization of 
parallelograms in Euclidean 
geometry: a pair of opposite 
sides which are parallel and 
congruent.

The proof that a translation is an 
isometry. In the general case, P, 
Q, and their images form a 
quadrilateral.

The degenerate case: if PQ is 
parallel to the direction of 
translation, all four points lie on 
a line.
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are the identity transformation. The map τ−1 is called the inverse of τ . For readers
familiar with the concept, this means that the isometries of E form a group.

12.1 Translation

Now let us turn our attention to particular types of isometries. The first type of
isometry we will look at is a translation a distance x (where x is a positive real
number) along a ray · OR ". Intuitively, a translation moves each point of E a
distance of x in the direction prescribed by · OR ". The Euclidean axioms do not
provide a mechanism to make such moves, so our official definition takes a different
approach. For convenience, relocate R on the ray so that |OR| = x. First, we define
the map t for points which do not lie on the line ! OR ". Let P be such a point.
Let ! be the line through P which is parallel to !OR". There is another line which
passes through R and is parallel to OP. This line intersects !. We define t(P) to be
this intersection point. Observe that, by construction, OR and Pt(P) are parallel, as
are OP and Rt(P). They form a parallelogram then, and so the opposite sides OR
and Pt(P) are congruent. Therefore, |Pt(P)| = x. Once t has been defined for all
points which do not lie on the line !OR", it is easy to extend t to the points which
do lie on the line !OR". Pick a point Q which does not lie on !OR". Define t(P)
so that the four points P, Q, t(Q), and t(P) form the vertices of a parallelogram as
above. In this case,

|Pt(P)| = |Qt(Q)| = |OR| = x.

To prove that the map as described is an isometry we will need to use one basic fact
about parallelograms.

Lemma 12.1. Let ABCD be a quadrilateral with |AB| = |CD| and !AB"‖!CD".
Then ABCD is a parallelogram.

Proof. Consider the transversal !AC" of the parallel lines !AB" and !CD". By the
converse of the Alternate Interior Angle Theorem, ∠BAC-∠DCA. By construction
AB - CD and AC - AC so, according to the S ·A · S triangle congruence theorem,
*ABC -*CDA. Therefore ∠DAC - ∠BCA. By the Alternate Interior Angle The-
orem, AD ‖ BC, and so ABCD is a parallelogram. "#

Theorem 12.3. A translation is an isometry.

Proof. We leave it to the reader to prove that a translation is a bijective map, and will
only show that a translation does not change segment lengths. Let t be a translation
a distance x in the direction ·OR". Let PQ be a segment and p = t(P) and q = t(Q).
We wish to show that |PQ| = |pq|. There are two cases to consider, depending upon
whether or not PQ is parallel to the direction of translation.

Case 1 Suppose that PQ is not parallel to the direction of translation ·OR". Both
Pp and Qq are parallel to ·OR" so are themselves parallel, and
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A rotation about a point.

The proof that a rotation turns all rays emanating from 
O by the same angle. This shows that our definition of 
rotation conforms to the usual intuitive description of 
a rotation.
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4 12 Isometries

|Pp| = |Qq| = x.

By the previous lemma, this means PpqQ is a parallelogram, so its opposite sides
PQ and pq must be congruent. Therefore,

|PQ| = |pq|.

Case 2 If PQ is parallel to the direction of translation ·OR", then the points P, p, q,
and Q are all colinear, so they do not form a proper parallelogram. There are several
essentially similar cases depending upon the order of those points. One case is as
follows: if P∗ p∗Q∗q, then

|PQ| = |Pp|+ |pQ|
= x+ |pQ|
= |Qq|+ |pQ|
= |pq|.

The other cases are left to the reader. "#

12.2 Rotation

The next type of Euclidean isometry is the rotation about a point O. Again, a precise
definition is not quite as simple as the intuitive notion of spinning the points in the
plane around O. Let R1 and R2 be two rays emanating from the same point O. Define
a map r taking R1 to R2 as follows. First, define r(O) = O. Then, for any other point
P on R1, define r(P) to be the (unique) point on R2 so that |Or(P)| = |OP|. This is
clearly a bijective mapping from the points of R1 to the points of R2.

This map of rays can be extended to a map of the entire plane as follows. Let
P be a point in the plane which is not on R1. Locate the point Q on R1 so that
|OP| = |OQ|. All three of P, Q, and r(Q) are the same distance from O, so lie on a
circle C centered at O. By the parallel axiom, there is a unique line ! which passes
through Q and is parallel to !Pr(Q)". This line intersects C at two points. One of
the intersections of ! and C is of course at the point Q. Define r(P) to be the other
point of intersection of C and !.

Theorem 12.4. Let θ be the measure of the angle formed by R1 and R2. For any
point P (other than O),

(∠POr(P)) = θ .

Proof. This statement is clearly true for any point on R1, so assume that P is not
on R1. There are then three cases to consider, depending upon whether P lies in the
interior of the angle formed by R1 and R2, exterior to that angle, or on R2 itself.
We will look at the second of these cases and leave the others as exercises. As
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in the construction above, locate Q on R1 so that |OP| = |OQ|, let p = r(P), q =
r(Q), and let C be the circle containing P, Q, p and q. The key to this proof is the
quadrilateral formed by these four points. Let !⊥ be the line which passes through
O and is perpendicular to both Pq and Qp. Since OP, Oq, OQ and Op are all radii
of C ,*POq and*QOp are both isosceles triangles. Therefore, !⊥ bisects both Pq
and Qp. That is, !⊥ divides the quadrilateral PpQq into two pieces which by the
S ·A · S ·A · S quadrilateral congruence theorem are congruent. The corresponding
segments Pp and Qq are then also congruent, so by the S ·S ·S triangle congruence
theorem,*Pop-*QOq, and in particular,

(∠POp) = (∠QOq) = θ . "#

A map of this form is called a rotation by angle θ about the point O. The problem
is that this creates an unavoidable ambiguity– for a given ray R1 there are two rays
which lie an angle θ away from R1, one on either side of R1. Most readers will be
able to distinguish one of these rotations as a clockwise rotation and the other as a
counterclockwise rotation, but there is nothing in the actual geometry of the plane
that says which is which. Nevertheless, the directions of any two rotations can be
compared.

Theorem 12.5. Any two rotations can be classified as being either in the same di-
rection, or in opposite directions.

Proof. Part 1. Let r1 and r2 be two rotations of different angles θ1 and θ2 about the
same point O. Let R be a ray emanating from O. If r1(R) lies in the interior of the
angle formed by R and r2(R), or if r2(R) lies in the interior of the angle formed by R
and r1(R), then r1 and r2 are in the same direction. Otherwise, they are in opposite
directions.
Part 2. Let r1 and r2 be two rotations about different points O1 and O2. Let P be any
point other than O1. Let t be the translation which maps O1 to O2. Then

|O2t(P)| = |O1P| = |O1r1(P)| = |O2t(r1(P))|.

Both t(P) and t(r1(P)) are the same distance from O2. Therefore, there is a rotation
centered at O2 which takes t(P) to t(r1(P)). If this rotation is in the same direction
as r2 (using the comparison in part 1), then r1 and r2 are in the same direction.
Otherwise r1 and r2 are in opposite directions. "#

This definition of rotation is based upon angles whose measures are limited to
values between zero and π . It is often convenient to work with rotations beyond
that range. A rotation r by an angle π about a point O is defined as follows. First,
r(O) = O. For any other point P, r(P) is the point on (·OP")op. which is the same
distance from O as P is. Such a rotation is often called a half-turn.

If π < θ < 2π , a rotation r of angle θ is defined to be the rotation by 2π−θ in
the opposite direction. If θ > 2π , there is a unique integer m such that

θ = θ ′+2mπ
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6 12 Isometries

where θ ′ is between 0 and 2π (by the division algorithm). In this case, define the
rotation by angle θ to be the same as the rotation by angle θ ′. If θ < 0, define the
rotation by θ to be the same as the rotation by −θ in the opposite direction. Finally,
when convenient, the identity transformation can be considered as a rotation by 0.

Theorem 12.6. A rotation is a bijection.

Proof. Let r be a rotation by an angle θ about a point O and let R be a ray ema-
nating from O. There are exactly two rays which form an angle of θ with R. The
method described above chooses exactly one of those two rays. Therefore, r defines
a bijection of the rays emanating from O. Furthermore, r is a bijection between the
points of R and those of r(R). Since any point other than O in E is on exactly one of
these rays, r is a bijection of the points of E. "#

Theorem 12.7. A rotation is an isometry.

Proof. Let r be a rotation about the point O. First, consider a segment of the form
OP. Then both OP and Or(P) are radii of the same circle, so |OP| = |Or(P)|.

Now consider a segment pq where neither p nor q is the same as O. Label P =
r(p) and Q = r(q). Then

|Op| = |OP| & |Oq| = |OQ|

as in each case, the two segments are radii of the same circle. Furthermore, ∠qOQ-
∠pOP as they both have a measure of θ . There are three cases to consider, depend-
ing upon whether (1) P is in the interior of ∠qOQ, (2) P is on the ray ·OQ", or (3) P
is in the exterior of ∠qOQ (note that P cannot be along ·OP" unless θ is a multiple
of 2π , in which case r is the identity). In the first case,

(∠pOq) = (∠pOP)− (∠POq) = (∠qOQ)− (∠POq) = (∠POQ).

In the second case,

(∠pOq) = (∠pOP) = (∠qOQ) = (∠POQ).

In the third case,

(∠pOq) = (∠pOP)+(∠POq) = (∠qOQ)+(∠POq) = (∠POQ).

In each of these cases, though, ∠pOq- ∠POQ. By the S ·A ·S triangle congruence
theorem,*pOq-*POQ, and hence |pq| = |PQ|. "#

12.3 Reflection

Let ! be a line. Define a map s, the reflection about !, as follows. For any point P
which is on !, define s(P) = P. For any point P which is not on !, consider the line
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12.3 Reflection 7

through P which is perpendicular to !. Let s(P) be the point on this line which is the
same distance from ! as P, but on the opposite side of ! from P.

Theorem 12.8. A reflection is an isometry.

Proof. Let s be a reflection about a line !. It is clear that s, which fixes the points
on ! and swaps the points on the two sides of !, is an automorphism of the points of
the Euclidean plane. There is a bit more work to do to verify that s also preserves
segment length.

Let P and Q be two points and let p = s(P) and q = s(Q). If both P and Q are on
!, then p = P and q = Q, so certainly |pq| = |PQ|. If only one of the points is on !,
say P, then the points P, q, and Q form a triangle. Since q = s(Q), the line ! bisects
qQ. Label this intersection point x. Then

px = Px (∠pxq) = π/2 = (∠PxQ) qx- Qx

so by the S ·A ·S triangle congrunce theorem,*pxq-*PxQ and |pq| = |PQ|.
If neither P nor Q lie on !, then pqQP is a quadrilateral. The line ! bisects both

pP and qQ at points which we label y and z, respectively. Then

py- Py yz = yz zq- zQ
∠pyz- ∠Pyz ∠yzq- ∠yzQ.

By the S ·A ·S ·A ·S quadrilateral congruence theorem, pqzy- PQzx and so |pq| =
|PQ|. In all cases, s preserves segment length, so s is an isometry. "#

A fundamental aspect of a reflection is the way that it effects rotation directions.
Let τ be an isometry. Let ∠ABC be an angle with measure θ and let r1 be the rotation
by an angle of θ centered at B which maps ·BA" to ·BC". Since τ is an isometry,
it preserves angle measure, and so

(∠τ(A)τ(B)τ(C)) = θ .

Therefore, there is a rotation r2 centered at r(B) by an angle θ which maps
· τ(B)τ(A) " to · τ(B)τ(C) ". If, for every angle ∠ABC, r1 and r2 are rotations
in opposite directions, then τ is said to be an orientation reversing isometry. If, on
the other hand, the rotations are always in the same direction, τ is said to be an
orientation preserving isometry.

Theorem 12.9. A reflection is an orientation reversing map.

Proof. Let s be a reflection. Given an angle ∠ABC, let r1 be the rotation centered
at B which maps · BA " to · BC ". Additionally, for convenience, suppose that
|BA|= |BC| in which case r1(A) = C. Let r2 be the rotation which maps ·s(B)s(A)"
to · s(B)s(C)". We would like to investigate the possibility that r1 and r2 might be
in the same direction (and ultimately to rule out that possibility). In order to do this,
consider the translation t which maps B to s(B). Since both s and t are isometries,
and since |BA| = |BC|,
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reflection is an orientation 
reversing map. 
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8 12 Isometries

|s(B)s(A)| = |s(B)s(C)| = |t(B)t(A)| = |t(B)t(C)|.

That is, the four points s(A), s(C), t(A) and t(C) all lie on a circle. In addition, note
that the direction of translation of t is perpendicular to the line of reflection of s, so:
A, s(A), and t(A) are collinear, as are C, s(C), and t(C).

In particular, the segments s(A)t(A) and s(C)t(C) are parallel. Now r1 and r2 are
rotations by the same angle. If r1 and r2 are in the same direction as well, then (re-
ferring back to the definition of rotation) the segments s(A)t(C) and s(C)t(A) must
be parallel. Hence the quadrilateral s(A)s(C)t(C)t(A) is really a parallelogram. In
fact, we can be even more specific: the only parallelograms which can be inscribed
in circles are rectangles. Even in these remaining fairly specific cases there is a prob-
lem: r2, which maps s(A) to s(C), will map t(C) to t(A) rather than the other way
around. We can conclude then that s is an orientation reversing isometry. "#

With these three basic types of isometries now defined, we are well underway
in the process of identifying all Euclidean isometries. In fact, we will see that re-
flections alone generate all other isometries. Further, we will see that other than
translation, reflection, and rotation, there is only one other type of Euclidean isome-
try, the glide reflection. It is a composition of a reflection and a translation parallel to
the line of reflection, but we will postpone a more thorough discussion of this final
isometry until after we have studied these isometries from an analytic point of view.
One final result bears mention before moving to that new perspective. Its proof is
left to the reader.

Lemma 12.2. The composition of two orientation preserving isometries is an ori-
entation preserving isometry. The composition of an orientation preserving and an
orientation reversing isometry is an orientation reversing isometry. The composition
of two orientation reversing isometries is an orientation preserving isometry.

Eventually we will see that every isometry can be written as a composition of re-
flections (in fact, as a composition of at most three of them). Combining this lemma
with the fact that reflections are orientation preserving makes it easy to classify all
isometries as orientation preserving or reversing– those that can be written as a com-
position of one or three reflections are orientation reversing, while those that can be
written as a composition of two reflections are orientation preserving.

Exercises

12.1. Let τ be an isometry and let r be a ray with endpoint O. Write τ(r) for the
image of r under τ , i.e.,

τ(r) = {τ(P)|P ∈ r}.

Prove that τ(r) is also a ray, and that the endpoint of τ(r) is τ(O).

12.2. Let τ be an isometry. For any segment AB, show that τ(AB) = {τ(P)|P ∈ AB}
is also a segment. Show that the endpoints of this image are τ(A) and τ(B).

12.3. Let τ be an isometry and let C be a circle with center O. Prove that τ(C) is
also a circle, and that τ(O) is the center of τ(C).
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12.4. Prove that an isometry maps half-planes to half-planes.

12.5. Prove that a translation is a bijection.

12.6. In the proof that translation is an isometry, the second case, when P and Q
are parallel to the direction of translation, itself has several cases. Only one of these
was proven in the text. List the other possible cases and show that the result holds
in those cases as well.

12.7. Let t be a translation. Show that t is completely determined by what it does
to one point. In other words, suppose it is known that t(P) = Q. Show that for any
other point P′, t(P′) can be determined (that there is only one possibility for it).

12.8. Prove the other two cases needed to complete the proof that rotation “turns”
all points by the same amount (theorem 12.4).

12.9. What is the minimum number of points required to completely determine a
reflection?

12.10. What is the minimum number of points required to completely determine a
rotation?

12.11. Show that the composition of two reflections about perpendicular lines is a
half-turn.

12.12. Show that the composition of two half-turns is the identity map or a transla-
tion. Hint: let T1 and T2 be the two half-turns, with fixed points P1 and P2 respec-
tively. Let T = T1◦T2 and let x be a third point. Then T translates x a distance 2|P1P2|
parallel to the line P1P2.

12.13. Let !1 and !2 be two perpendicular lines, intersecting at a point P. Let t1 be
the reflection about line !1 and let t2 be the reflection about line !2. Let Q be any
point in the plane (except P), and let Q′ = t1 ◦ t2(Q). Show that P is the midpoint of
the line segment QQ′.

12.14. Suppose that r is a (non-identity) rotation and that r has an invariant line !
(so that r(!) = !). Prove that r must be a half turn

12.15. Give a characterization of all of the circles which are invariant under a (non-
identity) rotation r. Give a characterization of all of the circles which are invariant
under a reflection s.

12.16. Let P1 and P2 be two congruent polygons. Prove that there is an isometry
which maps P1 to P2.

12.17. Let C1 and C2 be two circles interesting at two points, and let A be one
of those points. Describe how to find points B on C1 and C on C2 so that A lies
on the line segment BC and is the midpoint of that segment. Hint: consider a
transformation– in particular, a rotation.
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The coordinate plane, a familiar sight for all calculus 
students.
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Chapter 13
Analytic Geometry

If you were following along in the exercises in the chapters on neutral geometry, you
already have a good working model for Euclidean geometry– namely, the Cartesian
plane. Other than to use it for illustration, though, we have not made much use of
this model. That is about to change, though, because there is a lot that can be done
with the coordinate system provided by the Cartesian plane model. Furthermore,
that coordinate system is not a coincidence of that particular model, but must occur
in any valid model for Euclidean geometry. It can be constructed as follows. Let r1
be a ray with base point O, and let r2 be the counterclockwise rotation of r1 around
O by π/2. The rays r1 and r2 are the foundation for a coordinate system. The point O
is called the origin of the system. The line containing r1 is called the x-axis; the line
containing r2 is called the y-axis. Note that the construction of this system begins
with an arbitrary choice of a ray; there is no one canonical coordinate system.

Using “signed distance,” every point on each axis can be identified with a real
number (and conversely, every real number corresponds to a point on each of the
axes) using the rule:

if P is on ri, associate P with |OP|
if P is on rop

i , associate P with −|OP|.
Let Q be a point. There is a unique line through Q which is perpendicular to

the x-axis. It intersects the x-axis, and the real number associated to that point of
intersection is called the x-coordinate of Q. Similarly, there is a unique line through
Q which is perpendicular to the y-axis. It intersects the y-axis, and the real num-
ber associated to that point of intersections is called the y-coordinate. These two
coordinates uniquely define Q, so any point is identified by an ordered pair of real
numbers (x,y). With a coordinate system now established, it is time to revisit some
of the basic geometric objects and concepts from this new perspective.

Theorem 13.1. The Distance Formula Let P and Q be two points with coordinates
(x1,y1) and (x2,y2) respectively. Then

|PQ| =
√

(x2− x1)2 +(y2− y1)2.
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The distance formula, by way of the 
Pythagorean theorem.

x1 x2

x1, y1 x2, y1

x1, y1 x2, y1

x2, y2

13. Analytic Geometry192



2 13 Analytic Geometry

Proof. First suppose that P and Q have the same y-coordinate, so y1 = y2. In this
case P and Q lie on a line parallel to the x-axis so the four coordinates (x1,y1),
(x2,y2), (x1,0), (x2,0) form a rectangle. Since opposite sides of a rectangle are con-
gruent, |PQ| is equal to the distance from (x1,0) to (x2,0). Recall that the distance
from each of the points (xi,0) to the origin is xi if xi > 0 and −xi if xi < 0. Recall
also that if A∗B∗C, then

|AC| = |AB|+ |BC|.

Combining these facts, it is easy to calculate the distance from (x1,0) to (x2,0),
although there are several possible configurations:

0 < x1 < x2: d = x2− x1
0 < x2 < x1: d = x1− x2
x1 < 0 < x2: d = x2 +(−x1)
x2 < 0 < x1: d = x1 +(−x2)
x1 < x2 < 0: d = (−x1)− (−x2)
x2 < x1 < 0: d = (−x2)− (−x1)

In each of these cases, d = |x2− x1|. Note that since y2 = y1,
√

(x2− x1)2 +(y2− y1)2 =
√

(x2− x1)2 = |x2− x1|.

This confirms the formula for the case when y1 = y2, and of course a similar argu-
ment can be used if x1 = x2.

Now suppose that x1 += x2 and y1 += y2. Let R be the point with coordinates
(x2,y1). Then P and R have the same y-coordinates and Q and R have the same
x-coordinates, and !PR" and !QR" are perpendicular. Therefore*PQR is a right
triangle with hypotenuse PQ. By the Pythagorean theorem,

|PQ|2 = |PR|2 + |QR|2.

Referring back to the first part of the proof,

|PR| = |x2− x1| and |QR| = |y2− y1|

so
|PQ|2 = |x2− x1|2 + |y2− y1|2.

Taking a square root of both sides of the equation gives the desired formula. "#

From the distance formula it is easy to derive the standard form for the equation
of a circle. Let C be a circle with radius r and center at the point with coordinates
(h,k). By definition, a point (x,y) is on C if and only if it is a distance r from (h,k):

√
(x−h)2 +(y− k)2 = r.

Squaring both sides of the equation gives the standard form:
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Using similar triangles to establish a constant ratio of �“rise�” to 
�“run,�” the slope of the line.

Two special cases: lines which are 
parallel to the axes.
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P
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x0, 0
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x x0
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(x−h)2 +(y− k)2 = r2.

In the Cartesian model, lines are given by equations of the form Ax + By = C.
Again, this structure is rather intrinsic to Euclidean geometry itself and not a pecu-
liarity of the Cartesian model. Rather than working with this standard form of the
line, we will look first at vertical and horizontal lines, then use the point-slope form
for the rest (all of which can be put into standard form). Let P and Q be two points
with the same x-coordinate, x0. Then !PQ" is perpendicular to the x-axis and any
other point on that line will also have x-coordinate x0. Therefore, a point lies on
! PQ " if and only if it has an x-coordinate of x0, so the equation for ! PQ " is
x = x0. These are the vertical lines. Similarly, if P and Q have the same y-coordinate
y0, then the points of ! PQ " must satisfy the equation y = y0, and ! PQ " is
called a horizontal line. Now consider a line through two points that do not share a
coordinate.

Theorem 13.2. The Point-Slope Form of a Line. Let P and Q be two points with
coordinates (x1,y1) and (x2,y2). If x1 += x2, the slope of !PQ" is defined to be the
real number

m =
y2− y1

x2− x1
.

A point with coordinates (x,y) lies on ! PQ " if and only if x and y satisfy the
equation

y− y1 = m(x− x1).

This is the “point-slope” form for a line.

Proof. Assume P and Q are chosen so that x1 < x2. We will only show that a point
R between P and Q must satisfy the point-slope equation and leave the other pos-
sibilities (when R ∗P ∗Q and when P ∗Q ∗R) to the reader. Let O1 be the point at
coordinate (x2,y1) and let O2 be the point at coordinate (x,y1). The two right tri-
angles *PO1Q and *PO2R share ∠P, so by A ·A ·A triangle similarity they are
similar. Therefore, the ratios of corresponding legs are equal:

|y− y1|
|x− x1|

=
|y2− y1|
|x2− x1|

.

With our setup, x1 < x < x2, so

|x− x1| = x− x1 and |x2− x1| = x2− x1.

Furthermore, either y1 < y < y2, in which case

|y− y1| = y− y1 and |y2− y1| = y2− y1,

or y1 > y > y2, in which case

|y− y1| =−(y− y1) and |y2− y1| =−(y2− y1).
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The image of (x,y) is the fourth vertex of the parallelo-
gram. It is therefore the unique intersection of two lines.

1

2

3

4
a, b

x0, y0
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In either case,
y− y1

x− x1
=

y2− y1

x2− x1
= m.

Multiplying through by the denominator gives the “point-slope” form

y− y1 = m(x− x1). "#

The more common form for the equation of a line, particularly at the high school
level, is the slope-intercept form. Any line other than a vertical line will intersect
the y-axis at a point with coordinates (0,b). This point of intersection is called the
y-intercept. The slope-intercept form of the equation of a line with slope m and
intercept b is y = mx + b. It can be derived from the point-slope form by simply
expanding on the right and solving for y. In this formulation, it is clear that the slope
of a line, defined above using two points on it, does not depend upon which two
points are chosen.

13.1 Analytic Isometries

Once each point of the coordinate plane has been assigned a uniquely identifying
coordinate pair, an isometry can be described by a (matrix) equation. We will do
this for selected cases, and describe a strategy for computing the equations of other
isometries in terms of these.

Theorem 13.3. Translations. Let t be a translation. Let (a,b) be the coordinates
of t(0,0), the translation of the origin. Let P have coordinates (x,y). Then t(P) has
coordinates (x+a,y+b). Using a matrix form to represent this pair of equations:

t
(

x
y

)
=
(

x+a
y+b

)

Proof. Let !1 be the line through (0,0) and (a,b). Let (x0,y0) be a point which is
not on !1, and let !2 be the line through (0,0) and (x0,y0). The points (0,0), (a,b)
and (x0,y0) are three vertices of a parallelogram. By definition, t(x0,y0) will be the
fourth vertex. To find those coordinates let !3 be the line through (x0,y0) which is
parallel to !1. Unless a = 0, it will have slope b/a, so the equation for !3 is

y− y0 =
b
a
(x− x0).

Let !4 be the line through (a,b) parallel to !2. Unless x0 = 0, it has slope y0/x0, so
the equation of !4 is

y−b =
y0

x0
(x−a).

The fourth vertex of the parallelogram is the intersection of !3 and !4. We can find
it by solving the system of equations
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Rotations are best handled using a polar coordinates 
approach and the addition laws for sine and cosine.

sin

cos
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y− y0 =
b
a
(x− x0)

y−b =
y0

x0
(x−a)

Solving each for y and setting them equal

b
a
(x− x0)+ y0 =

y0

x0
(x−a)+b.

With a little algebra this equation can be solved for x.
(

b
a
− y0

x0

)
x =−a · y0

x0
+b+

b
a
· x0− y0

= a
(

b
a
− y0

x0

)
+
(

b
a
− y0

x0

)
x0

=⇒ x = x0 +a.

Plug this in to find y

y− y0 =
b
a
((x0 +a)− x0)

=⇒ y = y0 +b.

There are a few special cases for which this proof does not apply: if a = 0, or x0 = 0,
or if (x0,y0) is on the line through (0,0) and (a,b). These cases are left to the reader.

"#

Theorem 13.4. Rotations about the origin. Let r be a counterclockwise rotation
by an angle θ about the origin. Matrix equations for this isometry are

r
(

x
y

)
=
(

cosθ · x− sinθ · y
sinθ · x+ cosθ · y

)

or equivalently

r
(

x
y

)
=
(

cosθ −sinθ
sinθ cosθ

)(
x
y

)
.

Proof. This problem is best approached from a polar coordinates point of view. Let
P be a point with coordinates (x,y). Let ρ be the distance from P to the origin. Let
φ be the angle of the counterclockwise rotation which maps the positive real axis to
the ray from the origin through P (we may restrict φ to a value between 0 and 2π
although this is not really necessary). Then,

(
x
y

)
=
(

ρ cosφ
ρ sinφ

)

and so
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Two reflections. All others can be generated by compos-
ing these with the appropriate translations and rotations.

x, y

x, y

x, y

sx

sy
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r
(

x
y

)
=
(

ρ cos(φ +θ)
ρ sin(φ +θ)

)

This expression may be expanded using the addition rules for sine and cosine:

r
(

x
y

)
=
(

ρ(cosφ cosθ − sinφ sinθ)
ρ(cosφ sinθ + sinφ cosθ)

)

=
(

x · cosθ − y · sinθ
x · sinθ + y · cosθ

)
. "#

Theorem 13.5. Reflections about an axis. The matrix equations for sx, the reflec-
tion across the x-axis and sy, the reflection across the y-axis are

sx

(
x
y

)
=
(

1 0
0 −1

)(
x
y

)
and sy

(
x
y

)
=
(
−1 0
0 1

)(
x
y

)
.

Proof. Let P be a point with coordinates (x0,y0). Then sx(P) lies on the line through
P perpendicular to the x-axis, x = x0. In addition sx(P) lies a distance of y0 from the
x-axis along this line, but unless P is on the x-axis, sx(P) is not equal to P. Therefore
the y-coordinate of sx(P) is −y0, so

sx(P) =
(

x0
−y0

)
=
(

1 0
0 −1

)(
x0
y0

)

as desired. The case for the reflection about the y-axis is similar.

The equations for the isometries described so far are the building blocks for de-
scribing arbitrary isometries. For instance, by combining translations and rotations
about the origin, it is possible to give equations for a rotation around any point.

Theorem 13.6. Arbitrary rotations. Let r be a rotation by an angle θ about a
point P. Let r0 be the rotation by the same angle about the origin O, and let t be the
translation which maps P to O. Then

r = t−1 ◦ r0 ◦ t.

Proof. Let τ denote the isometry t−1 ◦ r0 ◦ t. First note what τ does to the point P:

τ(P) = t−1 ◦ r0 ◦ t(P) = t−1 ◦ r0(O) = t−1(O) = P,

so τ , like r, fixes P. Now let Q be some other point, not fixed by r. Because t, r, and
r0 are isometries,

Pr(Q)- PQ- Ot(Q)- Or0t(Q).

Further, r0 is defined so that

∠t(Q)Or0t(Q)- ∠QPr(Q).

By S ·A ·S,
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Computing arbitrary rotations by 
(1) translating the center of rotation to the origin; 
(2) rotating about the origin; 
(3) translating the origin back to the original center of 
rotation.

The verification of this computation.

P

t

P

Q

t 1

r0

O

t

P

Q

O

r0

r

t

t

t 1
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*t(Q)Or0t(Q)-*QPr(Q)

and so
Qr(Q)- r0t(Q)t(Q).

Note as well that PQ ‖ Ot(Q) and ∠r0t(Q)t(Q)O - ∠r(Q)QP, so the segments
r0t(Q)t(Q) and r(Q)Q are parallel. As we have seen (Lemma 12.1) this means that
r(Q)Qt(Q)r0t(Q) is a parallelogram.

Now let’s examine what will happen to the point r0t(Q) when we apply the trans-
formation t−1. The image t−1r0t(Q) will lie on the ray from r0t(Q) which is parallel
to t(Q)Q and at a distance of |t(Q)Q| from r0t(Q). Looking back to the previous
paragraph, this point is r(Q). Hence t−1r0t(Q) = r(Q). Since this is true for all
points Q, r = t−1r0t. "#

Example 13.1. Find equations for a counterclockwise rotation r by an angle of π/4
about the point (3,2).

Let t be the translation mapping (3,−2) to (0,0). Let r0 be the counterclockwise
rotation by π/4 around the origin. Then r = t−1 ◦ r0 ◦ t so

r
(

x
y

)
= t−1 ◦ r ◦ t

(
x
y

)

=
(

cosπ/4 −sinπ/4
sinπ/4 cosπ/4

)(
x−3
y+2

)
+
(

3
−2

)

=
(√

2/2 −
√

2/2√
2/2

√
2/2

)(
x−3
y+2

)
+
(

3
−2

)

=
(√

2x/2−
√

2y/2−5
√

2/2+3√
2x/2+

√
2y/2−

√
2/2−2

)

Using similar techniques, we can find equations for reflections other than the
reflections about the x- and y-axes. We will leave the details to the reader, but provide
a general recipe and work an example. Suppose that s is a reflection about a line !
which passes through the origin. Then there is a rotation r which rotates ! to lie
along the x-axis. If sx is the reflection about the x-axis, then s may be calculated by

s = r−1 ◦ sx ◦ r.

If ! does not pass through the origin, there is another step. Let t be a translation
which takes one of the points on ! (such as the y-intercept) to the origin. Then as
before, let r be the rotation which takes this to the x-axis and let sx be the reflection
about this axis. The reflection s can then be calculated by

s = t−1 ◦ r−1 ◦ sx ◦ r ◦ t.

For students familiar with linear algebra, we are describing a change of basis here.
In this case, r ◦ t changes from the given basis to a preferred basis (so that the line
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Compute arbitrary reflections by 
(1) translating the line of reflection to the origin; 
(2) rotating that line to the x-axis;
(3) reflecting about the x-axis;
(4) rotating back; and
(5) translating back.

P

t

r

sx t 1

r 1
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of reflection lies along the x-axis). In this alternate basis the reflection can be done.
Then t−1 ◦ r−1 restores the original basis.

Example 13.2. Find equations for the reflection about the line y = 3x.

Let r be the rotation which turns y = 3x to the x-axis and let sx be the reflection
about the x-axis. The first step is to find the equation for this rotation. Without
calculating the angle of rotation θ , sinθ and cosθ may be calculated. Since the
slope of the line is 3, θ is an angle in a right triangle with adjacent side length 1 and
opposite side length 3. Thus cosθ = 1/

√
10 and sinθ = 3/

√
10, so

r
(

x
y

)
=
(

1/
√

10 −3/
√

10
3/
√

10 1/
√

10

)(
x
y

)

=
1√
10

(
1 −3
3 1

)(
x
y

)

and
r−1
(

x
y

)
=

1√
10

(
1 3
−3 1

)(
x
y

)

Using this, we can calculate s:

s
(

x
y

)
= r−1 ◦ sx ◦ r

(
x
y

)

=
1√
10

(
1 3
−3 1

)[(
1 0
0 −1

)[
1√
10

(
1 −3
3 1

)(
x
y

)]]

=
1

10

(
1 3
−3 1

)(
1 −3
−3 −1

)(
x
y

)

=
1

10

(
−8 −6
−6 8

)(
x
y

)

=
(
−4x/5−3y/5
−3x/5+4y/5

)
.

A particularly useful calculation ends this section.

Theorem 13.7. Let τ1 be the composition of a rotation by θ1 about the point (h1,k1)
followed by a translation by (x1,y1). Let τ2 be the composition of a rotation by
θ2 about the point (h2,k2) followed by a translation by (x2,y2). Then τ2 ◦ τ1 is a
composition of a rotation by θ1 +θ2 followed by a translation.

Proof. Analytic equations for both τ1 and τ2 are given by

τi

(
x
y

)
=
(

cosθi −sinθi
sinθi cosθi

)(
x−hi
y− ki

)
+
(

hi
ki

)
+
(

xi
yi

)
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Plugging

τ1

(
x
y

)
=
(

cosθ1 −sinθ1
sinθ1 cosθ1

)(
x−h1
y− k1

)
+
(

h1 + x1
k1 + y1

)

into τ2 results in the rather messy composition

τ2 ◦ τ1

(
x
y

)
=
(

cosθ2 −sinθ2
sinθ2 cosθ2

)[(
cosθ1 −sinθ1
sinθ1 cosθ1

)

(
x−h1
y− k1

)
+
(

h1 + x1
k1 + y1

)
−
(

h2
k2

)]
+
(

h2 + x2
k2 + y2

)
.

This matrix formula can be rewritten as
(

cosθ2 −sinθ2
sinθ2 cosθ2

)(
cosθ1 −sinθ1
sinθ1 cosθ1

)(
x−h1
y− k1

)
+
(

H
K

)

where H and K are constants, and using the addition formulas for sine and cosine it
can be simplified even further

(
cosθ2 −sinθ2
sinθ2 cosθ2

)(
cosθ1 −sinθ1
sinθ1 cosθ1

)

=
(

cosθ2 cosθ1− sinθ2 sinθ1 −cosθ2 sinθ1− sinθ2 cosθ1
sinθ2 cosθ1 + cosθ2 sinθ1 −sinθ2 sinθ1 + cosθ2 cosθ1

)

=
(

cos(θ1 +θ2) −sin(θ1 +θ2)
sin(θ1 +θ2) cos(θ1 +θ2)

)

Therefore

τ2 ◦ τ1

(
x
y

)

=
(

cos(θ1 +θ2) −sin(θ1 +θ2)
sin(θ1 +θ2) cos(θ1 +θ2)

)(
x−h1
y− k1

)
+
(

H
K

)

=
(

cos(θ1 +θ2) −sin(θ1 +θ2)
sin(θ1 +θ2) cos(θ1 +θ2)

)(
x−h1
y− k1

)
+
(

h1
k1

)
+
(

H−h1
K− k1

)

The resulting equations are in the form of a rotation by θ1 + θ2 about the point
(h1,k1) followed by a translation in the direction (H− h1,K− k1). In fact, we will
see in the next chapter that if this composition has a fixed point, then it must be a
rotation. "#

Exercises

13.1. Prove the midpoint formula.

13.2. Let !1 and !2 be perpendicular lines, neither of which is a vertical line. Show
that the slopes of !1 and !2 are negative reciprocals of one another. Show that the
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converse is also true (if slopes are negative reciprocals, then the lines are perpendic-
ular.

13.3. Give the analytic equation for the counterclockwise rotation by π/2 about the
point (3,1).

13.4. Give the analytic equation for the reflection about the line y = 2x.

13.5. Give the analytic equation for a counterclockwise rotation by 30◦ about the
point (2,0).

13.6. Write the analytic equation for a scaling by a factor of 3 centered at the point
(2,0).

13.7. Write the analytic equation for a counterclockwise rotation by π/60 about the
point (1,1).

13.8. Consider a triangle with vertices at the coordinates (0,0), (2a,0), and (a,a
√

3).
Verify that the triangle is equilateral.

13.9. Find the equation of the circle which passes through the three points: (0,0),
(4,2) and (2,6).

13.10. Consider a triangle*ABC with vertices at coordinates A = (0,0), B = (1,0),
C = (a,b). Find the coordinates of the circumcenter of*ABC (in terms of a and b.

13.11. With*ABC as in the previous problem, find the coordinates of the orthocen-
ter of*ABC (in terms of a and b.

13.12. With *ABC again as in the previous two problems, find the coordinates of
the centroid of*ABC (in terms of a and b.

13.13. With *ABC as in the previous problems, find the equation of the circumcir-
cle.

13.14. Find the analytic equation for the reflection about the line y = mx.

13.15. Let T be the triangle with vertices (0,0), (1,1), and (2,0). Find the coordi-
nates of the centroid.

13.16. Complete the proof of the derivation of the translation formula by filling in
the details of the missing cases.

13.17. (For students who have studied linear algebra). Compute the eigenvalues and
eigenvectors of the matrices for reflections about the x and y axes. Interpret your
result geometrically. Compute the eigenvectors and eigenvalues for a rotation about
the origin. Again, interpret your result.
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13.18. Let (ax,ay), (bx,by), (cx,cy) be the coordinates of the three vertices of a
triangle. Prove that the centroid of that triangle has coordinates

(
ax +bx + cx

3
,

ay +by + cy

3

)
.

13.19. One way to think of the result of the previous problem is that the centroid is
the center of mass of a system of three points of equal masses. Now if we altered
the masses of those three points so that they were not all equal, the resulting center
of mass would shift to other points in the triangle. Let us write ma for the “mass” at
point A, mb for the “mass” at point B, and mc for the “mass” at point c. The center
of mass is then

(x,y) =
(

maax +mbbx +mccx

ma +mb +mc
,

maay +mbby +mccy

ma +mb +mc

)
.

In this case, we called [ma : mb : mc] the barycentric coordinates of the point (x,y).
Show that for any k += 0, [ma : mb : mc] and [kma : kmb : kmc] represent the same
point (for this reason, it is common to normalize barycentric coordinates so that
ma +mb +mc = 1).

13.20. For a given triangle*ABC, show that every point P = (x,y) in the plane can
be represented by some set of barycentric coordinates [ma : mb : mc]. Show that all
three coordinates have the same sign if P lies inside the triangle. Show that at least
one of the coordinates must be zero if P is on the triangle. Show that the coordinates
must include both a positive and a negative value if P lies outside the triangle.

13.21. Consider the triangle*ABC where A = (0,0), B = (2,0) and C = (0,4). Find
barycentric coordinates for the point (1,1).

13.22. This problem relates barycentric coordinates (introduced in the last problem)
to trilinear coordinates (introduced in the exercises in the concurrences chapter). Let
[ω1 : ω2 : ω3] be the barycentric coordinates of a point with respect to the triangle
*ABC. Show that the trilinear coordinates of this point are

[ω1/a : ω2/b : ω3/c]

where a = |BC|, b = |AC|, and c = |AB|.
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Two fixed points guarantee a fixed line. The key 
to the proof is the fact that the triangle inequality 
becomes an equality if and only if the three points 
are collinear, and in order.

Recall Pasch�’s lemma: if a line intersects one side 
of a triangle (not a vertex), then it must intersect 
one of the other two sides. As a consequence, if an 
isometry fixes three non-collinear points, then it 
must fix all points.
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Chapter 14
Classification of Isometries

The task of classifying all isometries may seem like a daunting one. But by analyz-
ing the fixed points of isometries, we can show that every isometry can be written
as a composition of at most three reflections. Then it is simply a matter of working
through every possible combination of these reflections.

Definition 14.1. Fixed Points. A point P is a fixed point of a transformation τ if
τ(P) = P.

Theorem 14.1. If an isometry τ fixes two distinct points A and B, then τ fixes all
points on !AB".

Proof. Let C be a third point on the line. Then

|AC| = |τ(A)τ(C)| = |Aτ(C)|
|BC| = |τ(B)τ(C)| = |Bτ(C)|

There are a few cases to consider depending upon the ordering of the points A, B,
and C. In this argument, we will assume that A ∗C ∗B (the other cases are worked
in the same way). Recall from the triangle inequality that |AC|+ |CB| = |AB| if and
only if A∗C ∗B. Then

|AB| = |AC|+ |BC| = |Aτ(C)|+ |Bτ(C)|

and therefore A ∗ τ(C) ∗ B. Furthermore, since τ is an isometry, |Aτ(C)| = |AC|.
Since there is only one point that distance from A on ·AB", and it is C, τ(C) = C.
Since C is as an arbitrary point on !AB", all points of !AB" are fixed. "#

Theorem 14.2. If an isometry τ fixes three noncollinear points A, B and C, then τ
fixes all points (it is the identity isometry).

Proof. Let P be any other point. Choose a point Q1 on AB other than A or B. From
the previous result, Q1 is a fixed point of τ . By Pasch’s lemma, the line ! PQ1 "
intersects one of the other sides of*ABC. Label this point Q2. Again, because of the
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Two fixed points implies either the identity or a 
reflection. By S-S-S the two triangles are congru-
ent, but there are only two ways to construct the 
angle at B, one on each side of the line.

Any isometry which has exactly one fixed point 
has to be a rotation. Another useful characteriza-
tion: if a non-identity isometry is orientation 
preserving and has a fixed point, then it must be a 
rotation.

O

PQQ

A

BC

C

P

14. Classi cation of Isometries212



2 14 Classification of Isometries

previous result, Q2 is fixed. Therefore, all points of Q1Q2 are fixed by τ , including
P. Since P was chosen arbitrarily, all points are fixed by τ . "#

Theorem 14.3. Suppose that two isometries τ1 and τ2 agree on three noncollinear
points A, B, C. That is,

τ1(A) = τ2(A) τ1(B) = τ2(B) τ1(C) = τ2(C).

Then τ1 = τ2.

Proof. Look at the behavior of the composition τ−1
1 ◦ τ2 on the three fixed points:

τ1(A) = τ2(A) =⇒ τ−1
1 ◦ τ2(A) = A

τ1(B) = τ2(B) =⇒ τ−1
1 ◦ τ2(B) = B

τ1(C) = τ2(C) =⇒ τ−1
1 ◦ τ2(C) = C

Since τ−1
1 τ2 fixes three noncollinear points, it is the identity. Therefore τ−1

2 is the
inverse not just of τ2 but of τ1 also. Since a bijection is completely determined by
its inverse, τ1 = τ2. "#

Theorem 14.4. If τ is an isometry which fixes a line, but τ is not the identity isome-
try, then τ is the reflection about that line.

Proof. Let A and B be two distinct points on the fixed line !, and let C be a point
which is not on !. Let s be the reflection about !. The isometry τ acts like the reflec-
tion s for the two points A and B (it fixes them). According to the previous result, if
in addition τ and s both have the same effect on C, then τ and s must be the same.
So let us look more closely at τ(C). By the S ·S ·S triangle congruence theorem,

*ABC -*τ(A)τ(B)τ(C)-*ABτ(C)

so
∠ABC - ∠ABτ(C).

Furthermore, because τ preserves segment length, τ(C) is located a distance |BC|
from B. Only two points meet both of those criteria: C itself and its reflection about
!, s(C). Now τ(C) cannot equal C, for if this were the case, τ would fix three non-
colinear points, and so would be the identity. Therefore τ(C) = s(C). Since A and
B are fixed by both τ and s, τ and s agree on three non-collinear points. Therefore
τ = s. "#

Theorem 14.5. If τ is an isometry which fixes exactly one point, then τ is a rotation.

Proof. Let O be the fixed point of τ and let P be another point. Observe that if τ is
a rotation, then τ(P) will not be on the ray ·OP". It will be on some other ray. So
we begin by showing that τ does indeed behave that way. Since τ is an isometry,

|OP| = |τ(O)τ(P)| = |Oτ(P)|.
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From a congruent triangle to any other congruent 
triangle in (at most) three reflections.
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14 Classification of Isometries 3

There is only one point that distance from O along ·OP". That point is P, and if
τ(P) = P, then τ would have two fixed points. Since τ has only one fixed point,
τ(P) cannot lie on ·OP". So τ(P) is on a different ray emanating from O.

Now consider the two rays · OP " and · Oτ(P) ". One possibility is that they
are opposite rays. That case requires a slightly different approach, and is left to the
reader. The more typical situation, though, is that · OP " and · Oτ(P) " are not
opposite rays, and in this case we can let θ = (∠POτ(P)). Let r be the rotation by θ
centered at O which takes P to τ(P). Then τ and r agree on two points, O and P. To
show that τ and r are actually equal, just one more (non-collinear) point is needed.
The correct choice of point simplifies this process: choose Q to be a point on the
angle bisector of ∠POτ(P). Then

(∠POQ) = (∠τ(P)Oτ(Q)) =
θ
2

.

Since an isometry preserves angle measure, τ(Q) lies on one of the two rays ema-
nating from O and forming an angle of θ/2 with ·Oτ(P)". One of these is ·OQ",
but since |OQ| = |Oτ(Q)|, if τ(Q) were to lie on this ray, then τ(Q) = Q, giving
a second fixed point of τ . So τ(Q) must be on the other ray which forms an angle
of θ/2 with · Oτ(P) ", in which case τ(Q) = r(Q). Since τ and r agree on three
non-colinear points, τ = r. "#

Theorem 14.6. The Three Reflections Theorem. Any isometry can be written as a
composition of at most three reflections.

Proof. Any reflection is its own inverse, so any reflection composed with itself
yields the identity transformation. Hence the identity transformation is a compo-
sition of two reflections. Now suppose that τ is an isometry other than the identity
and consider a triangle *ABC. Since τ is not the identity, τ cannot fix all three
vertices of *ABC. Without loss of generality, we may assume that A is a vertex
which is not fixed. The first of the three reflections, s1, is the reflection about the
perpendicular bisector of the segment Aτ(A), so that s1(A) = τ(A). If, in addition,
s1(B) = τ(B) and s1(C) = τ(C), then s1 and τ agree on three noncollinear points, so
s1 = τ and τ is itself a reflection.

Otherwise s1 and τ disagree on at least one of the two other vertices. Without
loss of generality, we may assume that τ(B) += s1(B). To prepare for the second
reflection, label

A1 = s1(A) = τ(A) B1 = s1(B) C1 = s1(C).

The second reflection, s2, is the reflection about the bisector of the angle ∠B1A1τ(B).
Since A1 is on this bisecting line, s2(A1) = A1 = τ(A). Furthermore, Bτ(B) is
perpendicular to the angle bisector and B1 and τ(B) are equidistant from it, so
s2(B1) = τ(B). If, in addition, s2(C1) = τ(C), then s2 ◦ s1 and τ agree on three
noncollinear points and so τ is a composition of two reflections.

If s2(C1) += τ(C), there is one more step. So let
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A composition of two parallel reflections. The 
result is a translation.

A composition of two intersecting reflections. The 
result is a rotation. The point of intersection of the 
two lines is the center of rotation.
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4 14 Classification of Isometries

A2 = s2(A1) = τ(A) B2 = s2(B1) = τ(B) C2 = s2(C1)

and let s3 be the reflection about the line !A2B2". Both A2 and B2 then lie on the
line of reflection, so

s3(A2) = A2 = τ(A) s3(B2) = B2 = τ(B).

What about s3(C2)? The triangles *A2B2C2 and *τ(A)τ(B)τ(C) are both con-
gruent to*ABC (by S ·S ·S), so they are congruent to each other. Then

∠A2B2C2 - ∠τ(A)τ(B)τ(C)

and therefore !A2B2" is a bisector of ∠C2τ(B)τ(C). Furthermore, C2 and τ(C) are
the same distance from the vertex τ(B). Therefore s3(C2) = τ(C), so s3 ◦ s2 ◦ s1 and
τ agree on three noncollinear points, and τ may written as a composition of three
reflections. "#

It would seem like a very daunting task to classify all isometries. It is not as bad as
it would seem, however, and the Three Reflections Theorem gives a strategy for the
classification. For according to that theorem, if we consider all combinations of one,
two, or three reflections, then we will have looked at all isometries. One reflection
is, well, just one reflection. So let’s see what type of isometries we can get when we
compose two reflections. Recall that a reflection is orientation-reversing, and that
the composition of two orientation-reversing isometries is orientation-preserving.
Composing two reflections about the same line just results in the identity mapping.
It is of course more interesting when the two lines are distinct. There are two cases
to consider, depending upon whether the two lines of reflection are parallel or inter-
secting.

Theorem 14.7. Let s1 and s2 be two reflections about parallel lines !1 and !2 sepa-
rated by a distance x. Let r be a ray which is perpendicular to !1 and !2, pointed in
the direction from !1 to !2. Then s2 ◦ s1 is a translation a distance of 2x along r.

Proof. Let τ be the translation along the ray r. If P is any point on !1, then P is fixed
by s1 and then moved a distance of 2x by s2, in the direction described by τ:

s2 ◦ s1(P) = τ(P).

If Q is any point on !2, then s1 moves Q a distance of 2x in the direction opposite τ
and then s2 moves that a distance 4x in the direction of τ . Ultimately,

s2 ◦ s1(Q) = τ(Q).

Since s2 ◦ s1 and τ agree on all points of !1 and !2 (and hence on three non-colinear
points), s2 ◦ s1 = τ . "#

Theorem 14.8. Let s1 and s2 be two reflections about distinct lines !1 and !2 which
intersect at a point P. Then s2 ◦ s1 is a rotation about P.
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A glide reflection. The two components, a 
translation and a reflection commute with one 
another.

Composition of a translation and a reflection when 
the translation is not parallel to the line of reflec-
tion. The result is a glide reflecion.
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14 Classification of Isometries 5

Proof. Note that P is a fixed point of s2 ◦ s1. We have seen that an isometry with
only one fixed point must be a rotation. Let Q be a point on !1. Then s1 fixes Q
and s2 reflects Q about !2. In particular, s2 ◦ s1(Q) += Q, so s2 ◦ s1 is not the identity
isometry.

Now if s2 ◦ s1 fixed any point other than P, it would have to fix the entire line
through that point and P. Since s2 ◦ s1 is not the identity, this would mean that
s2 ◦ s1 would have to be a reflection. But a reflection is an orientation reversing
isometry, while s2 ◦ s1, a composition of two orientation reversing isometries, must
be orientation preserving. Therefore s2 ◦s1 cannot be a reflection, so it can have only
the one fixed point, so it must be a rotation about P. Note: a closer look at the effects
of s2 ◦ s1 on Q reveals that the angle of rotation is twice the angle between the lines
!1 and !2. "#

So the composition of two distinct reflections is either a translation or a rota-
tion. To complete the classification of Euclidean isometries, we must consider what
happens when a third reflection is combined with those translations and rotations.
It turns out that there are four possible cases: two deal with the composition of a
reflection and a translation, and two deal with the composition of a reflection and a
rotation. Keep in mind that, as a composition of three orientation-reversing reflec-
tions, these isometries will all be orientation-reversing.

Let t be a translation a distance d in the direction given by ray r, and let s be a
reflection about a line !. First a special case: suppose that ! is parallel to r. Then the
composition s◦ t moves every point of ! a distance of d and switches the two half-
planes which are separated by !. Therefore s◦ t has no fixed points, so it cannot be
a reflection or rotation. Furthermore, s◦ t is a composition of a orientation reversing
and an orientation preserving isometry, so it is orientation reversing. This means
that s ◦ t cannot be a translation either– it is a new type of isometry called a glide
reflection.

Definition 14.2. Glide Reflection. Let r be a ray and d a positive real number. A
glide reflection a distance d along r is a translation a distance of d along r followed
by a reflection about the line containing r.

Generally speaking, two isometries τ1 and τ2 will not commute with one another.
That is,

τ1 ◦ τ2 += τ2 ◦ τ1.

But there are some exceptions to this. One in particular has to do with glide reflec-
tions: if t is a translation along a line and s is a reflection about that same line, then
s◦ t = t ◦ s.

Lemma 14.1. Let t be a translation by a distance d in the direction of ray r. If τ is
an isometry which agrees with t on a line ! parallel to r, then either τ = t or τ is the
glide reflection a distance of d along r.

Proof. Since τ and t act the same way on !, the isometry τ ◦ t−1 fixes all the points
of !. If in addition it fixes another point, then τ ◦ t−1 is the identity transformations,
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(above) A rotation 
followed by a reflection 
through the center of 
rotation. The result is a 
reflection.
(right) If the line of 
reflection does not pass 
through the rotation 
center, then the composi-
tion is a glide reflection. 
In the three steps to the 
right we locate the 
invariant line of the 
glide.
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6 14 Classification of Isometries

so τ = t. If τ ◦ t−1 does not fix another point, then, as we have seen, it must be
the reflection s about !. Therefore τ ◦ t−1 = s and so τ = t ◦ s. Hence τ is a glide
reflection. "#

Theorem 14.9. Suppose that t is a translation a distance d in a direction given by
ray r, and that s is a reflection about the line !. Then s◦ t is a glide reflection.

Proof. The special case where r and ! are parallel was addressed above, and indeed
that case serves to define a glide reflection. Let us consider what happens when r
and ! are not parallel. First, note that the ray r only provides a direction for the
translation τ . Therefore, there is no harm in replacing it with any other ray which
is parallel to r (in this context it is really more appropriate to think of r as a vector
rather than a ray). So let us conveniently relocate r so that it has its endpoint on
the line !. Let θ be the measure of the smaller of the two angles formed by r and !
(either an acute or a right angle). Let !′ be the line which lies on the opposite side
of ! from r, is parallel to ! and is a distance of (d/2) · sin(θ) from !.

Now choose a point P on !′. The map t translates P a distance d cosθ along !′

and a distance d sinθ perpendicular to !′. The reflection s about ! then puts P back
on !′, a distance of d cosθ from P. Therefore, on !′, s ◦ t acts like the translation
by a distance d cosθ along !′. But it is a composition of three reflections, and so it
is orientation reversing. That means that s◦ t cannot be a translation and so, by the
previous lemma, it must be a glide reflection. "#

There are again two cases when combining a reflection and a rotation– one where
the reflection line passes through the rotation center, and one where it does not.

Theorem 14.10. Let r be a rotation about a point O and let s be a reflection about
a line ! which passes through O. Then s◦ r is a reflection.

Proof. Let θ be the angle of rotation of r. Then let !′ be the image of the line !
when it is rotated by an angle θ/2 around the point O in the opposite direction from
r. This is the fixed line of s ◦ r: for any point P on !′, the line of reflection ! is the
perpendicular bisector to Pr(P), so in the composition s◦ r, r rotates P to r(P) and
then s maps r(P) back to P. Since s ◦ r is a composition of three reflections, it is
orientation reversing and so cannot be the identity map. But s◦ r fixes an entire line
!′, so s◦ r must be a reflection– the reflection about !′. "#

Theorem 14.11. Let r be a rotation about a point O and let s be the reflection about
a line ! which does not pass through O. The composition τ = s◦r is a glide reflection.

Proof. As above, the key is to find the line on which the glide reflection acts like a
translation. Let Q be the point on ! which is closest to O – the foot of the perpendic-
ular to ! through O. Let !′ be the image of ! under the rotation around Q by an angle
of θ/2 in the opposite direction from r. We will show that τ acts as a translation
on !′. Observe that the triangle *QOr(Q) is isosceles, so its base angles measure
π/2−θ/2. Therefore the angle between Qr(Q) and ! is θ/2. Applying the reflec-
tion s to r(Q) to get τ(Q), the segment Qτ(Q) also forms an angle of θ/2 with !.
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Hence τ(Q) lies on !′. Using a little trigonometry, it is possible to locate the distance
x from Q to τ(Q). Let d be the distance between O and !. Bisecting the angle O in
the triangle*OQr(Q) creates a right triangle, and from this,

x = 2d sin
(

θ
2

)
.

Now consider the action of τ on another point of !′. Again, the right choice of that
point makes all the difference. Let Q0 = r−1(Q). As before, the triangle*Q0OQ is
isosceles and so

(∠OQQ0) = π/2−θ/2.

Therefore the angle between QQ0 and ! is θ/2 and this means that Q0 is a point
on !′. The rotation r moves Q0 to Q, and since Q lies on !, it is a fixed point of
s. Combining these two maps, τ moves Q0 to Q. Because triangles *QOr(Q) and
*Q0OQ are congruent, the distance between Q0 and Q is again x.

For two points, Q and Q0, τ looks like the translation t along ! by distance x.
Therefore

t−1 ◦ τ(Q0) = Q0 & t−1 ◦ τ(Q) = Q.

Since t−1 ◦ τ fixes two points on !′, it must fix all points on that line, and so t and τ
agree on all points on !′. In other words, the action of τ on !′ is the same as the action
of a translation along !′. But τ is orientation reversing, so it cannot be a translation.
Therefore τ must be a glide reflection along !′. "#

Reviewing all of this work, we can now see all possible compositions of two or
three reflections. The conclusion of all this work is the following complete classifi-
cation of isometries:

Theorem 14.12. Every isometry other than the identity transformation is one of
these: a translation, a reflection, a rotation, or a glide reflection.

Exercises

14.1. Let R1 be the reflection about the line y = mx, and let R2 be the reflection about
the line y = nx. Find the analytic equation for R1 ◦R2 in terms of m and n. Show that
this composition is a rotation. What is the angle of rotation? (hint: trig identities!)

14.2. Define a spiral map to be one which has analytic equations of the form:
(

x
y

)
:→
(

d cosθ d sinθ
−d sinθ d cosθ

)(
x
y

)

Show that this is not an isometry if d += 1. Note what happens when you itera-
tively apply this transformation to a point. For instance, use d = 2, θ = π/4 and
(x,y) = (1,0). Prove (in the general case) that this type of transformation preserves
the measure of angles at the origin (∠AOB, where O = (0,0)).
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14.3. We showed that the composition of reflections about intersecting lines !1 and
!2 is a rotation. Show that the angle of rotation is double the angle of intersection of
the two lines.

14.4. Prove that any two translations t1 and t2 commute with each other.

14.5. Under what conditions do two rotations commute with each other?

14.6. Under what conditions do two reflections commute with one another?

14.7. Consider a glide reflection which translates a distance of 2 in the positive
direction along the vertical axis. Write an analytic equation for this isometry.

14.8. Consider the glide reflection which has the invariant line y = x +1 and trans-
lates the point (0,1) to the point (3,4). Write an analytic equation for this isometry.

14.9. Let s1 be the reflection about the line y = 2x and let s2 be the reflection about
the line y = 2x− 4. The composition s1 ◦ s2 is a translation. What is the direction
and distance of this translation?

14.10. Let s1 be the reflection about the line y = x and let s2 be the reflection about
the line y = x + 2. The composition s1 ◦ s2 is a rotation. What is the center of this
rotation? What is the angle of rotation?

14.11. Consider a glide reflection which maps (0,0) to (0,1), and the point (1,0)
to (a,b). Are there any restrictions on the values of a and b? What is the analytic
equation for this isometry (in terms of a and b)?

14.12. Let r be the rotation about the point (2,1). Let s be the reflection about the
line y = 2x. The composition r ◦ s must be a glide reflection. What is the invariant
line of this glide reflection?
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Chapter 15
Euclidean Transformations

We defined an isometry to be a bijection τ : E→ E which does not alter distances.
That is, for any two points A and B,

|τ(A)τ(B)| = |AB|.

From this, we showed that τ preserves incidence, order and congruence. A natural
question to ask is: are there any other bijective mappings of E which preserve all
of these relationships? The answer is yes. We will call this more general class of
bijections the set of Euclidean transformations.

Definition 15.1. Dilation. A dilation (or scaling) d : E→E by a factor of k centered
at a point O is a mapping from E to itself defined as follows. Define d(O) = O. For
any other point P, define d(P) to be the point on the ray ·OP" which is the distance
k · |OP| from O.

If k = 1, then d is the identity isometry. Otherwise

|d(O)d(P)| += |OP|

so d is not an isometry. There is, however, a simple relationship between the initial
distance between two points and the distance between their dilations.

Theorem 15.1. If d is a dilation by a factor of k, then, for any segment AB,

|d(A)d(B)| = k|AB|.

Proof. The formula is immediately true by definition if one of the points A or B is
O. Suppose that neither one is O, but that all three are all collinear. If A∗O∗B,

|d(A)d(B)| = |d(O)d(A)|+ |d(O)d(B)|
= |Od(A)|+ |Od(B)|
= k|OA|+ k|OB|
= k|AB|
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The proof that a dilation scales all segment lengths 
by a constant factor. There are three cases depend-
ing upon the position of the segment in relation to 
the center of dilation O.

Three corollaries. (top left) 
a dilation maps congruent 
segments to congruent 
segments. (top right) a 
dilation maps a triangle to 
a similar triangle. (left) the 
dilation of an angle is a 
congruent angle.
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2 15 Euclidean Transformations

If A and B are both on the same side of O, then one must be closer to O than the
other. Without loss of generality, we may assume that A is closer. Then

|d(A)d(B)| = |d(O)d(B)|− |d(O)d(A)|
= |Od(B)|− |Od(A)|
= k|OB|− k|OA|
= k|AB|

The final possibility is that O, A, and B are not collinear. In this case

|Od(A)| = k|OA|
|Od(B)| = k|OB|

∠AOB = ∠d(A)Od(B).

By the S ·A ·S triangle similarity theorem,*AOB∼*d(A)Od(B) and therefore

|d(A)d(B)| = k|AB|. "#

Corollary 15.1. If two segments are congruent, then their images under a dilation
d will be congruent.

Proof. If AB-CD, then |d(A)d(B)| = k|AB| and |d(C)d(D)| = k|CD|, so

|d(A)d(B)| = k|AB| = k|CD| = |d(C)d(D)|. "#

Corollary 15.2. The image of a triangle under a dilation is a similar triangle.

Proof. Let d be a dilation by a factor k. For any triangle*ABC,

|d(A)d(B)| = k|AB|
|d(A)d(C)| = k|AC|
|d(B)d(C)| = k|BC|

By the S ·S ·S triangle similarity theorem,

*ABC ∼*d(A)d(B)d(C). "#

Corollary 15.3. A dilation d maps an angle to a congruent angle.

Proof. Given an angle ∠ABC, the triangles*ABC and*d(A)d(B)d(C) are similar.
Therefore, their corresponding angles are congruent and in particular,

∠ABC - ∠d(A)d(B)d(C). "#

As a consequence of this corollary, if two angles are congruent, then their images
under a dilation will be congruent.
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Since a dilation maps 
congruent segments to 
congruent segments, it also 
must preserve incidence and 
order (a consequence of the 
triangle inequality).

Towards a proof that every 
Euclidean transformation 
scales distance by a 
constant factor. 

Step 1. Verification for 
congruent segments.
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15 Euclidean Transformations 3

Theorem 15.2. A dilation preserves the incidence of a point on a line and the order
of collinear points.

Proof. Let d be a dilation by a factor k. Let A, B, and C be three collinear points
ordered A∗B∗C. Then

|AB|+ |BC| = |AC|
k|AB|+ k|BC| = k|AC|

|d(A)d(B)|+ |d(B)d(C)| = |d(A)d(C)|.

Recall that the triangle inequality becomes an equality if and only if the three
points are collinear. Therefore d(A) ∗ d(B) ∗ d(C), so collinear points are mapped
to collinear points, and moreover, the order of those points is preserved. "#

A dilation then preserves incidence, order, and congruence of both segments and
angles. That is, a dilation is a Euclidean transformation. Once again, the question
becomes: what other (perhaps more exotic) Euclidean transformations might there
be? Essentially, there are no more. Together, dilations and isometries provide us
with every Euclidean transformation. The proof of this is divided across the next
two theorems. The first shows that Euclidean transformations all scale all distances
by a constant (as dilations do). This result leads quite directly to the second theorem,
that every Euclidean transformation can be written as a composition of a dilation and
an isometry.

Theorem 15.3. Let τ be a bijection which preserves incidence order and congru-
ence. That is:

if A∗B∗C then τ(A)∗ τ(B)∗ τ(C);
if AB-CD then τ(A)τ(B)- τ(C)τ(D);
and if ∠A- ∠B, then ∠τ(A)- τ(B).

Then there is a positive constant k such that

|τ(A)τ(B)| = k|AB|

for all points A and B.

Proof. Choose a segment AB and let k be the value such that

|τ(A)τ(B)| = k|AB|.

Now we will show that for any other segment, CD, |τ(C)τ(D)| = k|CD|, and this is
done in several steps.

Step 1.
First suppose that CD is congruent to AB so that |CD|= |AB|. Then, because τ maps
congruent segments to congruent segments, τ(C)τ(D)- τ(A)τ(B), and so

|τ(C)τ(D)| = |τ(A)τ(B)| = k|AB| = k|CD|.
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Step 2. When |AB| is a 
whole number multiple of 
|CD|.

Step 3. When |AB| is a 
rational multiple of |CD|.
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4 15 Euclidean Transformations

Step 2.
Extending from this, suppose that AB and CD are not congruent, but that there is a
(positive) integer n such that

|CD| = 1
n
· |AB|.

Choose a sequence of points on a line P0, P1, . . . Pn so that P0 ∗P1 ∗ . . . ∗Pn and so
that each Pi−1Pi -CD. Then P0Pn - AB, and so by the previous part,

|τ(P0)τ(Pn)| = k|P0Pn|.

Since τ preserves both incidence and order

τ(P0)∗ τ(P1)∗ · · ·∗ τ(Pn),

and since each of the segments Pi−1Pi is congruent to CD,

|τ(P0)τ(Pn)| =
n

∑
i=1

|τ(Pi−1)τ(Pi)| = n|τ(C)τ(D)|

so

n|τ(C)τ(D)| = k|P0Pn|

|τ(C)τ(D)| = k/n · |P0Pn|

|τ(C)τ(D)| = k|CD|

Step 3.
Now suppose that

|CD| = m
n
· |AB|

for some integers m and n. Again choose a sequence of collinear points, this time

P0 ∗P1 ∗ · · ·∗Pm

with the length of each |Pi−1Pi| = 1
n |AB|. By the previous calculation,

|τ(Pi−1)τ(Pi)| = k|Pi−1Pi|

so

15. Euclidean Transformations 231



Step 4. When |AB| is an 
irrational multiple of |CD|.
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15 Euclidean Transformations 5

|τ(C)τ(D)| = |τ(P0)τ(Pm)|

=
m

∑
i=1

|τ(Pi−1)τ(Pi)|

=
m

∑
i=1

k|Pi−1Pi|

=
m

∑
i=1

k · 1
n
· |AB|

= m · k ·1/n · |AB|
= k · |CD|

Summarizing the progress thus far, if |CD| is any rational multiple of |AB|, then

|τ(C)τ(D)| = k|CD|.

Step 4.
Finally, suppose that |CD| = x · |AB|, where x is not a rational number. We will use
a proof by contradiction, and to that end, suppose that

|τ(C)τ(D)| = k′|CD|

for some constant k′ other than k. The two possible cases, that k′ > k and that k′ < k
are handled similarly. Here we will consider the first. Let

ε = |CD|
(

k′

k
−1
)

(because k′ > k, this is a positive number). The rationals are a dense subset of the
real numbers and so there are points arbitrarily close to D whose distance from C
is a rational multiple of |AB|. In particular, there is a point D′ with C ∗D ∗D′ and
|DD′| < ε such that |CD′| is a rational multiple of |AB|. Then

|τ(C)τ(D′)| = k|CD′|
< k(|CD|+ ε)

< k
(
|CD|+ |CD|

(
k′

k
−1
))

< k′|CD|
< |τ(C)τ(D)|.

But if τ is to preserve order, then τ(D) must be between τ(C) and τ(D′) and if this
is to be the case, then τ(C)τ(D) cannot be longer than τ(C)τ(D′). Hence k′ cannot
be greater than k. The argument for the other case, when k′ < k, is similar and is
omitted. "#

Theorem 15.4. Let τ : E→ E be a bijection. If there is a constant k such that
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A dilation centered at the origin.

To express an arbitrary dilation in terms of a dilation 
about the origin: translate to the origin, scale, and then 
translate back.

y
ky

x
kx

t
t 1

x, y

kx, ky
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6 15 Euclidean Transformations

|τ(A)τ(B)| = k|AB| for all A, B in E,

then τ can be written as a composition of an isometry and a dilation.

Proof. Let d be a dilation which scales by a factor of 1/k (about an arbitrary point).
Then d ◦ τ preserves the distance of segments:

|d ◦ τ(A) d ◦ τ(B)| = 1
k
|τ(A)τ(B)|

(1/k) · k|AB|
= |AB|

Therefore d ◦ τ is an isometry, say τ ′. and so

τ = d−1 ◦ τ ′,

a composition of a dilation and an isometry. "#

In the last chapter, we derived matrix equations for each of the isometries. Now
that we have established that they, together with dilations, form all of the Euclidean
transformations, it makes sense to find the matrix equation for a dilation. This will
allow us to express any Euclidean transformation in terms of matrices.

Theorem 15.5. The matrix equation for a dilation d by a factor of k > 0 about the
origin is

d
(

x
y

)
=
(

kx
ky

)
.

Proof. Observe that the point (kx,ky) lies on the ray from the origin through (x,y).
Furthermore, the distance from the origin to (kx,ky) is

√
(kx)2 +(ky)2 = k

√
x2 + y2

so d multiplies distances by a factor of k as is required. "#

More generally, suppose that d is a dilation about an arbitrary point (a,b). Then
the matrix equation for d is computed by first translating (a,b) to the origin (t),
scaling from there (d0), and then translating back:
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(top) Composing four half-turns yields a translation. If 
the resulting composition has a fixed point, then the 
composition must be the identity. (bottom) By S-A-S, 
this results in a pair of similar triangles, and so the 
quadrilateral ABCD must be a parallelogram.
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d
(

x
y

)
= t−1 ◦d0 ◦ t

(
x
y

)

= t−1 ◦d0

(
x−a
y−b

)

= t−1
(

k(x−a)
k(y−b)

)

=
(

k(x−a)+a
k(y−b)+b

)
"#.

Certainly, transformations are interesting in their own right. At an abstract level,
they provide a picture of the underlying structure of the geometry itself. But at a
more conventional level, they also provide a new perspective for some of the prob-
lems of Euclidean geometry. In many cases this new perspective leads to interesting
or elegant solutions to otherwise difficult problems. To end this chapter we will look
at just a few examples of this.

Lemma 15.1. Let rA, rB, rC and rD be half turns about the points A, B, C, and D. If

rD ◦ rC ◦ rB ◦ rA = id

then quadrilateral ABCD is a parallelogram.

Proof. Let P1 be a point other than A, B, C, or D, and let

P2 = rA(P1)
P3 = rB(P2) = rB ◦ rA(P1)
P4 = rC(P3) = rC ◦ rB ◦ rA(P1)

Assuming rD ◦ rC ◦ rB ◦ rA = id,

rD(P4) = rD ◦ rC ◦ rB ◦ rA(P1) = P1.

Then

|P1A| = |rA(P1)rA(A)| = |P2A|
|P2B| = |rB(P2)rB(B)| = |P3B|
|P3C| = |rC(P3)rC(C)| = |P4C|
|P4D| = |rD(P4)rD(D)| = |P1D|

so

|P1P2| = 2|AP2| & |P2P3| = 2|BP2|
|P3P4| = 2|CP4| & |P4P1| = 2|DP4|
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Varignon�’s theorem: the midpoints of a quadrilateral 
form a parallelogram (the result holds even for non- 
simple quadrilaterals). This is proved by composing 
four half-turns about the midpoints.

Napoleon�’s theorem. This time one-third turns are the 
key to the proof.
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8 15 Euclidean Transformations

By the S ·A ·S similarity theorem,

*P1P2P3 ∼*AP2B & *P3P4P1 ∼*CP4D

so AB ‖ P1P3 and P1P3 ‖CD, so AB ‖CD. Similarly AD ‖ BC, and therefore ABCD
is a parallelogram. "#

Theorem 15.6. Varignon’s Theorem. Let ABCD be a quadrilateral. Let a be the
midpoint of AB, b be the midpoint of BC, c be the midpoint of CD, and d be the
midpoint of DA. Then abcd is a parallelogram.

Proof. Let ra, rb, rc, and rd be half-turns around a, b, c, and d respectively. Given
the previous lemma, the strategy is clear: we need to show that rd ◦ rc ◦ rb ◦ ra = id.
Recall that we proved in the last chapter that when rotations ri with rotation angles θi
are composed, the result is a composition of a translation and a rotation by an angle
of ∑θi. When this summation is a multiple of 2π , there is no rotational component
and the composition ends up just being a translation (or the identity). That is the
situation we are dealing with here. Each half-turn is a rotation by π , so the angle
of rotation of rd ◦ rc ◦ rb ◦ ra is 4π . Therefore, if it is not the identity, it must be a
translation. But

rd ◦ rc ◦ rb ◦ ra(A) = rd ◦ rc ◦ rb(B)
= rd ◦ rc(C)
= rd(D)
= A

and so A is a fixed point of rd ◦ rc ◦ rb ◦ ra. Since a nontrivial translation has no fixed
points, rd ◦ rc ◦ rb ◦ ra must be the identity. By the previous lemma, abcd must be a
parallelogram. "#

The next result is commonly called Napoleon’s Theorem, after the French gen-
eral Napoleon Bonaparte. There is a certain amount of skepticism, though, about
whether he in fact discovered this result.

Theorem 15.7. Napoleon’s Theorem. Given any triangle *ABC, construct three
equilateral triangles, exterior to the triangle, one on each of the three sides of
*ABC. The centers of these three equilateral triangles are themselves the vertices
of an equilateral triangle.

Proof. Let a be the center of the equilateral triangle on AB, b be the center of the
equilateral triangle on BC, and c be the center of the equilateral triangle on AC. Let
ra, rb, and rc be counterclockwise rotations by 2π/3 about a, b, and c respectively.
Adding the three angles of rotation gives 2π , so rb ◦ ra ◦ rc is either a translation or
the identity. Look at the image of the point C under this isometry

rb ◦ ra ◦ rc(C) = rb ◦ ra(A) = rb(B) = C.
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A new approach to the Nine-Point Circle Theorem, this 
time using a dilation by a factor of two about the 
orthocenter.

This dilation maps the midpoints of the sides and the 
feet of the altitudes to the circumcircle.
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15 Euclidean Transformations 9

It is fixed and since rb ◦ ra ◦ rc has a fixed point, it must be the identity. Therefore

rb ◦ ra ◦ rc(C) = C
rb ◦ ra(C) = C

and so ra(C) = r−1
b (C). Let d be this point.

Because isometry preserves congruence,*acd and*bcd are isosceles. In them,

(∠a) = (∠b) = 2π/3,

so
(∠bcd) =

1
2

(
π− 2π

3

)
= π/6

and
(∠acd) =

1
2

(
π− 2π

3

)
= π/6.

Adding these, (∠acb) = π/3. Similarly, ∠abc and ∠cab measure π/3. Therefore
*abc is equiangular, and hence equilateral. "#

One of the very compelling theorems of classical Euclidean geometry states that
nine points related to a triangle all lie on a circle, called the nine point circle. Earlier,
we proved this result using classical methods– the basic strategy involved identify-
ing sets of similar triangles. But transformations provide a different perspective on,
and a different proof of, the theorem.

Theorem 15.8. The Nine Point Circle, revisited. For any triangle *ABC, the fol-
lowing nine points all lie on one circle:

L1, L2, L3, the feet of the three altitudes;
M1, M2, M3, the midpoints of the three sides; and
N1, N2, N3, the midpoints of the three segments connecting the orthocenter R to

the vertices. This circle is called the 9-point circle of*ABC.

Proof. Since a Euclidean transformation preserves congruence, it maps circles to
circles. Therefore, the goal is to find a transformation which maps the nine points
onto a circle. Let R be the orthocenter of*ABC. The Euclidean transformation that
we want is the dilation d by a factor of two centered at R. We will show that d
maps all nine points onto C , the circumscribing circle of *ABC. Clearly d maps
the midpoints N1, N2 and N3 to the vertices A, B, and C of the triangle. What about
the other six points?

Midpoints of the Sides
Let D be the point on C diametrically opposite from A. Then

CR⊥ AB (because CR is an altitude)
BD⊥ AB (by the inscribed angle theorem)
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10 15 Euclidean Transformations

Since both CR and BD are perpendicular to AB, CR ‖ BD. Similarly BR ‖CD. There-
fore RCDB is a parallelogram. Now a convenient fact about parallelograms: the di-
agonals of a parallelogram intersect each other at their midpoints (the proof of this
fact is left as an exercise (15.1) to the reader). Since the midpoint of BC is M1, M1
is also the midpoint of RD. That is,

|RD| = 2|RM1|,

and so d(M1) = D – the image of M1 lies on C . Shuffling letters, this argument
shows that the other two midpoints M2 and M3 also must lie on C .

Feet of the Altitudes
The angle ∠N1L1M1 is a right angle. Because a dilation does not change angle mea-
sure,

(∠d(L1)d(N1)d(M1) = (∠Ad(N1)D) = π/2.

Since AD is a diameter of C , and ∠Ad(N1)D is a right angle, d(N) must lie on C . Of
course the same argument works for N2 and N3. Since the images of all nine points
lie on a circle, the nine points themselves must lie on a circle. "#

Exercises

15.1. Prove that the diagonals of a parallelogram do indeed intersect each other at
their midpoints, as required in the proof of the nine-point circle theorem.

15.2. Given a set of points Pi on a line !1, and their parallel projections Qi on a line
!2, prove that there is a Euclidean transformation τ such that τ(Pi) = Qi for all i.

15.3. Let d be the dilation by a factor of 5 about the point (3,1). Give an analytic
equation for d.

15.4. Let d be a dilation by a factor of k (k > 0). Prove that d is an orientation
preserving mapping.

15.5. Consider the triangle *ABC with A = (0,0), B = (2,0) and C = (1,3). Find
the radius of the circumcircle, and from that, the radius of the nine point circle.

15.6. Consider the Euclidean transformation which is a dilation by a factor of 1/2
about the point (1,1) followed by the reflection about the x-axis. Write an equation
for this transformation. Does this transformation have any fixed points?

15.7. Given triangles*A1B1C1 and*A2B2C2, prove that there is a Euclidean trans-
formation τ such that

τ(A1) = A2 τ(B1) = B2 τ(C1) = C2

if and only if*A1B1C1 ∼*A2B2C2.

15.8. The triangles*A1B1C1 with A1 =(0,0), B1 =(1,0), C1 =(0,1) and*A2B2C2
with A2 = (2,0), B2 = (0,0) and C2 = (−2,0) are similar. Find a Euclidean trans-
formation which maps*A1B1C1 onto*A2B2C2.
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A nonempty set S of Euclidean transformations is a group if (1) for any two
transformations τ1, τ2 in S, the composition τ1 ◦ τ2 is in S; and (2) for any transfor-
mation τ in S, the inverse transformation τ−1 is in S. For any set of transformations
S, the smallest group which contains S is the subgroup generated by S, written 〈S〉.
A group is finite if it only has finitely many transformations in it.

15.9. List the elements in the group 〈r〉 where r is the counterclockwise rotation by
π/4 about the origin.

15.10. List the elements in the group 〈r, s〉 where r is the counterclockwise rotation
by π/3 about the origin, and where s is the reflection about the x-axis.

15.11. Show that if G is a finite group of transformations, that it cannot contain a
translation or dilation.

15.12. Show that if G is a finite group of transformations, any two rotations in G
must have the same center of rotation. [Hint: consider r1 ◦ r2 ◦ r−1

1 ◦ r−1
2 .]

15.13. Let G be a finite group of transformations containing rotations. Let r be a
rotation by the smallest angle in G. Show that every rotation in G can be written as
rn = r ◦ r ◦ · · ·◦ r or r−n = r−1 ◦ r−1 ◦ · · ·◦ r−1 for some n.

15.14. Show that if G is a finite group of transformations containing a rotation r and
a reflection s, then the line of reflection of s must pass through the center of rotation
of s.

15.15. (For readers familiar with group theory). Using the results from the previous
problems as a starting point, prove that every finite Euclidean transformation group
is isomorphic to either Zn, the cyclic group of order n, or Dn, the dihedral group on
n points.
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The image of a point P under the inversion i 
through a circle with center O and radius r.
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Chapter 16
Inversion

In the last chapter, we closed a door by proving that all Euclidean transformations
are a composition of a dilation and an isometry. There is another important type of
mapping which is used frequently, though, called an inversion. Inversions are not
Euclidean transformations; in fact, we will see that they are more properly thought
of as transformations of a sphere. Inversions are not defined on the entire plane, nor
do they preserve congruence, but they do preserve some of the structure of E, and
they do provide some surprising simplifications to otherwise difficult problems.

16.1 The Geometry of Inversion

We start with the definition of an inversion through a given circle.

Definition 16.1. Inversion. Let C be a circle with center O and radius r. The in-
version i in (or about or through) C is a bijection of the points of the “punctured
plane”: the set of all points in E except O. It is defined as follows: for P ∈ E\{O},
i(P) is the point P′ on ·OP" such that

|OP| · |OP′| = r2.

Since there is always a unique point P′ on ·OP" that is this distance (r2/|OP|)
from O, the map i is well-defined. It is clearly one-to-one and onto the punctured
plane as well. Note that if P is on the circle C , then

|OP′| = r2

|OP| = r2/r = r,

so P′ = P. In other words, every point on C is fixed by i. If |OP|< r then |OP′|> r,
and if |OP| > r then |OP′| < r, so i interchanges the interior and exterior of C .

As would probably be expected, the process of swapping the interior and exterior
of C greatly distorts distances. A pair of points which are relatively close to one
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Above: inversion is not a Euclidean transformation since it does not 
preserve segment congruence. Below: two points and their two 
images, combined with O, create two �“crossed�” similar triangles.
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2 16 Inversion

another might end up separated by quite a bit after inversion, while another pair, the
same distance apart, could end up even closer together after inversion. For example,
let P be a point on C and let Q1 and Q2 be the two points on · OP " which are a
distance of r/2 from P, with Q1 inside C and with Q2 outside C . Clearly |PQ1| =
|PQ2|, but the distances between their images are not equal as can be calculated:

|Oi(Q1)| =
r2

|OQ1|
=

r2

r/2
= 2r

|Oi(Q2)| =
r2

|OQ2|
=

r2

3r/2
= 2r/3

so

|i(P)i(Q1)| = 2r− r = r
|i(P)i(Q2)| = r−2r/3 = r/3.

While P is equidistant from Q1 and Q2, i(P) is not equidistant from i(Q1) and i(Q2).
Fortunately, not all geometric structure is lost in the inverting process. The fol-

lowing lemma is a simple and immediate consequence of the definition of an inver-
sion, but it really is a key to understanding the behavior of an inversion.

Lemma 16.1. On Similar Triangles. Let i be an inversion in a circle C with radius
r and center O. For any*POQ with a vertex at O,

*POQ-*i(Q)Oi(P).

Proof. By definition,

|OP| · |Oi(P)| = r2

|OQ| · |Oi(Q)| = r2

so
|OP| · |Oi(P)| = |OQ| · |Oi(Q)|

and equivalently
|OP|

|Oi(Q)| =
|OQ|
|Oi(P)| .

Let k be the value of this ratio. Then

|OP| = k|Oi(Q)|
|OQ| = k|Oi(P)|.

Since ∠POQ = ∠i(Q)Oi(P), by the S ·A ·S triangle similarity theorem,

*POQ-*i(Q)Oi(P).
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Top: inversion of a circle which passes through O to a line. Bottom: 
inversion of a circle which does not pass through O into another circle.
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16.1 The Geometry of Inversion 3

It is important to notice that the the order of the vertices is “crossed up” in this
similarity.

Let ! be a line which passes through O, the center of the inverting circle. Then
i(O) is undefined, but any other point on ! is mapped to another point of !:

i(!\{O}) = !\{O}.

Now suppose that ! does not pass though O. What is its image in this case? The
answer, which may be surprising, is encapsulated in the following theorem.

Theorem 16.1. The Image of a Line. Let i be an inversion about a circle with
center O. If ! is a line which does not pass through O then its image under i is the
set of all points on a circle passing through O (except O itself).

Proof. Let P be the intersection of ! with the line which passes through O and is
perpendicular to !. Let P′ = i(P). We claim that i maps ! to the circle which has
diameter OP′. To show this, consider another point Q on !. Using the Lemma on
Similar Triangles,

*OPQ∼*OQ′P′.

Since ∠OPQ is a right angle, the corresponding angle ∠OQ′P′ must also be a right
angle. Now recall the corollary of the Inscribed Angle Theorem, that a triangle with
one side on a diameter is inscribed in the circle if and only if the inscribed angle is a
right angle. Because of this, Q′ must lie on the circle with diameter OP′. The choice
of Q was arbitrary, so the image of every point of ! lies on this circle.

As a corollary (because i ◦ i is the identity mapping on the punctured plane), an
inversion will map any circle passing through O to a line ! which does not pass
through O. Now what of other circles?

Theorem 16.2. The image of a circle C which does not pass through O is a circle.

Proof. There is a ray from O passing through the center of C . It intersects C at two
points– call these A and B. Then AB is a diameter of C ′. Let C be a third point on C
and let

A′ = i(A) B′ = i(B) C′ = i(C).

Because ∠ACB is inscribed on a diameter, it is a right angle. We would like to show
that ∠A′C′B′ is too. Now

(∠A′C′B′) = (∠OC′A′)− (∠OC′B′).

Using the Lemma on Similar Triangles,

∠OC′A′ - ∠OAC
∠OC′B′ - ∠OBC

and so
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When the two circles intersect at two points, the 
angles between the tangent lines are the same.

The angle of intersection of two intersecting circles 
is determined by the angle between the tangent 
lines at a point of intersection.
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4 16 Inversion

(∠A′C′B′) = (∠OAC)− (∠OBC).

Adding the interior angles of the right triangle*ABC gives

(π/2)+(π−∠OAC)+(∠OBC) = π,

and simplifying,
(∠OAC)− (∠OBC) = π/2.

Therefore ∠A′C′B′ is a right angle. By the corollary to the Inscribed Angle Theorem,
C′ lies on the circle with diameter A′B′. Therefore the image of any point on C lies
on a circle.

Conformal maps

Since the inversion of a line is not necessarily a line, and hence the inversion of a
line segment is not necessarily a line segment, the issue of comparing an angle to its
image under inversion becomes a little more complicated. What is needed is a way
to measure the “angle of intersection” of two circles, or of a line and a circle.

Suppose that two circles C1 and C2 intersect at a point P. If P is the only inter-
section point of the circles, then the two circles are mutually tangent. That is, they
have the same tangent line. In this case, the angle of intersection of C1 and C2 is
said to be zero (when it is necessary to refer to the angle between them– usually it is
easier to just call them mutually tangent). More commonly, C1 and C2 will intersect
in two points. Let P be one of those intersections. In this case, the tangent lines to
C1 and C2 at P will be distinct and we define the angle between C1 and C2 to be the
angle between their tangent lines.

Note that, like lines, intersecting circles do not properly have an angle of inter-
section, but rather a supplementary pair of them. This built-in ambiguity seldom is
an issue though. In fact, the most important case is when the circles intersect each
other at right angles anyway, so the supplements are themselves congruent.

But this is not the only issue to consider when making sure this formulation is
well-defined. For C1 and C2 have a second intersection point, Q. And this definition
can only be well-defined if Q gives the same angle of intersection as P. Let θ1 be
the angle between tangent lines at P and let θ2 be the angle between tangent lines
at Q. If O1 and O2 are the respective centers of C1 and C2, by the S · S · S triangle
congruence theorem, *O1PO2 - *O1QO2. In particular, ∠O1PO2 - ∠O1QO2.
Recall that these tangent lines are perpendicular to the radial lines from the centers
of the circles to P. Adding up the angles around both P and Q:

θ1 +π/2+π/2+(∠O1PO2) = 2π
θ2 +π/2+π/2+(∠O1QO2) = 2π
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Inversion is conformal. In this case, two intersecting lines are 
mapped to two intersecting circles. The angle of intersection is 
unchanged. Step-by-step details of the proof are illustrated on 
the following page.

A pair of orthogonal circles. 
These will play a crucial role in 
our study of non-Euclidean 
geometry.
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16.1 The Geometry of Inversion 5

Setting equal (and canceling out the measures of the congruent angle), θ1 = θ2.
Therefore the intersection angle is indeed well-defined.

The intersection of a line with a circle is handled similarly. The angle is calcu-
lated using the line and the tangent line to the circle at the intersection.

Definition 16.2. Orthogonal Circles. Two intersecting circles are orthogonal if
they intersect at right angles.

We leave it to the reader to verify the following fact, which will be critical in
our study of hyperbolic geometry. For any two points on a circle C which are not
on a diameter, there is a unique circle which passes through those points and is
orthogonal to C .

Theorem 16.3. Inversion is Conformal. If C1 and C2 are intersecting circles or
lines, with an angle of intersection θ , then i(C1) and i(C2) are also intersecting
circles or lines, with angle of intersection θ . In the terminology of complex analysis,
inversion is a conformal mapping.

Proof. There are several possible configurations: two circles, a line and a circle, or
two lines, and both lines and circles may or may not pass through O. Rather than
work through each possible case, we will take one representative case and leave the
rest as exercises.

Let !1 and !2 be two lines which do not pass through O and intersect at a point
R. Before getting into the proof, a bunch of points need to be labeled. Let P be the
intersection of !1 and its perpendicular through O; let Q be the intersection of !2 and
its perpendicular through O. Let

P′ = i(P), Q′ = i(Q), R′ = i(R).

The images of !1 and !2 are the circles with diameters OP′ and OQ′ respectively.
Let O1 and O2 be the centers of these circles. Finally, let θ be the angle between the
lines !1 and !2 and let φ be the angle between their images (as determined by the
tangent lines).

Because of the Lemma on Similar Triangles, *OPR ∼ *OR′P′ and conse-
quently ∠O1P′R′ - ∠ORP. The triangle *O1P′R′ is isosceles (two of its sides are
radii), and so

(∠O1R′P′) = (∠O1P′R′) = (∠ORP).

Triangle *OR′P′ is inscribed in a circle, with OP′ along the diameter so by the
Inscribed Angle Theorem, ∠OR′P′ is a right angle. And the tangent line to the cir-
cle is perpendicular to its radius, also forming a right angle. Therefore the angle
formed by P′R′ and the tangent line and the angle ∠OR′P′ are both complemen-
tary to ∠O1R′P′. Thus, they each measure π/2− (∠ORP). By the same argument,
(∠O2R′Q) = (∠ORQ), and the angle formed by Q′R′ and the tangent line as well as
∠OR′Q′ have measure π/2− (∠ORQ). Adding up all the angle measures around R′

(φ)+(∠ORP)+2(π/2− (∠ORP))
+(∠ORQ)+2(π/2− (∠ORQ)) = 2π.
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Detailed illustrations for the proof that inversion is conformal.
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Solving this equation for φ

(φ) = (∠ORP)+(∠ORQ) = (θ).

Note that this argument is reversible, so this also demonstrates that the angle be-
tween two circles which pass through O is the same as the angle between its image
lines.

Corollary 16.1. If a circle C is orthogonal to the inverting circle, then i(C ) = C .

The details of the proof of this important corollary are left as an exercise.

Stereographic Projection

There are some awkward elements in our definition of inversion. For one, the inver-
sion is undefined at its center. For another, there is the strange interchange of circles
and lines. Fortunately, there is a much more natural interpretation involving stereo-
graphic projection and the Riemann sphere. While this interpretation is too elegant
to ignore, it does take us outside of the Euclidean plane, and so we will be brief in
our examination of it.

The two objects we will be considering are a plane and a sphere. To begin, embed
the Euclidean plane E in three-dimensional space R3 using the correspondence

(x,y) :→ (x,y,0).

This is a bijective map from E to the xy-plane in R3, and through it, we can refer
to E and the xy-plane interchangeably. Now let S2 be the the unit sphere centered at
the origin in R3. It is defined by the equation

x2 + y2 + z2 = 1.

Definition 16.3. Stereographic Projection Stereographic projection is a bijective
mapping

φ : S2\{(0,0,1)}−→ E.

It is defined as follows. For every point P on S2 other than (0,0,1), there is a unique
ray r emanating from (0,0,1) which passes through P. Define φ(P) to be the point
where r intersects E.

It is actually pretty easy to find the explicit equations for this mapping. Let
(x0,y0,z0) be a point on S2. The line through this point and (0,0,1) can be
parametrized as:

R(t) = (0,0,1)+ t(x0,y0,z0−1)
= (tx0, ty0,1+ t(z0−1).
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Stereographic projection, a map  
from the Riemann sphere onto the 
plane. Every point on the sphere 
except for the �“north pole�” corre-
sponds to a unique point in the plane.

The image of a circle which passes 
through the north pole is a line.

The image of a circle which does not 
pass through the north pole is a circle.
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16.1 The Geometry of Inversion 7

It intersects the xy-plane when the third coordinate is zero, and this allows us to find
t:

1+ t(z0−1) = 0
t = 1/(1− z0).

Plugging in gives the x- and y- coordinates x0/(1− z0) and y0/(1− z0) respectively.
Summarizing, stereographic projection from S2 to the xy-plane is given by the equa-
tion

φ(x0,y0,z0) =
(

x0

1− z0
,

y0

1− z0
,0
)

.

Because stereographic projection is a bijection, it has an inverse φ−1 : E→ S2\{(0,0,1)}.
Since we have been working in the plane and are now trying to get out of it, it is
really the mapping in this direction which interests us. Inverse stereographic pro-
jection makes it clear that, at least in some sense, S2 can be thought of as E plus
one other point (commonly called the “point at infinity” and written ∞). Of course
the sphere is a recurring character in mathematics, but when S2 is interpreted in this
way (as E∪∞), it is called the Riemann sphere.

Moving beyond the mapping of individual points, φ−1 has another important
property (which we will not prove):

Theorem 16.4. If ! is a line in E, then its image φ−1(!) is a circle which passes
through ∞. If C is a circle in E, then the image φ−1(C ) is a circle which does not
pass through ∞. To be brief, inverse stereographic projection maps both lines and
circles to circles.

Remember that the purpose of this diversion was to provide a more natural inter-
pretation of inversion. Let i be an inversion of E centered at O. This inversion can be
lifted to a mapping of S2: the map ı̂ = φ−1 ◦ i◦φ projects from S2 to E, inverts, and
then projects back to S2. This lift omits two points, φ−1(O) and ∞. But the added
point at infinity makes it possible to complete the mapping, by defining

ı̂(φ−1(O)) = ∞ ı̂(∞) = φ−1(O).

The resulting bijection of the Riemann sphere is also called an inversion. This re-
solves one of the issues: inversion is a bijection on the Riemann sphere. There is
more though. Since φ−1 maps both lines and circles to circles, ı̂ always maps circles
to circles.

Analytic Equations for Inversion

Just as with Euclidean transformations, it would be nice to have a descriptive for-
mula which tells us exactly what a particular inversion i does to a particular point
(x,y). With Euclidean transformations, we used matrix equations to accomplish this.
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Transformations of the complex plane can be visualized by looking at 
the image of a rectangular grid under that transformation. 

A translation.

Reflection across the x-axisThe initial grid

The rectangular and exponential 
forms for a complex number.

Parametrizations of lines and 
circles in the complex plane.
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A rotation about the origin.
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8 16 Inversion

Those types of equations always map lines to lines though, and inversions do not
map all lines to lines. So the function for an inversion necessarily will take a dif-
ferent form. In fact the best way to work with inversions is to treat the points of E
not as coordinate pairs in R2, but as points in the complex plane C. For the rest of
this book, we assume that the reader has a basic understanding of the arithmetic of
complex numbers and the geometry of the complex plane [a brief review of complex
numbers is provided in the Appendices].

Analytic geometry in C is no more difficult than in R2. Often it is significantly
easier. In the usual way, there is a correspondence between the points of R2 and the
points of C via

(x,y)←→ x+ iy.

The distance between two points z1 and z2 is |z1− z2|. The line in C which passes
through the points z1 and z2 is given by the equation

z(t) = z1 + t(z2− z1), t ∈ R.

The circle in C which has center z0 and radius r is given by the equation

z(θ) = z0 + reiθ , θ ∈ R.

The basic Euclidean transformations, which before we wrote as matrix equations,
have nice formulations in the complex plane. For instance, the equation for the trans-
lation which maps 0 to z0 is

t(z) = z+ z0.

The equation for the rotation by an angle of θ about the origin is

r(z) = eiθ · z.

The equation for the reflection about the real axis is

s(z) = z.

And the equation for the dilation by a factor k about O is

d(z) = k · z.

Any other Euclidean transformation is some composition of those. The composi-
tions tend to be easy to compute as they only involve complex arithmetic. The real
reason for introducing the complex plane at this point is not for new equations for
Euclidean transformations, though, but rather for the very nice equations of inver-
sion.

Theorem 16.5. Inversion in the Complex Plane. The formula for the inversion i0
in the unit circle |z| = 1 is

i0(z) =
1
z

.
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16.1 The Geometry of Inversion 9

Proof. The inversion i0 in the unit circle is easy to understand if z is put into its
exponential form z = reiθ . The image i0(z) should be on the same ray from the origin
as z. Therefore, i0(z) should have the same argument as z, namely θ . Furthermore,
since z is a distance r from the origin, i0(z) must be a distance 12/r from the origin.
The proposed formula meets both of those requirements:

i0(reiθ ) =
1

reiθ
=

1
re−iθ =

1
r

eiθ .

The formula for any other inversion can be derived by combining i0 with the right
Euclidean transformations. Let C be the circle centered at z0 with radius r, and let
iC be the inversion across this circle. The steps to compute iC:

(1) translate z0 to 0 (t) and scale r to 1 (d),
(2) invert about the unit circle,
(3) then scale 1 to r and translate 0 to z0.

Following through each of those steps:

z t:−→ z− z0

d:−→ 1
r
(z− z0)

i0:−→ r
z− z0

d−1
:−→ r2

z− z0

t−1
:−→ r2

z− z0
+ z0.

These formulas will be used extensively in the hyperbolic geometry chapters to cal-
culate isometries.

Exercises

16.1. Show that any Euclidean transformation τ is a conformal map.

16.2. Let τ be the Euclidean transformation which rotates counterclockwise by π/2
about the point 1+2i. Write a complex equation for τ .

16.3. Let τ be the Euclidean transformation which reflects about the line r(t) =
t +(1+ t)i. Write a complex equation for τ .

16.4. Find the equation for the inversion through the circle with radius 2 and center
1+5i.

16.5. The points 0+0i, 1+0i and 0+1i are fixed by an inversion. Find the equation
for it.
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16.6. Let i be inversion in a circle C and let C be a circle which is orthogonal to C.
Show that i(C ) = C .

16.7. Let i be an inversion in a circle C. We have proved that if C is a circle which
does not pass through the center of C, then its image will also be a circle. Let O be
the center of C . Demonstrate, by example, that i(O) may not be the center of i(C ).
Are there any examples where i(O) is the center of i(C )?

16.8. Let i1 and i2 be two distinct inversions, about circles with centers z1 and z2
and radii r1 and r2, respectively. Compute i1 ◦ i2. What is the domain of this compo-
sition? What, if any, are the fixed points of this composition?

16.9. Let C1 and C2 be two orthogonal circles, intersecting at the point P. Let d1 and
d2 be the diameters of the circles passing through P. Let Q1 and Q2 be the other
points of intersection of these diameters with their respective circles. Show that the
circle with diameter Q1Q2 also passes through P.

16.10. Let i be an inversion. Verify that i◦ i = id.

16.11. Let i be the inversion in the unit circle and let z0 be a point (other than the
origin). Describe the set of all points z such that |z0z| = |i(z0)i(z)|.

16.12. Prove that for any two points on a circle C which are not on a diameter, there
is a unique circle which passes through these points and is orthogonal to C .

16.13. Complete the proof that inversion is conformal. Show that the angle of inter-
section of two intersecting circle is preserved. Show that the angle of intersection of
an intersecting line and circle is preserved.

16.14. Find the equations for inverse stereographic projection.
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(left) The arbelos�– two half circles removed from a half 
circle. (right) A chain of mutually tangent circles in the 
arbelos.

The right inversion maps two of the circles of the 
arbelos to parallel lines.



Chapter 17
Inversion as Proof

From the standpoint of classical Euclidean geometry, circles and lines appear to be
very different types of objects. Inversion (and the Riemann sphere) tells us that in
some ways they may not be all that different after all. Inversion even provides a
method to interchange them. The ability to switch lines and circles provides a new
and powerful technique for estabishing results. In this section, we will look at three
theorems which can be proved using inversion. Typically in these types of problems
the desired result is easy, or even trivial, once the correct circle of inversion has been
found. Finding the correct inverting circle is the challenge.

Definition 17.1. The arbelos. Consider three collinear points O∗P∗Q. Let C1 be
the circle with diameter OQ, C2 be the circle with diameter OP, and C3 be the circle
with diameter PQ. The three halves of these circles which lie on one side of !OQ"
outline a shape called an arbelos.

The word arbelos is a Greek word for a “shoemaker’s knife.” These knives
are probably not everyday items for the modern geometer, but apparently they are
shaped like an arbelos as described above. Much as the triangle hides a wealth of
concurrences, this simple shape also holds an intricate set of relationships. We will
consider only one of these– one which has a very nice solution using inversion.

Theorem 17.1. There is a circle C4 which is mutually tangent to C1, C2, and C3.
There is a circle C5 which is mutually tangent to C1, C2 and C4. There is a circle C6
which is mutually tangent to C1, C2 and C5. This continues indefinitely, creating a
chain of tangent circles, each tangent to C1, C2 and the previous circle in the chain.

Proof. The right inversion simplifies this problem. Let i be the inversion through
the circle which is centered at O and is orthogonal to C3 (that such an orthogonal
circle exists is an exercise). Then C3, as an orthogonal circle, is mapped to itself.
Since both C1 and C2 pass through the center of inversion O, they are mapped to
lines– let !1 = i(C1) and !2 = i(C2). These lines are tangent to C3, on opposite sides
of C3, and hence are parallel.

Now clearly there is a circle C′4 which is mutually tangent to !1, !2 and C3 (it has
the same diameter as C3 and sits on top of C3. The circle C′5 sits on top of it, C′6 sits

1265



Power of a point with respect to a circle of radius 2. 
The set of points with a given power is itself a circle. 
All of these circles are concentric. Because of the 
quadratic nature of the power of a point, these circles 
are bunched more closely as p increases.

Pairs of circles and the associated radical axis. If the 
two circles are separate, the radical axis lies between 
them, closer to the larger circle. If the two circles 
overlap, the radical axis passes through the two 
intersection points. If one circle is contained in the 
other, the radical axis lies outside the two circles. If the 
two circles are concentric, the radical axis is undefined.
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2 17 Inversion as Proof

on top of it, and so on. Each is tangent to !1, !2 and the previous circle in the chain.
Now let C4 = i(C′4), C5 = i(C′5), and so on. Since inversion is conformal, each circle
in the chain C3, C4, C5, . . . , is tangent to C1, C2, and the previous circle in the chain.
"#

Jakob Steiner was a strong proponent of synthetic (rather than analytic) geometry
in general, and of inversion in particular (ref [??]). The chain of tangent circles in
the arbelos can be thought of as a limiting case one of his theorems, called Steiner’s
porism. Before we can properly approach Steiner’s porism, we need to develop a few
related ideas. In spite of Steiner’s sensibilities, we will take an analytic geometry
approach to these ideas.

Definition 17.2. Power of a Point. Let C be the circle with equation

(x−h)2 +(y− k)2 = r2,

and let P be the point with coordinates (x0,y0). The power of the point P with respect
to the circle C is the number

pC(P) = (x0−h)2 +(y0− k)2− r2.

If pC(P) = 0, then P lies on C. If pC(P) < 0, then P lies inside C. And if pC(P) > 0,
then P lies outside C.

Definition 17.3. Radical Axis. The radical axis of two non-concentric circles C1
and C2 is the set of points P such that

pC1(P) = pC2(P).

Lemma 17.1. The radical axis of two non-concentric circles C1 and C2 is the line
which is perpendicular to the line through the centers of C1 and C2.

Proof. Begin with the equations for the two circles:

C1 : (x−h1)2 +(y− k1)2 = r2
1

C2 : (x−h2)2 +(y− k2)2 = r2
2

In order for a point (x,y) to lie on the radical axis, it must satisfy the equation

(x−h1)2 +(y− k1)2− r2
1 = (x−h2)2 +(y− k2)2− r2

2.

Multiplying out and simplifying the equation:

−2xh1 +h2
1−2yk1 + k2

1− r2
1 =−2xh2 +h2

2−2yk2 + k2
2− r2

2

x(2h2−2h1)+ y(2k2−2k1) = h2
2−h2

1 + k2
2− k2

1 + r2
1− r2

2

This is the equation of a line. As long as it is not a vertical line (and we leave it to
the reader to handle that case), we can put it into slope-intercept form
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Two non-concentric circles and a 
family of circles orthogonal to 
both of them.

Mapping non-concentric circles to 
concentric circles. Circles C1 and 
C2 are mapped to intersecting 
lines. In turn, CA and CB are 
mapped to circles centered at that 
point of intersection.

To prove that such orthogonal 
circles exist, look at the circle 
centered at P and orthogonal to C1 
and the circle centered at P and 
orthogonal to C2. They both have 
the same radius so they must be 
the same.

P

O

Q

C1

C2

CA CB

R1

R2

r2

r1
O1

O2
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y =−2h2−2h1

2k2−2k1
x+

h2
2−h2

1 + k2
2− k2

1 + r2
1− r2

2
2k2−2k1

The slope of this line may be read from the equation as

m =−h2−h1

k2− k1
,

which is the negative reciprocal of

m′ =
k2− k1

h2−h1
,

the slope of the line through the centers of C1 and C2. Recall that if the slopes of
two lines are negative reciprocals of each other, then they are perpendicular (home-
work problem 13.2 in the Analytic Geometry section). Therefore the radical axis is
perpendicular to the line through the two centers. "#

Lemma 17.2. Let C1 and C2 be two non-concentric circles. Let P be a point on
their radical axis which does not lie in the interior of either C1 or C2. Then there is
a circle centered at P which is orthogonal to both C1 and C2.

Proof. Let r1 and r2 be the radii of C1 and C2, and let O1 = (x1,y1) and O2 = (x2,y2)
be their centers. Write (x,y) for the coordinates for P. Because P lies outside C1,
there is a line which passes through P and is tangent to C1 (actually there are two
such lines). Let Q be the point of tangency of this line and C1. Then ∠QO1P is a
right angle, so the circle with center P and radius PO1 is orthogonal to C1. For the
same reasons, there is also a circle centered at P which is orthogonal to C2.

Now we would like to show that these circles are actually the same. They have
the same center, so the only question is whether they have the same radius. Let R1
be the radius of the circle orthogonal to C1 and let R2 be the radius of the circle
orthogonal to C2. Look at the right triangle*QO1P. By the Pythagorean theorem,

|PQ|2 = |PO1|2− |O1Q|2.

In terms of coordinates:

R2
1 = (x−h1)2 +(y− k1)2− r2

1

so R2
1 is the power of P with respect to C1. Similarly

R2
2 = (x−h2)2 +(y− k2)2− r2

2

so R2
2 is the power of P with respect to C2. But P lies on the radical axis and so these

two powers are the same. Therefore R1 = R2; the two orthogonal circles are in fact
the same; and therefore there is a circle centered at P which is orthogonal to both C1
and C2. "#
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Inversion of a Steiner chain into a chain around 
concentric circles.
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Lemma 17.3. Let C1 and C2 be two nonintersecting circles. There is an inversion i
so that i(C1) and i(C2) are concentric circles (they have the same center).

Proof. We know that there are a lot of circles which are orthogonal to both C1 and
C2– in fact, according to the last lemma, there is one centered at each point on the
radical axis outside of the circles. If we choose two points on the radical axis that
are sufficiently close together, the corresponding orthogonal circles CA and CB will
overlap one another. That is, they will intersect in two points. Let O be one those
intersections, and let i be an inversion in a circle centered at O (the radius of the
inverting circle does not matter). Under this inversion, the images of C1 and C2
are circles, but because CA and CB both pass though O, i(CA) and i(CB) are lines.
Furthermore, because CA and CB intersect at a second point, i(CA) and i(CB) are
intersecting lines.

Now CA was chosen to be orthogonal to C1. Since inversion is a conformal map-
ping, this means that i(CA) must be orthogonal to i(C1). That is, at their intersection,
the line i(CA) must be perpendicular to the tangent line to i(C1). Hence i(CA) must
lie along the diameter of i(C1) (recall that the tangent line to a circle is perpendic-
ular to its diameter). Similarly, i(CB) must lie along another diameter of i(C1). The
center of a circle is located at the intersection of diameters, so the center of i(C1)
is located at the intersection of i(CA) and i(CB). The same holds for C2: it is also
orthogonal to both CA and CB, so i(CA) and i(CB) are diameters, and therefore the
center of i(C2) is also located at the intersection of i(CA) and i(CB). Since i(C1) and
i(C2) have the same center, they must be concentric. "#

Definition 17.4. Steiner chain. Let CA and CB be two circles, with CB contained in
CA. Let C1 be a circle which is tangent to CA and CB.

Let C2 be the circle tangent to CA, CB, and C1.
Let C3 be the circle tangent to CA, CB, and C2.
Let C4 be the circle tangent to CA, CB, and C3.

Continuing in this manner, we can create a chain of tangent circles bounded by CA
and CB. Eventually this chain will loop back around to C1. When that happens, will
the two ends of the chain meet up perfectly, with the last circle Cn in the chain
tangent to C1? Well, no, probably not. Under certain configurations though, the two
ends do meet perfectly. When this happens, the chain of circles C1, C2, C3, . . . , Cn
is called a Steiner chain.

Theorem 17.2. Steiner’s Porism. Let CA and CB be two circles, with CB contained
in CA. Beginning with a circle C1 which is tangent to both CA and CB, form a chain
of circles, C1, C2, C3, . . . , Cn. If these circles forms a Steiner chain, then for any
other starting circle C′1 tangent to CA and CB, the resulting chain C′1, C′2, C′3, . . .C′n
will also be a Steiner chain.

Proof. This result is easy enough to see if CA and CB are concentric, for in this case
all the circles in both chains are congruent. Therefore a rotation centered at at the
center of CA which rotates C1 to C′1 will map Ci to C′i for all i. Under this rotation,
the points of tangency between the circles C1, C2, . . . , Cn are mapped to points of
tangency between C′1, C′2, . . . , C′n.
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Now suppose that CA and CB are not concentric. This is where inversion comes
to the rescue. By the previous lemma, there is an inversion i which maps CA and CB
to concentric circles. Under this inversion, the two chains of circles C1, . . .Cn and
C′1 . . .C′n are mapped to chains of tangent circles between i(CA) and i(CB). If C1,
C2, . . . , Cn is a Steiner chain, then i(C1), i(C2), . . . , i(Cn) will be a Steiner chain, in
which case i(C′1), i(C′2), . . . , i(C′n) will be a rotation of i(C1), i(C2), . . . , i(Cn) and
so will also be a Steiner chain. This can only happen if C′1, C′2, . . . , C′n is a Steiner
chain. "#

Feuerbach’s theorem states the following:

Theorem 17.3. Feuerbach’s Theorem. For any triangle, the nine point circle is
tangent to the incircle and each of the excircles.

We first encountered this theorem at the end of the section on concurrence, but at
the time we deferred its proof. With the theory of inversions, a proof is now within
reach. Even so, we will only prove that the nine point circle is tangent to each of the
excircles and leave the issue of the tangency with the incircle to the reader. What
follows is essentially the method of proof in Pedoe [??]. Because this proof is a little
intricate, it is broken down into several parts.

In this argument, we will work on one side of the triangle and show that the excir-
cles touching the other two sides are tangent to the nine point circle. Repeating the
argument but working on another side confirms the tangency of the third excircle.
The one catch to this approach is that once we have selected a first side, this argu-
ment will not work if the two remaining sides of the triangle are congruent. Thus
it is important to choose the first side so that the other two sides are not congruent.
This can be done for scalene and isosceles triangles, but not for equilateral trian-
gles. Fortunately, the equilateral triangle is the easy case. For equilateral triangles,
the nine point circle and the three excircles are tangent at the midpoints of the sides.

For a non-equilateral triangle *ABC with |AB| += |AC|, let C1 be the excircle
tangent to AB, let C2 be the excircle tangent to AC, and let O1 and O2 be their
respective centers. Recall that the centers of the excircles are located on the bisectors
of the exterior angles of the triangle. Therefore, in *ABC, the exterior angle to ∠A
measures π− (∠A), so

(∠O1AB) = (∠O2AC) =
1
2
(π− (∠A)).

Adding up the angles around vertex A

(∠O1AB)+(∠A)+(∠O2AC) = π,

and this means that O1, A and O2 are collinear. Because AB and AC are not con-
gruent, the lines !O1O2 " and !BC" intersect at a point. Label this point D. By
symmetry, the other line which is tangent to both C1 and C2 also passes through D.

Let s be the reflection about the line !O1O2". This reflection leaves both circles
C1 and C2 invariant and the points A and D fixed. Now let
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B′ = s(B), C′ = s(C)

(and note that *ABC - *AB′C′). Label the feet of the perpendiculars to ! BC "
which pass through O1 and O2 as F1 and F2 respectively, and let

F ′1 = s(F1), F ′2 = s(F2)

Because F1 and F2 are the points of tangency between ! AC " and the invariant
circles C1 and C2, F ′1 and F ′2 are the points of tangency between !B′C′" and C1 and
C2.

Let M be the midpoint of BC. The key to this proof is an inversion i about a circle
which is centered at M and has radius |MF1|. The angle between curves, and hence
the issue of tangency, is preserved by inversion, so if the image of the nine point
circle and an excircle are tangent, then the nine point circle and the excircle must
themselves be tangent. Since the nine point circle passes through M, its image under
i must be a line. The excircle C1 is tangent to BC, which lies along a diameter of
the inverting circle, so C1 and the inverting circle are orthogonal. Therefore C1 is
invariant under i. The goal then is to show that the image line of the nine point circle
is tangent to C1. And the real challenge in doing this is pinning down that image
line.

Lemma 17.4.
|BF2| = |CF1|.

Proof. Let G be the intersection of C2 and AC. Then (by the H · L right triangle
congruence)

*O2F2C -*O2GC

so CF2 -CG. Therefore

|BF2| = |CF2|+ |BC| = |CG|+ |BC| (17.1)

Let G′ = s(G), the reflection of G across the line through the centers of the circles.
Since B′G is tangent to C2 at G, BG′ is tangent to C2 at G′. By the H ·L right triangle
congruence theorem,

*BF2O2 -*BG′O2

so BF2 - BG′. One more triangle congruence is needed. Again by the H · L right
triangle congruence theorem,*AG′O2 -*AG1O2, so AG′ - AG. Then

|BF2| = |BG′| = |AB|+ |AG′| = |AB|+ |AG|. (17.2)

Combining expressions (1) and (2),

2|BF2| = |AB|+ |AG|+ |CG|+ |BC|
= |AB|+ |AC|+ |BC|.

There is a symmetry to the right hand side of this expression. It only depends upon
the triangle*ABC itself. Therefore, the same calculation for CF1 will yield
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2|CF1| = |AB|+ |BC|+ |AC|

also. Therefore |BF2| = |CF1|. "#

Lemma 17.5. The point M, which was defined to be the midpoint of BC, is also the
midpoint of F1F2.

Proof. Breaking down |BF2| and |CF1|,

|BF2| = |BC|+ |CF2|
|CF1| = |BC|+ |BF1|.

Since |BF2| = |CF1| (the result of the previous lemma), |BF1| = |CF2|. Therefore

|MF1| = |BF1|+ |BM|
= |CF2|+ |CM|
= |MF2|. "#

Lemma 17.6. Let L be the foot of the altitude of*ABC along the line !BC". Then

|LF1|
|LF2|

=
|AO1|
|AO2|

.

Proof. This is a matter of chasing through a series of similar triangles. We will show
that both of these ratios are equal to |DF1|/|DO1| and so must be equal. By A ·A ·A
triangle similarity,*DLA∼*DF1O1, and this sets up the pair of equal ratios

|LF1|+ |DF1|
|AO1|+ |DO1|

=
|DF1|
|DO1|

Cross multiplying and simplifying,

(|LF1|+ |DF1|) · |DO1| = |DF1| · (|AO1|+ |DO1|)

|LF1| · |DO1|+ |DF1| · |DO1| = |DF1| · |AO1|+ |DF1| · |DO1|

|LF1| · |DO1| = |DF1| · |AO1|

|LF1|
|AO1|

=
|DF1|
|DO1|

Similarly, because*DF2O2 ∼*DLA,

|LF2|+ |LD|
|AO2|+ |AD| =

|LD|
|AD|

and this expression can be simplified to

|LF2|
|AO2|

=
|LD|
|AD| .
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To complete the proof, recall again that*DLA∼*DF1O1. Therefore |LD|/|AD|=
|DF1|/|DO1|, and so we may set equal

|LF1|
|AO1|

=
|LF2|
|AO2|

.

Gathering the terms with L and the terms with A on their respective sides gives the
desired result. "#
Lemma 17.7.

|LF1|
|LF2|

=
|DF1|
|DF2|

.

Proof. In the previous step, we established the ratio

|LF1|
|LF2|

=
|AO1|
|AO2|

.

Let r1 and r2 be the radii of the circles C1 and C2 respectively. There is a pair of
similar right triangles sharing a vertex A– one with hypotenuse AO1 and leg r1 and
one with hypotenuse AO2 and leg r2, so

|AO1|
|AO2|

=
r1

r2
.

Further,*DF1O1 ∼*DF2O2, so

r1

r2
=

|DF1|
|DF2|

.

Moving through these equivalent ratios,

|LF1|
|LF2|

=
|DF1|
|DF2|

. "#

Lemma 17.8.
|MD| · |ML| = |MF1|2.

Proof. Write:

|LF1| = |MF1|− |ML|
|LF2| = |MF2|+ |ML|
|DF1| = |DM|− |MF1|
|DF2| = |DM|+ |MF2|

Since M is the midpoint of F1F2 (the result of Lemma 17.6), |MF1| = |MF2|, so

|LF2| = |MF1|+ |ML|
|DF2| = |DM|+ |MF1|
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Substituting these into the previously established ratio (from Lemma 17.7):

|LF1|
|LF2|

=
|DF1|
|DF2|

|MF1|− |ML|
|MF1|+ |ML| =

|DM|− |MF1|
|DM|+ |MF1|

Cross multiplying and simplifying

(|MF1|− |ML|)(|DM|+ |MF1|)
= (|MF1|+ |ML|)(|DM|− |MF1|)

|MF1| · |DM|+ |MF1|2− |LM| · |DM|− |LM| · |MF1|
= |MF1| · |DM|− |MF1|2 + |LM| · |DM|− |LM| · |MF1|

=⇒ 2|MF1|2 = 2|LM| · |DM|. "#

Recall that at the very beginning of this argument we wanted to look at an in-
version i centered at M with radius MF1. All of these calculations have served one
purpose: to show us the image, under that inversion, of one point on the nine point
circle, the point L. Observe that D lies on the ray ·ML". We have just calculated
that

|DM| = |MF1|2

|LM|
Therefore i(L) = D.

Because the nine point circle passes through the center of the inverting circle, its
image will be a line, and as such, it will be completely determined by two points.
With the image of L established, it is just a matter of finding the image of one more
point. For this other point, we turn to the midpoints of the remaining sides AB and
AC (these are also points on the nine point circle). Let N1 be the midpoint of AB, N2
be the midpoint of AC, and let θ be the measure of the angle between the tangent
line to the nine point circle and MN1. Because the inversion i is conformal and the
line !MN1 " is invariant under i, at i(N1) the image of the nine point circle must
intersect !MN1" forming an angle measuring θ . The next step is to chase angle θ
around to a more useful location.

Lemma 17.9.
θ = (∠B).

Proof. Let O be the center of the nine point circle. By the inscribed angle theorem

($N1N2M) =
1
2
(#N1OM).

The other two angles in the isosceles triangle *N1OM are congruent, so they both
measure
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1
2
(
π− (#N1OM)

)
= π/2− (∠N1N2M)

Adding up angles around N1,

θ +π/2+(π/2−∠N1N2M) = π

so
θ = (∠N1N2M).

We have worked our way around to a congruent angle inside the triangle, but we
are not quite done. Now we turn our attention to the quadrilateral BMN2N1. Observe
that both pairs of opposite sides of this quadrilateral are parallel. That is, BMN2N1
is a parallelogram. Recall that the opposite angle in a parallelogram are congruent
to each other. Therefore ∠B and ∠N1N2M are congruent, and so ∠B- θ . "#

Using this result, we can complete the proof of Feuerbach’s theorem. Once again,
we rely upon the fact that inversion is conformal to tell us that when the image of
the nine point circle and the line !MN1 " cross at the point i(N1), they must form
an angle congruent to ∠B. Recall that ∠B′ is the reflection of ∠B, and so ∠B′ -∠B
as well. Now ! MN1 " is parallel to ! B′C " so by the converse of the Alternate
Interior Angle Theorem, when !MN1" crosses !DB′", it must also form an angle
congruent to angle ∠B′. There can be only one point on the ray ·MN1" which forms
an angle congruent to ∠B′ with a line passing through D. Therefore i(N1) has to be
on the line !DB′" and that means that the image of the nine point circle under the
inversion i is the line !DB′". This is a line which is tangent to both excircles C1 and
C2. It follows that the image of the nine point circle is tangent to C1 and C2 (both of
which, recall, are invariant under i). Therefore the nine point circle is itself tangent
to C1 and C2.

Exercises

17.1. Consider the arbelos formed by removing half-circles C1 and C2 from the half-
circle C0. Show that the perimeter of the half-circle C0 is equal to the sum of the
perimeters of the half-circles C1 and C2.

17.2. Consider the arbelos formed by removing half-circles C1 and C2 from the half-
circle C0. Let A be the point of intersection of C1 and C2. Let ! be the tangent line
to C1 and C2 at A. The line ! intersects C0– label this point B. Let C3 be the circle
with diamter AB. It intersects both C1 and C2– label these points C and D. Show that
ACDB is a rectangle.

17.3. Let C1 and C2 be two nonintersecting circles. Show that their radical axis lies
outside of both of the circles.

17.4. Suppose that C1 and C2 are intersecting circles. Prove that the radical axis
passes through the intersection point(s).
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17.5. Suppose that C1 and C2 are circles, and that C1 lies entirely in the interior of
C2 but that the two circles are not concentric. Describe the location of the radical
axis– does it intersect both circles, neither circle, or does it intersect C2 but not C1?

17.6. Let C be a circle and let A be a point (other than the center of the circle). Con-
struct a circle which is orthogonal to C and passes through O. [Hint: this orthogonal
circle should intersect at a point P so that ∠OAP is a right angle.]

17.7. Given a circle and a point, give a compass and straight edge construction of
the image of the point under the inversion across the circle. The construction in the
previous problem should help with this construction.

17.8. Given a circle C and a line !, construct the image of ! under the inversion
across the circle C.

17.9. Given a circle C and another circle C′, construct the image of C′ under the
inversion across the circle C.

17.10. Some compass and ruler computer programs have a built-in inversion calcu-
lation which will make the following constructions more manageable. Construct the
chain of circles in the arbelos as described in the chapter.

17.11. Construct a Steiner chain of six circles which are tangent to two non-
concentric circles.

17.12. Construct a Steiner chain of eight circles which are tangent to two non-
concentric circles.
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The geodesics on a sphere are its great 
circles. But the sphere does not 
properly model neutral geometry.



Chapter 18
Poincare Disk I

In spite of the best efforts of the mathematicians of the day, the parallel axiom
was never proved. And this was because of the simple fact that the parallel axiom
cannot be proved from the other axioms: it is independent of them. There is a valid
geometry which satisfies all the axioms of neutral geometry but not the parallel
axiom. It is called hyperbolic geometry. Saccheri, Legendre, Lambert, and Gauss,
to name a few, all provided important clues about what type of behavior to expect
in a non-Euclidean geometry, but it is the Italian mathematician Eugenio Beltrami
who deserves the most credit for finding the first models of hyperbolic geometry.

From the very start of our studies, points and lines have been undefined terms.
They are connected by undefined relations called incidence, order, and congruence,
and a list of axioms describing how all of these terms interact. A model is an inter-
pretation of these undefined terms which is consistent with all of the axioms. The
standard interpretation of Euclidean geometry as points and lines in R2 is one such
model. While this is the most familiar model, there is nothing sacred about this in-
terpretation. Any other interpretation of the undefined terms which conforms to all
the axioms is an equally valid model.

A direct way to prove that the parallel axiom is not a consequence of the axioms
of neutral geometry, then, is to find a valid model for neutral geometry which does
not satisfy the parallel axiom. Since Euclidean geometry is “flat sheet” geometry,
one natural place to look for non-Euclidean models is on curved surfaces– after all,
the earth itself is a curved surface. The points in such a geometry would be the
points on the surface. What about the lines? One of the critical characteristics of a
line in the Euclidean plane is that it is the shortest distance between two points. The
shortest distance path between two points on a curved surface is called a geodesic
(technically speaking, a geodesic locally minimizes arc length). Geodesics on a sur-
face would seem to be a logical candidate to represent lines.

Generally speaking, though, points and geodesics on surfaces do not come even
close to satisfying the axioms of neutral geometry. Take, for example, the sphere.
Geodesics on the sphere are great circles (a great circle is a circle with the property
that if it passes through a point it also passes through the diametrically opposite
point on the sphere). If A, B, and C are points on such great circle, then all three

1289
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orderings
A∗B∗C B∗A∗C C ∗A∗B

are equally valid, in violation of the axioms of order. While the sphere has a useful
and interesting geometry in its own right, it is not a valid model for neutral geometry.

Our goal now is to find models for geometries which satisfies all the axioms of
neutral geometry, but fail the axiom on parallels. We will call such a geometry a non-
Euclidean geometry. This wording is probably not ideal, because strictly speaking
there are plenty of non-Euclidean geometries which do not satisfy the axioms of
neutral geometry. In the current context though, we can safely use the term non-
Euclidean geometry to refer to a neutral geometry which does not satisfy the axiom
of parallels.

To further investigate the problem with the sphere model, let ! be a great circle
on the sphere, and let P be a point on the sphere which is not on !. Any great
circle which passes through P will wrap around the sphere and eventually cross !.
Therefore, there are no parallels to ! through P. This should not happen in neutral
geometry– in any non-Euclidean geometry there should be many lines through P
parallel to ! (infinitely many in fact). The problem is that the sphere is curved the
wrong way– it is curved in such a way that it pulls all lines together, preventing
any parallels. In order to create multiple parallels, a surface which models non-
Euclidean geometry needs to push lines apart.

At the heart of this issue is the idea of the curvature of the surface. Let P be a
point on a surface S, and let TP be the tangent plane to S at P. Just as a line separates
the plane into two parts, the tangent plane separates space into two parts. If there is
a neighborhood of points on S around P which (other than P) all lie on one side of
TP, then P is a point of positive curvature. If on the other hand every neighborhood
around P has points on both sides of TP, then P is a point of negative curvature. If
every point on S has positive curvature, then S is a surface of positive curvature. If
every point on S has negative curvature, then S is a surface of negative curvature.

For a point P on a sphere, the entire sphere (other than P) lies on one side of the
tangent plane. Therefore a sphere is a positively curved surface (in fact the curvature
of a sphere is constant). It is this positive curvature which causes the geodesics to
bend toward each other, preventing parallels. Surfaces which model a non-Euclidean
geometry will need to be surfaces of negative curvature. One of the Beltrami’s mod-
els is a surface of constant negative curvature called the pseudosphere. While it
does not provide a complete model of non-Euclidean geometry, it does provide a
very nice picture of the local behavior of non-Eucliean geometry. It is generated by
revolving a curve called the tractrix around the x-axis.

Definition 18.1. The tractrix. The tractrix is a relatively innocuous looking curve,
increasing for x < 0, decreasing for x > 0, with a cusp at (0,C) and approaching
zero as x approaches ±∞. Parametric equations for the tractrix are

{
x(t) = C[cos(t)+ ln(tan(t/2))]
y(t) = C sin(t)
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The graph of the positive half of the 
tractrix (x 0) with C=1. The tractrix is 
an even function�– the negative half is a 
mirror image of the positive half.

The surface generated by revolving the 
positive half of the tractrix around the 
x-axis is called the pseudosphere.
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where C is a positive constant. In addition, there is a geometric interpretation of the
tractrix.

Theorem 18.1. For any point P on the tractrix, the tangent line to the tractrix at P
intersects the x-axis at a constant distance from P.

Proof. The first step in calculating the tangent line is differentiating
{

x′(t) = C
[
−sin(t)+(tan(t/2))−1 · sec2(t/2) · 1

2
]

y′(t) = C cos(t).

The expression x′(t) can be simplified further

x′(t) = C
[
−sin(t)+

1
sin(t/2)cos(t/2)

· 1
2

]

and using the double angle formula for sine,

x′(t) = C
[
−sin(t)+

1
sin(t)

]

= C
[
−sin2(t)+1

sin(t)

]

= C
[

cos2(t)
sin(t)

]

= C cot(t)cos(t).

The slope of the tangent line is then

m =
y′(t)
x′(t)

=
C cos(t)

C cot(t)cos(t)
= tan(t).

If (x0,y0) is the point on the tractrix which corresponds to time t, then the equation
of the tangent line is

y− y0 = tan(t)(x− x0).

Let (a,0) be the point where this line intersects the x-axis.Then

−y0 = tan(t)(a− x0)

and solving for a:
a =− y0

tan t
+ x0.

We can calculate the distance from (x0,y0) to (a,0) is
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d =
[(

x0−
(
− y0

tan t
+ x0

))2
+ y2

0

]1/2

=
[

y2
0

tan2 t
+ y2

0

]2

=
[
y2

0(cot2 t +1)
]1/2

= y0 csc t.

But y0 = C sin(t), so
d = C sin(t)csc(t) = C. "#

For this reason, the tractrix is a simple example of what is called a “pursuit
curve,” the curve traced out by one object which is following, at a constant distance,
another moving object. Point Q is initially located at the origin, point P at (C,0). As
Q moves in the positive direction along the x-axis, P continually adjusts its direc-
tion toward P while maintaining a constant distance of C from Q. The resulting path
traced out by P is the tractrix.

The pseudosphere is the surface generated by revolving the positive half of the
tractrix (the half with positive x-coordinates) around the x-axis. It is a surface of
constant negative curvature. There are a few different types of geodesics on the
pseudosphere. One type is a circle perpendicular to the x-axis. Another is essen-
tially perpendicular to the first, running from the edge of the pseudosphere and in-
tersecting each of those circles at right angles. The third and most complicated type
of geodesic starts at the edge of the pseudosphere, spirals around a few times then
winds back down to the edge. Immediately we can see that at least the first and third
type of geodesic are going to be problematic as far as the axioms of neutral geome-
try are concerned. On the first type of geodesic (circle), it is not going to be possible
to properly order the points.The third type of geodesic intersects itself, creating even
worse problems. Thus the pseudosphere is not a complete model for non-Euclidean
geometry.

Portions of the pseudosphere do exhibit the local properties of a non-Euclidean
neutral geometry however, and so the pseudosphere does provide a sense of the local
behavior of such a geometry. Most likely, Beltrami presented this partial model to
appeal to the sensibilities of the differential geometers of the day. Because of this
incompleteness, we will not pursue this model any further, but it does provide a
visual picture of how parallel lines can bend away from one another.

The limitations of the pseudosphere as a non-Euclidean model are not particu-
lar to this surface, but rather are present in all models based on curved surfaces in
three-dimensional space. A result known as Hilbert’s Theorem states that no com-
plete regular surface with constant negative curvature can be smoothly embedded in
R3 (ref [?? maybe do Carmo?]). So a fundamentally different approach is needed.
The complete models which were proposed by Beltrami, Klein, and Poincaré are
not composed of points and geodesics on surfaces. In fact, each of these models is a
subset of the plane. What is changed, though, is the way distance between points is
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Lines in the Poincaré disk model.

The radius of a circle which is orthogo-
nal to the unit circle can be determined 
by the coordinates of its center.

1

r (h,k)
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measured. In the end, each of these models describes essentially the same geometry,
a non-Euclidean geometry called hyperbolic geometry. In fact, hyperbolic geometry
is essentially the only non-Euclidean geometry which satisfies the neutral axioms.
While this means that all the models are essentially the same, there are some practi-
cal differences in the way we would have to work with them. And while each model
has its own set of advantages and disadvantages, rather than bounce back and forth
between them, we will work exclusively with one: the Poincaré disk model .

In the first part of this book, we developed Euclidean geometry from the axioms
up, eventually constructing segment and angle measurement and finding the trans-
formations which preserve those measurements. This time we are going to work in
the reverse direction. Starting with hyperbolic angle and segment measurement and
the transformations which preserve those measurements, we will work back to show
that the Poincaré disk model conforms to all of the axioms of neutral geometry.

Definition 18.2. Lines in the Poincare Disk. The points in the Poincaré disk model
are the points in the complex plane which lie inside the unit circle:

D = {z ∈ C | |z| < 1}.

There are two types of hyperbolic lines in this model. If ! is any Euclidean line in
C which passes through 0, then the portion of ! which lies inside D is a hyperbolic
line. If C is a Euclidean circle in C which is orthogonal to the unit circle, then the
portion of C which lies inside D (the “orthogonal arc”) is a hyperbolic line.

The equations of the lines which pass through the origin are easy, and generally
speaking, working with this type of hyperbolic line is pretty straightforward. Work-
ing with hyperbolic lines which are modeled by orthogonal arcs is usually a bit more
challenging. The equations of these orthogonal circles do all have a common form
though.

Theorem 18.2. Circles orthogonal to the Poincare Disk. Let C be the circle which
is orthogonal to the unit circle and centered at the point h + ik. Points x + iy on C
satisfy the equation

x2−2xh+ y2−2yk =−1.

Proof. The center of the circle is given, so the only other necessary component is the
radius. Let O be the origin, the center of the unit circle and let O1 be the center of C.
Let P be one of the intersection points of the unit circle and C. Since C is orthogonal
to the unit circle, the triangle OPO1 is a right triangle. By the Pythagorean theorem,

|OP|2 + |O1P|2 = |OO1|2.

Now |OP| = 1 and |OO1| =
√

h2 + k2, so

|O1P| =
√

h2 + k2−1.

This is the radius of C; the equation for C is then
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The hyperbolic line through (0.5,0) and (0,0.5) (or, in 
the complex plane 0.5 and 0.5i).

The cross ratio of two segments depends upon four 
distances.

0.5

0.5i

P

Q

BA
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(x−h)2 +(y− k)2 = h2 + k2−1

x2−2xh+h2 + y2−2yk + k2 = h2 + k2−1

x2−2xh+ y2−2yk =−1. "#

Example 18.1. Find the equation of the orthogonal circle representing the hyper-
bolic line through the points at coordinates (0.5,0) and (0,0.5) in the Poincaré disk
model.

Because of the convenient symmetry of this example, h = k. Therefore the equation
of the circle has the form

x2−2xh+ y2−2yh+1 = 0.

To find h and k, plug in the point (1/2,0):

1
4
−h+1 = 0 =⇒ h = k =

5
4

and the equation of the orthogonal circle is

x2− 5
2

x+ y2− 5
2

y+1 = 0.

As seen here, in the Poincaré disk model hyperbolic objects are defined in terms
of Euclidean objects. So for instance, a hyperbolic line can look like a piece of a
Euclidean circle. Likewise, we will shortly define hyperbolic distance as a function
of several Euclidean distances. Switching back and forth between Euclidean and
hyperbolic geometry like this can be a little confusing. Nevertheless, as long as there
seems to be little chance of confusion, we will refer to objects without necessarily
specifying whether they are Euclidean or hyperbolic.

Distance in the Poincaré disk model is calculated in terms of a construction called
the cross ratio.

Definition 18.3. The Cross Ratio. Let A, B, P and Q be four distinct points. The
cross ratio of A, B, P, and Q, written [A,B,P,Q] is the following product of ratios

[A,B,P,Q] =
|AP|
|BP| ·

|BQ|
|AQ| .

The cross ratio is not completely independent of the order in which four the
points are listed. A rearrangement leads to a pretty simple change in the resulting
cross ratio though. For instance,

[P,Q,A,B] =
|PA|
|QA| ·

|QB|
|PB|

=
|AP|
|BP| ·

|BQ|
|AQ| = [A,B,P,Q]
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Calculating the hyperbolic distance between two points 
using the cross ratio. This is usually not the fastest way 
to calculate hyperbolic distance.

(0.5, 0)

(0, 0.5)

(0.98, -0.18)

(-0.18, 0.98)

0.517

1.197
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and similarly

[B,A,P,Q] = 1/[A,B,P,Q]

[A,B,Q,P] = 1/[A,B,P,Q]

[B,A,Q,P] = [A,B,P,Q].

Definition 18.4. Hyperbolic Distance. The hyperbolic distance between points A
and B in the disk model, written dH(A,B), is defined as follows. There is a unique
line or orthogonal arc representing the hyperbolic line through A and B (a fact to
be proved in the next section), and this line or arc intersects the unit circle at two
points. Call these points of intersection P and Q. Then we define

dH(A,B) = | ln([A,B,P,Q])|.

For the calculation of hyperbolic distance, the order that A and B are listed does
not matter. For instance,

dH(B,A) = | ln([B,A,P,Q])|

=
∣∣ln
(
[A,B,P,Q]−1)∣∣

= |− ln[A,B,P,Q]|

= |ln[A,B,P,Q]|

= dH(A,B)

If P and Q are chosen so that P is the one closer to B, and Q the one closer to A, then
both ratios in the cross ratio will be greater than one, so the term ln([A,B,P,Q]) will
be positive and the absolute value signs are not necessary.

Example 18.2. Find the hyperbolic distance between the points A and B located at
the coordinates (0.5,0) and (0,0.5).

The equation for the orthogonal circle through these two points is

x2− 5
2

x+ y2− 5
2

y =−1

as calculated in the previous example. To find the hyperbolic distance between these
points, we will need to know the coordinates of the intersection points of this circle
with the unit circle x2 + y2 = 1. This involves solving the system of (nonlinear)
equations: {

x2− 5
2 x+ y2− 5

2 y =−1
x2 + y2 = 1

Subtracting the first equation from the second and simplifying yields
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5
2 x+ 5

2 y = 2
5x+5y = 4
y = 4/5− x

Plugging this back into the second equation

x2 +(4/5− x)2 = 1

x2 + 16
25 −

8
5 x+ x2 = 1

2x2− 8
5 x− 9

25 = 0

50x2−40x−9 = 0

The quadratic formula gives the x-coordinates for the intersections

x =
40±

√
1600+1800
100

=
2
5
±
√

34
10

.

The corresponding y coordinates are

y =
4
5
−
(

2
5
±
√

34
10

)
=

2
5
∓
√

34
10

.

Therefore

P :

(
2
5

+
√

34
10

,
2
5
−
√

34
10

)
Q :

(
2
5
−
√

34
10

,
2
5

+
√

34
10

)
.

Four Euclidean distances are required in order to calculate the hyperbolic distance,
|AP|, |BQ|, |BP| and |AQ|. The first,

|AP| =

√√√√
(

2
5

+
√

34
10

− 1
2

)2

+

(
2
5
−
√

34
10

)2

=

√√√√
(
−1+

√
34

10

)2

+

(
4−

√
34

10

)2

=
1

10

√
(1−2

√
34+34)+(16−8

√
34+34)

=
1

10

√
85−10

√
34.

By symmetry, |BQ| will be the same. Then
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While calculating hyperbolic distance in the Poincaré 
disk model is generally quite complicated, if one of the 
two points is the origin, the formula simplifies consid-
erably.

1
|z|

1
|z|

z
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|BP| =

√√√√
(

2
5

+
√

34
10

)2

+

(
2
5
−
√

34
10

− 1
2

)2

=

√√√√
(

4+
√

34
10

)2

+

(
−1−

√
34

10

)2

=
1

10

√
(16+8

√
34+34)+(1+2

√
34+34)

=
1

10

√
85+10

√
34.

Again, |AQ| will be the same. These are the required endpoints to calculate the
hyperbolic distance

dH(A,B) =
∣∣∣∣ln
(

AP
BP

· BQ
AQ

)∣∣∣∣

=

∣∣∣∣∣ln
(

1
10

√
85−10

√
34 · 1

10

√
85−10

√
34

1
10

√
85+10

√
34 · 1

10

√
85+10

√
34

)∣∣∣∣∣

=

∣∣∣∣∣ln
85−10

√
34

85+10
√

34

∣∣∣∣∣

≈ 1.68070.

As this example suggests, calculating hyperbolic distance in this way is a tedious
affair. There is one situation in which the calculation is quite a bit easier, and this
is when one of the two points is located at the origin. Suppose point O is located
at the origin and point A is at the complex coordinate z = x + iy. Then P and Q
will be diametrically opposite points on the diameter through O and A. Suppose, for
convenience, that P is the point which is closer to A. Each of the four Euclidean
distances necessary for the hyperbolic distance formula are easy to calculate:

|OP| = |OQ| = 1 |AP| = 1− |z| |AQ| = 1+ |z|.

Combining these gives

dH(O,A) =
∣∣∣∣ln
(

1
1− |z| ·

1+ |z|
1

)∣∣∣∣
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The graphs of the hyperbolic sine and the hyperbolic 
cosine functions.
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2

3

4

5
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y=sinh(x)

y=cosh(x)
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Since 1 + |z| will always be greater than 1− |z|, the term inside the logarithm will
be greater than one, so the logarithm itself will be positive and the absolute values
signs are not needed:

dH(O,A) = ln
(

1+ |z|
1− |z|

)
.

While this formula is easy enough to evaluate, there is an equivalent formulation in
terms of the hyperbolic trigonometric functions.

Definition 18.5. Hyperbolic sine and cosine. The hyperbolic sine and cosine func-
tions, sinh(z) and cosh(z) are defined (for all complex numbers) in terms of expo-
nentials

sinh(z) =
ez− e−z

2
cosh(z) =

ez + e−z

2
.

The other four hyperbolic trigonometric functions are defined in terms of them
in analogy with the way that the other four trigonometric functions are defined in
terms of sine and cosine. For instance, the hyperbolic tangent, tanh(z) is defined

tanh(z) =
sinh(z)
cosh(z)

=
ez− e−z

ez + e−z .

The formula for distance dH(O,A) can be expressed quite concisely in terms of the
inverse of this function.

Since tanh(z) is expressed in terms of the exponential function, it should come as
no surprise that its inverse would be expressed in terms of logarithms. To actually
compute this inverse, take the expression z = tanh(w), and solve for w:

z =
ew− e−w

ew + e−w

(ew + e−w)z = ew− e−w

zew + ze−w = ew− e−w

e−w + ze−w = ew− zew

Multiplying though by ew
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The graph of the inverse hyperbolic tangent function, 
used to measure the hyperbolic distance from the 
origin. Because of the vertical asymptote at one, as 
points approach the edge of the Poincaré disk, their 
hyperbolic distance from zero approaches infinity.

1
2
3
4

1

5
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1+ z = e2w− ze2w

1+ z = (1− z)e2w

1+ z
1− z

= e2w

ln
(

1+ z
1− z

)
= 2w

1
2

ln
(

1+ z
1− z

)
= w

and therefore
tanh−1(z) =

1
2

ln
(

1+ z
1− z

)
.

The hyperbolic distance from the origin to a point can thus be written

dH(O,A) = 2tanh−1(|z|).

A graph of this function shows that as A approaches O, and therefore |z| approaches
zero, the hyperbolic distance dH(O,A) also approaches zero (as would be expected).
As A approaches the edge of the disk, |z| approaches one and so dH(O,A) ap-
proaches infinity.

Thankfully, hyperbolic angle measure in the Poincaré disk model is easier than
hyperbolic distance. In fact, if two rays are based at the origin, the hyperbolic mea-
sure of the angle between them is the same as the Euclidean measure of that angle.
Otherwise, one or both of the hyperbolic lines will be represented by circles in the
model. In this case, the hyperbolic angle measure is the measure of the Euclidean
angle formed by the tangent lines at the point of intersection.

Exercises
Problems 1–6 step through the process of showing that the pseudosphere has con-
stant negative curvature. This is really a problem of differential geometry. To solve
these problems, you will need some experience with multivariable calculus and lin-
ear algebra.

18.1. Using the parametric equations for the tractrix, show that the pseudosphere
can be parametrized by r(s, t) as

x(s, t) =
y(s, t) =
z(s, t) =
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18.2. Find the unit normal vector n to the pseudosphere at any point as a function
of s and t.

18.3. Compute the second partial derivatives of r: rss, rst and rtt .

18.4. The second fundamental form of a surface is the matrix

II(r(s, t)) =
(

A B
B C

)

where A = rss ·n, B = rst ·n, and C = rtt ·n.

18.5. The eigenvalues of the matrix II(r(s, t) are the principal curvatures k1 and k2
of the surface. Compute these.

18.6. The Gaussian curvature k is the product of the principal curvatures. Show that
the Gaussian curvature of the pseudosphere is a negative constant.

18.7. Let P = 0.2+0.3i and Q =−0.3+ i. Find the equation for the Euclidean circle
which represents the hyperbolic line through these two points.

18.8. Let A, B, C, and D be four points. Which orderings of the four points result in
the same cross ratio value as [A,B,C,D]?

18.9. Calculate the hyperbolic distance from 0 to 0.5 + 0.2i in the Poincaré disk
model.

18.10. Calculate the distance in the Poincaré disk from 0+0.2i to 0.2+0i.

18.11. Let A = −0.3, B = 0.4i and C = 0. What is the measure of the hyperbolic
angle ∠ABC?

18.12. Find formulas for sinh−1(z) and cosh−1(z) in terms of the natural logarithm.

18.13. Consider the Lambert quadrilateral whose three right angles are at the points
0, 0.3 and 0.3i in the Poincaré disk. Find the location of the fourth vertex of the
quadrilateral.

18.14. Using the Lambert quadrilateral in the previous problem, what are the lengths
of the four sides of the quadrilateral?

18.15. Using the Lambert quadrilateral from the previous two problems, what is the
measure of the interior angle of the fourth vertex?

18.16. Show that hyperbolic circles in the Poincaré disk model look like Euclidean
circles, but the centers of the Euclidean circles are not the centers of the hyperbolic
circles.

18.17. Construct a quadrilateral with four congruent sides and vertices at the four
coordinates ±x, and ±xi where 0 < x < 1. What is the length of a side of this quadri-
lateral (as a function of x)? What happens to this length as x approaches 1?

18.18. Using the quadrilateral constructed in the last problem. What is the measure
of an interior angle of this quadrilateral (as a function of x)? What happens to the
measure of this angle as x approaches 1?
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Chapter 19
Poincare Disk II

In this chapter we show that the Poincaré disk satisfies the axioms of neutral geom-
etry. Before jumping into that, though, we need a working knowledge of a certain
type of complex function known as a Möbius transformation.

Definition 19.1. Mobius transformation A Möbius transformation (also known as
a fractional linear transformation) is a map from the complex plane to itself of the
form

f (z) =
az+b
cz+d

where a, b, c, and d are complex numbers and ad−bc += 0.

If c = 0, then f can be written in the form

f (z) =
a
d

z+
b
d

and in this case f (z) is a bijective mapping of the complex plane (a linear mapping
in fact). If c += 0, then f (z) is defined for all complex numbers except z =−d/c and
it is one-to-one on those numbers, making it possible to compute the inverse.

Theorem 19.1. The inverse of the Möbius transformation f (z) = (az+b)/(cz+d)
is

f−1(z) =
dz−b
−cz+a

.

Proof. Solve for w:

1311
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z =
aw+b
cw+d

z(cw+d) = aw+b

czw+dz = aw+b

czw−aw =−dz+b

(cz−a)w =−dz+b.

Therefore
w =

−dz+b
cz−a

=
dz−b
−cz+a

.

The range of f (z), which is the same as the domain of f−1(z), is the set of all
complex numbers except z = a/c. Therefore f (z) is a bijection from a punctured
plane (with the puncture at −d/c) to another punctured plane (with the puncture at
a/c).

What we will see in the next few results is that Möbius transformations are con-
formal and that they preserve the cross ratio. This means that Möbius transforma-
tions are good candidates to be hyperbolic isometries in the Poincaré disk model.

Lemma 19.1. Let f (z) = (az+b)/(cz+d) be a Möbius transformation. Then

f (z)− f (w) =
ad−bc

(cz+d)(cw+d)
· (z−w).

Proof. This is a straightforward calculation:

f (z)− f (w) =
az+b
cz+d

− aw+b
cw+d

=
(az+b)(cw+d)− (aw+b)(cz+d)

(cz+d)(cw+d)

=
aczw+adz+bcw+bd−aczw−bcz−adw−bd

(cz+d)(cw+d)

=
(ad−bc)z+(bc−ad)w

(cz+d)(cw+d)

=
ad−bc

(cz+d)(cw+d)
· (z−w). "#

Theorem 19.2. A Möbius transformation preserves the cross ratio of four distinct
points.

Proof. The four distinct points correspond to four distinct complex numbers z1, z2,
w1, and w2. Since the (Euclidean) distance between any two is the absolute value of
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their difference, the cross ratio is

[z1,z2,w1,w2] =
|z1−w1|
|z2−w1|

· |z2−w2|
|z1−w2|

=
∣∣∣∣
z1−w1

z2−w1
· z2−w2

z1−w2

∣∣∣∣ .

Likewise,

[ f (z1), f (z2), f (w1), f (w2)] =
∣∣∣∣

f (z1)− f (w1)
f (z2)− f (w1)

· f (z2)− f (w2)
f (z1)− f (w2)

∣∣∣∣ .

Using the previous lemma, this expression can be simplified
∣∣∣∣

f (z1)− f (w1)
f (z2)− f (w1)

· f (z2)− f (w2)
f (z1)− f (w2)

∣∣∣∣=

=

∣∣∣∣∣∣∣∣∣

ad−bc
(cz1 +d)(cw1 +d)

(z1−w1)

ad−bc
(cz2 +d)(cw1 +d)

(z2−w1)
·

ad−bc
(cz2 +d)(cw2 +d)

(z2−w2)

ad−bc
(cz1 +d)(cw2 +d)

(z1−w2)

∣∣∣∣∣∣∣∣∣

=
∣∣∣∣
z1−w1

z2−w1
· z2−w2

z1−w2

∣∣∣∣

= [z1,z2,w1,w2]. "#

Theorem 19.3. A Möbius transformation f (z) = (az+b)/(cz+d) is conformal.

Proof. We have seen that the inversion f (z) = 1/z is conformal. In addition, it is
clear that each of the Euclidean transformations is conformal. The composition of
conformal mappings is conformal. To prove that f (z) is conformal, then, it is enough
to shown that f (z) can be written as a composition of Euclidean transformations and
inversions. If c = 0, then

f (z) =
a
d

z+
b
d

and so f (z) is a scaling by a factor of a/d about 0, followed by a translation by b/d.
If c += 0, the process is just a bit more involved. To begin, perform polynomial long
division.

a
c

cz+d
)

az+b
−(az+da/c)

b−da/c
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Dividing cz + d into az + b gives a quotient of a/c and a remainder of b− da/c.
Therefore

az+b
cz+d

=
a
c

+
b− (da/c)

cz+d
.

Here is the breakdown of f (z) into a sequence of conformal mappings

z :→ cz scale and rotate by c around O

:→ cz+d translate by d

:→ cz+d reflect about Re(z) = 0

:→ 1
cz+d

invert through |z| = 1

:→ b− (da)/c
cz+d

scale, rotate by b−da/c around O

:→ a
c

+
b−da/c

cz+d
translate by a/c

The end result is f (z) in its divided form. "#

While all of the Möbius transformations are conformal and preserve the cross ratio,
not all of them map the points in the Poincaré disk D to other points in D (that is,
they are not bijections of D).

Theorem 19.4. Let C denote the unit circle, the boundary of the unit disk D. Suppose
that

f (z) =
az+b
cz+d

is a Möbius transformation which maps all the points of C to points of C. If both |a|
and |d| are greater than both |b| and |c|, then f is a bijection of D.

Proof. The only discontinuity of f is when z =−d/c. Because |d| > |c|, this point
lies outside of C. Hence f is continuous in a neighborhood of D and C. Because f
is one-to-one on the entire punctured plane, it must be one-to-one when restricted
either to D or C. To show that f is a bijection of D, we would like to show that f
maps D onto itself.

First of all, let us see why f maps C onto itself. Choose two points c1 and c2 on
C, and consider their images f (c1) and f (c2). There are two arcs connecting c1 and
c2, the major and minor arcs $ c1c2 and # c1c2. Since f is continuous around C,
the image of a connected path must be a connecting path. Therefore the images of
the two arcs must themselves be two arcs connecting f (c1) and f (c2). Since f is
one-to-one, these arcs cannot overlap, so one must be the major arc, the other the
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minor arc. These two arcs cover all of C. Additionally, because f is one-to-one, this
means that if a point is not on C, then its image cannot be on C either.

Now that we understand what happens along the boundary of D, what about D
itself? Since |a| > |b|, the point −b/a is in D, and its image f (−b/a) = 0 is in D as
well. So at least one point in D is mapped to another point in D. Let z be any other
point in D. There is a path, contained entirely in D, which connects −b/a to z. (for
example, either the Euclidean or the hyperbolic segment between them). Because
f is a continuous function on D, the image of this path must be a connected path
between 0 and f (z). If f (z) were to lie outside of D, then this image path would
have to intersect C at some point. This cannot happen– as we have seen, only points
of C map to points of C. Therefore if z ∈ D, then f (z) ∈ D. That is, f (D)⊂ D.

Is f (D) = D, though? To see this, we look at the inverse function. Using the
formula for the inverse of a Möbius function,

f−1(z) =
dz−b
−cz+a

.

Note that the sole point of discontinuity of f−1 is at the point a/c, and since |a|> |c|,
this point lies outside of both C and D. Thus, f is continuous in a neighborhood of
C and D. Since f is one-to-one and onto when restricted to the boundary C, f−1 will
be as well. Like f , f−1 maps a point in D (this time it is the point b/d) to another
point (0) in D. By the argument above, then,

f−1(D)⊂ D,

and so D ⊂ f (D). This brings us to the desired result, that f (D) = D, so f is a
bijection of D. "#

While we will engage a more thorough study of Möbius transformations in gen-
eral in the next chapter, it is useful to know now one important class of Möbius
transformations which are bijections of D.

Theorem 19.5. For any complex number α ∈ D, the Möbius transformation of the
form

fα(z) =
z−α

1−αz
is bijection of D which preserves hyperbolic distance and angle measure.

Proof. We know that Möbius transformations preserve the cross ratio and are con-
formal, the two keys to measuring distance and angle measure in the Poincaré disk
model. We also need to verify that fα is a bijection when restricted to D. This is
simply a matter of checking to make sure that fα satisfies the conditions laid out in
the previous theorem. Observe that |α|= |α|< 1 since α is in D. The other thing to
show is that fα maps the boundary unit circle C to itself. Let z be a complex number
with |z| = 1, so that z is on C. Then
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Finding the unique hyperbolic line through two points. 
The circle through the two points must be centered on 
the perpendicular bisector to those points. Only one 
such circle passes through the points.
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6 19 Poincare Disk II

fα(z) · fα(z) =
z−α

1−αz
· z−α

1−αz

=
z−α

1−αz
· z−α

1−αz

=
zz−αz−αz+αα
1−αz−αz+ααzz

Since |z| = 1, zz = 1, so the numerator and denominator of this fraction are actually
the same:

fα(z) · fα(z) = 1

meaning | fα(z)| = 1. Therefore fα maps a point of C to another point of C. By the
previous theorem, fα must be a bijection. "#

We have described the points and lines of the Poincaré disk model, but not the
three required relationships in a neutral geometry, the relationships of incidence,
order, and congruence. Describing how these relationships manifest themselves in
the Poincaré disk model is the next logical step.

A point P is on a hyperbolic line ! if, as a point in the Euclidean plane, it lies
on the segment or orthogonal arc modeling !. Ordering points on a hyperbolic line
which is modeled by a Euclidean line segment is easy– just use the Euclidean or-
dering of those points on that segment. Intuitively, ordering points a a hyperbolic
line modeled by a orthogonal arc should be just as easy, but we have not used such
a construction to this point. One way to define ordering on an arc would use angle
addition: suppose A, B, and C all lie on a hyperbolic line which is represented by
an arc of an orthogonal circle, and let O be the center of this circle. We say that
A∗B∗C if

(#AOB)+(#BOC) = (#AOC).

Lastly, congruence is defined in terms of hyperbolic distance and angle measure-
ments. If

dH(A,B) = dH(A′,B′)

then AB - A′B′. If (∠A) = (∠A′) (measured using tangent lines in the case of or-
thogonal circles) then ∠A-∠A′. With these definitions, most of the axioms are not
too difficult to verify. Since it has been quite a while since we have had to work with
these axioms directly, all will be listed, but we will really focus our attention on the
few axioms which are difficult to verify.

The Axioms of Incidence.
I. For every two points A and B, there exists a unique line ! on both of them.
II. There are at least two points on any line.
III. There exist at least three points that do not all lie on the same line.

The second and third axioms of incidence are obviously satisfied in this model,
but the first is a little more complicated. Consider two distinct points, at coordinates
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(left) Mapping a ray so that its basepoint is located at 
the origin. (right) Mapping an angle so that its vertex is 
located at the origin.

Since Q lies in the interior of the 
central angle defined by P and R, 
Q is between P and R in the 
hyperbolic model.
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x1 + y1i and x2 + y2i. We need to show that there is a unique line through these two
points. Typically such a line will be modeled by an orthogonal arc, and so we will
pursue this possibility first. It must be remembered, though, that there is a special
case to consider: the line may be modeled by a (Euclidean) line through the origin.

If x1 + y1i and x2 + y2i are points on an orthogonal arc, then both (x1,y1) and
(x2,y2) must be solutions to an equation of the form

x2−2xh+ y2−2yk =−1,

for some coordinates h and k. That is
{

x2
1−2x1h+ y2

1−2y1k =−1
x2

2−2x2h+ y2
2−2y2k =−1

and so {
x2

1 + y2
1 +1 = 2x1h+2y1k

x2
2 + y2

2 +1 = 2x2h+2y2k.

Now let
c1 =

1
2
(
x2

1 + y2
1 +1

)
& c2 =

1
2
(
x2

2 + y2
2 +1

)
.

The coordinates of the center (h,k) can be found by solving the system of linear
equations {

x1h+ y1k = c1

x2h+ y2k = c2

or equivalently the matrix equation
(

x1 y1
x2 y2

)(
h
k

)
=
(

c1
c2

)

This matrix equation has a unique solution as long as the determinant x1y2− x2y1
is nonzero. Hence, as long as x1y2− x2y1 += 0, there is an orthogonal arc passing
through (x1,y1) and (x2,y2). Furthermore, this orthogonal arc is unique, and so there
is a unique hyperbolic line through the two points.

What happens, though, when x1y2− x2y1 = 0? If x1 = x2 = 0, both points lie
on the vertical line through the origin, and hence lie on a unique hyperbolic line.
Otherwise,

x1y2 = x2y1

and so y2/x2 = y1/x1. That is, the slope of the line through the origin to each of
these points is the same and so both points lie on the same line through the origin.
Again, there is a unique hyperbolic line through the two points.

The Axioms of Order.
I. If A ∗B ∗C, then the points A, B, and C are three distinct points on a line, and
C ∗B∗A.
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Verification of the SAS axiom in the Poincaré disk 
model. The two triangles are both mapped so that the 
known congruent angles are placed at the origin. 
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II. For two points B and D, there are points A, C, and E, such that

A∗B∗D B∗C ∗D B∗D∗E

III. Of any three distinct points on a line, exactly one lies between the other two.
IV. For every line ! and points A, B, and C not on !:
(i) If A and B are on the same side of ! and B and C are on the same side of !, then
A and C are on the same side of !.
(ii) If A and B are on opposite sides of ! and B and C are on opposite sides of !, then
A and C are on the same side of !.

The axioms of order are fairly easy to verify in the Poincaré disk model. If the
hyperbolic line containing the points is modeled by a Euclidean line, then the first
three axioms are confirmed immediately because those same ordering axioms must
be true in the Euclidean plane. If the points lie on an orthogonal arc, then the issue
of betweenness is defined in terms of central angles, and so it is necessary to turn
to facts about interiors of angles (the reader is encouraged to work out the details
of this). The fourth axiom of order, the Plane Separation Axiom, is equally easy to
handle. Lines through the origin and orthogonal arcs both divide the Poincaré disk
into two regions, and so it is possible to classify points which do not lie on a hyper-
bolic line as being on one side or the other of that line.

The Axioms of Congruence.
I. If A and B are distinct points and if A′ is any point, then for each ray r emanating
from A′, there is a unique point B′ on r such that AB- A′B′.
II. If AB-CD and AB- EF , then CD- EF . Every segment is congruent to itself.
III. If A∗B∗C and A′ ∗B′ ∗C′, and if AB- A′B′ and BC - B′C′, then AC - A′C′.
IV. Given ∠BAC and any ray ·A′B′", there is a unique ray ·A′C′" on a given side of
!A′B′" such that ∠BAC - ∠B′A′C′.
V. If ∠A- ∠B and ∠A- ∠C, then ∠B- ∠C. Every angle is congruent to itself.
VI. Consider two triangles:*ABC and*A′B′C′. If

AB- A′B′ ∠B- ∠B′ BC - B′C′,

then ∠A- ∠A′.

To confirm that the Poincaré disk model satisfies each of the axioms of congru-
ence we turn to the Möbius transformations φα as this greatly simplifies the task.
Recall that for any complex α with |α| < 1, the map

φα(z) =
z−α

1−αz

is a automorphism of the Poincaré disk which preserves both hyperbolic distance
and is conformal. That is, φα maps congruent segments to congruent segments and
congruent angles to congruent angles. As the earlier examples have hinted, it is
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Since distance from the origin along the real axis is 
measured using the inverse hyperbolic tangent function, 
it is possible to get arbitrarily far away from zero. By 
translating, it is possible to get arbitrarily far away from 
any point on any ray.

Playfair�’s does not hold. Any line through the origin 
with negative slope is parallel to the line represented by 
the arc.
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easier to work with the hyperbolic lines which pass through the origin rather than
those that do not. Since the transformation φα maps α to the origin, it provides a
nifty way to move lines to the origin without changing issues of congruence.

Let’s begin by looking at the two construction axioms, segment construction
(congruence axiom I) and angle construction (congruence axiom IV). The segment
construction axiom states that it is possible to construct a segment of any given
length along any given ray, and furthermore, that this can only be done one way. For
us, congruence is defined in terms of distance, so let d = |AB|H . The goal then is
to show that there is a unique point on r which is a distance d from A′. Rather than
directly calculating distance on this ray (which would require the cross ratio), we
can use a hyperbolic isometry to simplify the situation. The map φA′ maps A′ to 0
and hence the ray r to a ray emanating from 0. To find the point z a distance d from
0 on this ray we must solve the equation

d = 2tanh−1(|z|)

That is,
|z| = tanh(d/2).

The hyperbolic tangent function is a one-to-one function, and when d > 0, the image
is a value in the interval (0,1). Therefore, there is a unique point z on the ray φA′(r)
which is this distance d from 0. The point B = φ−1

α (z) is the unique point on r which
is a distance d from A′.

A similar approach can be used to verify that the Poincaré disk model satisfies
the Angle Construction Axiom. Again, the point A′ may be moved to the origin via
the isometry φA′ . The rays defining angles at the origin are just (portions of) two
Euclidean rays. Since angle construction is possible in Euclidean geometry, it will
be possible in the Poincaré disk model too. The details are left to the reader.

The second and fifth axioms of congruence state that congruence, both of seg-
ments and angles, is transitive. But since both of these types of congruence are
defined in terms of measure, these two axioms are clearly satisfied. The third axiom
is also easy to verify (since hyperbolic distance along a line is additive):

|AC|H = |AB|H + |BC|H
= |A′B′|H + |B′C′|H
= |A′C′|H .

The last of the congruence axioms is the S ·A ·S axiom. Let*ABC and*A′B′C′
be two triangles satisfying the necessary conditions that AB- A′B′, ∠B- ∠B′ and
BC - B′C′. We are going to use two simplifying hyperbolic isometries φB and φ ′B
that map B and B′, respectively, to the origin. Now label

a = φB(A) c = φB(C) a′ = φB′(A′) c′ = φB′(C′)

Because these isometries preserve (hyperbolic) distance, and AB- A′B′, both a and
a′ will be the same hyperbolic distance from the origin. This hyperbolic distance
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is based solely upon the Euclidean distance from the origin– recall that it can be
computed using the inverse hyperbolic tangent function. Thus a and a′ must be the
same Euclidean distance from the origin in the model. By the same argument, c and
c′ will also be equidistant from the origin O. In addition, the images of the angles
∠B and ∠B′ will also be congruent. Therefore, by the S ·A · S triangle congruence
theorem, as Euclidean triangles

*aOc-*a′Oc′.

Therefore, there is a Euclidean isometry τ which maps *aOC onto the triangle
*a′Oc′. It consists of a rotation about O which maps Oa to Oa′, and then, if c += c′,
a reflection about the line !Oa". This map τ , when restricted to the disk D, will
also be a hyperbolic isometry. So τ(a) = a′ and τ(c) = c′, and as a result, the two
(hyperbolic) angles ∠Oτ(a)τ(c) and ∠Oa′c′ have to be the same. Finally, we may
track back to the original angles in question. Because τ preserves angle measure,
∠Oac- ∠Oa′c′, and because φB and φB′ preserve angle measure, ∠A- ∠A′.

The Axioms of Continuity.
I. If AB and CD are any two segments, there is some number n such that n copies of
CD constructed contiguously from A along the ray ·AB" will pass beyond B.
II. Suppose that all points on line ! are the union of two nonempty sets Σ1∪Σ2 such
that no point of Σ1 is between two points of Σ2 and vice versa. Then there is a unique
point O on ! such that P1 ∗O∗P2 for any points P1 ∈ Σ1 and P2 ∈ Σ2.

The final two axioms, while more technical than any of the preceding, are also
fairly easy to verify. The first axiom basically says that it is possible to create a
segment longer than any given segment by laying, end-to-end, congruent copies of
a second given segment. Let d1 = |AB|H and let d2 = |CD|H . There is a positive
integer n such that d2 > n ·d1. Then, because segment length is additive, n copies of
CD, laid end to end will measure

|CD|H + |CD|H + · · ·+ |CD|H = n|CD|H = n ·d2 > d1 = |AB|H .

Thus n copies of CD, laid end-to-end starting at A, will pass B on the ray ·AB".
The last of the axioms of neutral geometry is the Dedekind axiom. Suppose P is a

point on the line !. Then φP will map ! to a line which passes through the origin. The
resulting hyperbolic line φP(!) is modeled by an open line segment in the Euclidean
plane. Any point on this segment divides φP(!) into two segments (Σ1 and Σ2).
Therefore the segment φP(!) satisfies the Dedekind axiom, and the hyperbolic line
! does too.

Since the Poincaré disk model satisfies all of the axioms of neutral geometry,
it is a valid model for a neutral geometry. But it does not satisfy Playfair’s axiom.
For instance, both the real and imaginary axes pass through the origin 0 but neither
intersect the circle C defined by
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x2− 3
2

x+ y2− 3
2

y =−1

In other words, the axes model two lines through 0, both of which are parallel to the
line modeled by C. And thus the Poincaré disk model is a model for a non-Euclidean
geometry. This geometry is called hyperbolic geometry.

Exercises

19.1. Give the equation for an isometry which maps 0.2 + 0.4i to the origin. What
is the image of the point 0.3−0.2i under this map?

19.2. Using an appropriate isometry, compute the hyperbolic distance between point
0.2 and 0.2i.

19.3. What is the equation for the isometry which maps 0 to a point α in the Poincaré
disk?

19.4. What is the measure of the angle ∠ABC where A = 0.3, B = 0.5i and C =
−.2− .2i? [Use an isometry which maps B to the origin]

19.5. Find the equation of an isometry which maps 0.4−0.3i to 0.5+0.1i (compose
two isometries).

19.6. Consider the equilateral triangle *ABC where A = r, B = re2πi/3 and C =
re4πi/3 for some real number r between 0 and 1. Compute the angle sum (∠A) +
(∠B) + (∠C) as a function of r. What happens to this sum as r approaches 1 (so
that the vertices approach the edge of the disk)? What happens to this sum as r
approaches 0 (so the vertices approach the center of the disk)?

19.7. Make precise what it means for three points on an orthogonal arc to be in the
order A∗B∗C.

19.8. Verify the fourth axiom of order (the Plane Separation Axiom)

19.9. Let A = 0.2+0.3i, B =−0.4− .2i, O = 0 and R = 0.5+0.5i. Find the unique
point P on ·OR" such that OP- AB.

19.10. Let A = 0.2 + 0.3i, B = −0.4− 0.2i and C = 0.3− 0.3i. Find the two rays
from the origin which form angles with the real axis which are congruent to ∠ABC.

19.11. Find the coordinates (accurate to three decimal places) of the points which
are located at distances of 1, 2, 3, 4, and 5 away from the origin along the positive
real axis.

19.12. Verify the Angle Construction Axiom.
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19.13. An alternative to Poincaré disk model is a model called the Klein model (or
the Beltrami-Klein model). In this model, points are still the coordinates inside the
unit disk as in the Poincaré disk model. Lines, however, are simply the portions of
Cartesian lines which lie inside the disk. This makes some calculations easier, as
you do not have to deal with orthogonal arcs, but some more difficult, as this is not
a conformal model. Distance between points is measured using the cross ratio. If P
and Q lie on line !, then ! intersects the boundary of the unit disk at two points, A
and B. Then

|AB| = 1
2
| ln([P,Q,A,B])|.

Calculate the distance between 0.5 and 0.5i in this model.
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Chapter 20
Hyperbolic Isometries

We have already encountered one important class of hyperbolic isometry, maps of
the form

φα(z) =
z−α

1−αz
|α| < 1.

These were introduced out of necessity, to turn difficult calculations along orthog-
onal arcs into simpler calculations along rays. In this chapter, we will undertake a
more systematic study of hyperbolic isometries.

Definition 20.1. Hyperbolic isometry. Let D be the Poincaré disk. A bijection
τ : D→ D is a hyperbolic isometry if, for every pair of points A and B,

dH(τ(A),τ(B)) = dH(A,B).

In many ways, hyperbolic isometries are much like the Euclidean isometries we
studied earlier. Many of the properties of those isometries were consequences of
the axioms of neutral geometry, but did not require the use of the Parallel Axiom.
The following results can be proved for hyperbolic isometries in exactly the same
manner that they were proved for Euclidean isometries.

Theorem 20.1. Let τ be a hyperbolic isometry. Given a collection of points which
are all on a line, their images will also all lie on a line. Given three collinear points
A, B, and C, if A∗B∗C, then τ(A)∗ τ(B)∗ τ(C). If AB and A′B′ are segments with
AB- A′B′, then τ(A)τ(B)- τ(A′)τ(B′). Any angle ∠ABC is congruent to its image
∠τ(A)τ(B)τ(C). If ∠ABC - ∠A′B′C′, then

∠τ(A)τ(B)τ(C)- ∠τ(A′)τ(B′)τ(C′).

Theorem 20.2. If a hyperbolic isometry τ fixes two distinct points A and B (that is
τ(A) = A and τ(B) = B), then τ fixes all the points on the line !AB". If τ fixes three
non-collinear points, then τ must be the identity.

Recall that every isometry of Euclidean geometry could be written as a composi-
tion of reflections. Reflections play a central role in the classification of hyperbolic
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isometries as well. So, the natural place to start this classification is with hyperbolic
reflections, and that leads to a question: what are hyperbolic reflections? Since Eu-
clidean reflections fix all points on the line of reflection, and swap the two sides of
the line it makes sense to define hyperbolic reflections similarly.

Definition 20.2. Hyperbolic Reflection. A hyperbolic reflection τ about a hyper-
bolic line ! is a hyperbolic isometry which fixes all the points of ! and satisfies the
property that for all points P not on !, τ(P) lies on the perpendicular bisector to !
through P, and the distance from τ(P) to ! is the same as the distance from P to !.

Fortunately we do not have to check all of that every time we want to determine
whether a given hyperbolic isometry is actually a reflection. The following theorem
(whose Euclidean counterpart we proved earlier) helps in that regard.

Theorem 20.3. If τ : D→ D is a hyperbolic isometry other than the identity, and if
τ fixes a line !, then it must be the hyperbolic reflection across !.

Proof. To verify that τ is a reflection, we need to examine its behavior on points
which are not on !. Let P be a point which is not on ! and let Q1 and Q2 be two
points which are on !. Then, since both Q1 and Q2 are fixed,

∠τ(P)τ(Q1)τ(Q2) = ∠τ(P)Q1Q2,

and this angle must be congruent to ∠PQ1Q2 because hyperbolic isometries map
angles to congruent angles. There are only two ways to construct an angle of this
measure on the ray · Q1Q2 ", one on either side of !. But τ(P) cannot be P, for
otherwise τ would fix three non-collinear points. Hence τ(P) will lie on the opposite
side of ! from P. It is just a question of where, exactly, on the other side.

Let R be the intersection of Pτ(P) and !. Then, by the S ·A ·S triangle congruence
theorem,

*PQ1R-*τ(P)Q1R

so
∠PRQ1 - ∠τ(P)RQ1.

These two angles are supplementary though, so they must be right angles. Hence
τ(P) lies on the line through P perpendicular to !, the same distance from ! as P, as
desired. "#

Finding the hyperbolic reflection about a hyperbolic line which passes through
the origin is easy enough: the Euclidean reflection across that line, when restricted
to the Poincaré disk, works fine. It is a bijection of the points of D. Since it does
not alter Euclidean distance, it will not alter any of the components of the cross
ratio which go into the calculation of hyperbolic distance. Finding the formula for
this reflection is also straightforward. Simply rotate the line so that it lies along the
real axis; reflect across the real axis (by taking the complex conjugate); then rotate
back. If the angle between the line and the real axis is θ , then the equations for this
reflection can be worked out as
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z :→ e−iθ · z

:→ e−iθ z = eiθ z

:→ eiθ · eiθ z = e2iθ z.

Reflections about orthogonal arcs are not as easy and are tackled in the next theorem.
We need a mapping which fixes the points on the arc of the circle and otherwise
exchanges the interior and exterior of that circle.We have only looked at one type
of mapping which fits that description– inversion– but fortunately it is this type of
mapping which works. First we need to show that inversion preserves the cross ratio,
and therefore hyperbolic distance. To do this, we will find the equation for inversion
about a hyperbolic circle.

Theorem 20.4. Let C be the circle with center α which is orthogonal to the unit
circle. The inversion iC in this circle is given by the formula

iC(z) =
αz−1
z−α

.

Proof. The general form for an inversion about a circle with center α and radius r
is

iC(z) =
r2

z−α
+α.

Let P be one of the points of intersection of C with the unit circle. Since C and
the unit circle are orthogonal, the two radii to those points must form a right angle.
Therefore, by the Pythagorean theorem,

r2 +12 = |α|2.

and so
r2 = αα−1.

Plugging in and simplifying,

iC(z) =
αα−1
z−α

+α

=
αα−1
z−α

+
αz−αα

z−α

=
αz−1
z−α

. "#

To make calculations a little less redundant, we will now use the following lemma
to jump to a more general class of mapping.

Lemma 20.1. The equation for a hyperbolic reflection, whether it is about a line
through the origin or across an orthogonal arc, can be written in the form
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s(z) =
Az−B
Bz−A

where A and B are complex numbers such that AA−BB = 1.

Proof. We have seen two formulas for reflections. One formula is for reflections
about lines through the origin; the other is for reflections about lines which are
represented by orthogonal arcs. This means that there are two cases to consider.
We will deal with the two cases separately, beginning with reflections about lines
through the origin. Reflections about lines through the origin have the form

s(z) = e2iθ z

for some value of θ . Setting B = 0 and A = ei(θ+π/2),

Az−B
Bz−A

=
ei(θ+π/2)z−0

0 · z− ei(θ+π/2)

=
eiθ · eiπ/2 · z
−e−iθ · e−iπ/2

= (−1)(e2iθ )(eiπ)z

= e2iθ z.

Furthermore,
AA−BB = ei(θ+π/2) · e−i(θ+π/2)−0 = 1,

as is required.
Now suppose that the hyperbolic reflection is about a line which does not pass

through the origin. In that case, it is described by an equation of the form

s(z) =
αz−1
z−α

,

then dividing both numerator and denominator by ∆ =
√

αα−1 yields the equiva-
lent expression

s(z) =
α/∆ · z−1/∆
1/∆ · z−α/∆

.

Note that ∆ is a real number, so ∆ = ∆ . We have then written s(z) in the form

s(z) =
Az−B
Bz−A

where A = α/∆ and B = 1/∆ . Note in addition that

AA−BB =
α
∆
· α

∆
− 1

∆
· 1

∆
=

αα−1
∆ 2 = 1
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as required. "#

While all reflections can be put into this form, not all maps of this form are
actually reflections. They are all isometries, however, as this next theorem indicates.

Theorem 20.5. Any map of the form

s(z) =
Az−B
Bz−A

with AA−BB = 1 is a hyperbolic isometry.

Proof. The map s(z) can be written as a composition of two functions: the complex
conjugation map c(z) = z and the Möbius transformation

f (z) =
Az−B
Bz−A

.

The complex conjugation map c is equivalent to reflection about the real axis and
thus it preserves Euclidean distances. Since the cross ratio is a ratio of four Eu-
clidean distances, it is also invariant under the c, and and so c preserves hyperbolic
distance as well. As we saw in the previous chapter, the Möbius transformation f
also preserves the cross ratio. Therefore, their composition s(z) preserves hyperbolic
distance as well.

In order for s(z) to be an isometry, there is one more condition which must be
verified– it also must be an automorphism of the unit disk D. As above, consider s(z)
as the composition s(z) = f ◦ c(z). The conjugation map c(z) is clearly a bijection
when restricted to D. That leaves the Möbius transformation f (z). You may recall
that in the last chapter we discovered some conditions which would guarantee that
a Möbius transformation would be a bijection when restricted to D. If

F(z) =
az+b
cz+d

mapped the unit circle to itself, and both |a| and |d| were greater than both |b| and
|c|, then F would be a bijection of D. There is a little bit of work to check these
conditions, but f (z) does indeed meet the requirements. In the case of f (z),

AA−BB = 1

|A|2 = 1+ |B|2

|A| > |B|

Since |A|= |A| and |B|= |B|, the condition on the relative sizes of the coefficients is
satisfied. To verify the other condition (that the boundary is mapped to itself), take
a point z on the boundary of D. Then
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f (z) · f (z) =
Az−B
Bz−A

· Az−B
Bz−A

=
AAzz−ABz−ABz+BB
BBzz−ABz−ABz+AA

.

Since z is on the unit circle, z · z = 1. Hence the numerator and denominator in this
expression are the same, and so f (z) · f (z) = 1. This means that f (z) must map the
unit circle to itself. By Theorem 19.4, f (z) is a bijection when restricted to D, and
this means that s(z) must be as well. "#

Although not all isometries of this form are reflections, it is easy to tell those that
are by using the following theorem.

Theorem 20.6. A hyperbolic isometry of the form

s(z) =
Az−B
Bz−A

(with AA−BB = 1) is a hyperbolic reflection if and only if B is a real number.

Proof. First suppose that B is a real number. If B = 0, then s(z) = Az/A. Writing
A = reiθ ,

s(z) =
reiθ · z
re−iθ = e2iθ z.

This is the form for a reflection across a line through the origin. If B is a nonzero real
number, then B = B, and we may divide through the numerator and denominator of
s(z) to get the equivalent expression

s(z) =
A/B · z−B/B

z−A/B
=

A/B · z−1
z−A/B

.

This is the form for the equation of a reflection about an orthogonal arc. Hence if B
is a real number, s(z) must be a reflection.

Now suppose that s is a reflection. By definition, it must fix a line. Therefore, we
should examine the fixed points, the set of points which satisfy the equation

z =
Az−B
Bz−A

.

Cross multiplying to clear out the denominator and then simplifying gives

(Bz−A)z = Az−B

Bzz−Az = Az−B

Az+Az = Bzz+B.

Now let’s drop to the coordinate level by writing A = a1 + a2i, B = b1 + b2i and
z = x+ iy. Then we have
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(a1 +a2i)(x− iy)+(a1−a2i)(x+ iy) = (b1 +b2i)(x2 + y2)+(b1−b2i).

Multiplying out

a1x+a2xi−a1yi+a2y+a1x+a1yi−a2xi+a2y

= b1x2 +b1y2 +b2x2i+b2y2i+b1−b2i

and simplifying

2a1x+2a2y = (b1x2 +b1y2 +b1)+(b2x2 +b2y2−b2)i.

The term on the left is real, so the imaginary part of the term on the right must
be zero:

b2x2 +b2y2−b2 = 0

Factoring out the b2 term gives

b2(x2 + y2−1) = 0.

Now for this equation to be true, either b2 must be zero or

x2 + y2 = 1.

Since z lies inside the unit disk, x2 +y2 must be less than one. Therefore b2 must be
0, and so B must be a real number. "#

20.1 Orientation Preserving Isometries

The key to ultimately classifying Euclidean isometries was the Three Reflections
Theorem– that every Euclidean isometry was the composition of one, two, or three
reflections. A quick review of that theorem (and its proof) leads to a very reassuring
realization. While the proof uses the S ·S ·S triangle congruence theorem in a funda-
mental way, and the axioms of incidence as well, it never uses the axiom of parallels
or anything else that depends upon it. We will not go through a complete recreation
of the proof in the hyperbolic context, but only state the result: every hyperbolic
isometry is a composition of at most three hyperbolic reflections. We have already
looked at a single reflection. Now, what happens when we compose two of these
types of maps? Consider two maps

s1(z) =
Az−B
Bz−A

& s2(z) =
Cz−D
Dz−C

.

Their composition can be computed
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s2 ◦ s1(z) =
C
(

Az−B
Bz−A

)
−D

D
(

Az−B
Bz−A

)
−C

=
C(Az−B)−D(Bz−A)

D(Az−B)−C(Bz−A)

=
C(Az−B)−D(Bz−A)
D(Az−B)−C(Bz−A)

=
(AC−BD)z+(AD−BC)
(AD−BC)z+(AC−BD)

Every such composition can then be written in the form

τ(z) =
Ez+F
Fz+E

.

We leave it to the reader to compute that the resulting values of E and F satisfy
the equation EE −FF = 1. As in Euclidean geometry, reflections are orientation
reversing maps. Compositions of two reflections generate the orientation preserving
isometries.

We would like to study these types of isometries more closely, and to do so it is
convenient to introduce a nice connection between Möbius transformations and 2×
2 matrices. There is an association between Möbius transformations and matrices
given by

τ(z) =
az+b
cz+d

←→
(

a b
c d

)
.

This is more than just bookkeeping though. Composition of Möbius transformations
corresponds to multiplication of matrices: if

τ1(z) =
a1z+b1

c1z+d1
& τ2(z) =

a2z+b2

c2z+d2

then their composition is

τ1 ◦ τ2(z) =
a1

(
a2z+b2
c2z+d2

)
+b1

c1

(
a2z+b2
c2z+d2

)
+d1

=
a1(a2z+b2)+b1(c2z+d2)
c1(a2z+b2)+d1(c2z+d2)

=
(a1a2 +b1c2)z+(a1b2 +b1d2)
(c1a2 +d1c2)z+(c1b2 +d1d2)

.

20. Hyperbolic Isometries 341



20.1 Orientation Preserving Isometries 9

The product of the associated matrices is
(

a1 b1
c1 d1

)(
a2 b2
c2 d2

)
=
(

a1a2 +b1c2 a1b2 +b1d2
c1a2 +d1c2 c1b2 +d1d2

)

Note that the coefficients in τ1 ◦ τ2 match the entries in the matrix product. Because
of this connection, some terminology is carried over from the theory of matrices to
Möbius transformations. The Möbius transformation

τ(z) =
az+b
cz+d

has a determinant defined by det(τ) = ad−bc and a trace defined by tr(τ) = a+d.
It is possible to “normalize” any Möbius transformation by dividing through both
numerator and denominator by ∆ =

√
ad−bc:

τ(z) =
az+b
cz+d

=
(a/∆)z+(b/∆)
(c/∆)z+(d/∆)

.

The determinant of the normalized transformation is then

a
∆
· d

∆
− b

∆
· c

∆
=

ad−bc
∆ 2 = 1.

Möbius transformations are classified by their fixed points. Note initially that if
c = 0, then the Möbius transformation is actually a linear transformation. If b = 0
and a = c, then τ is the identity map. If b = 0, but a += c, then τ is a rotation or a
scaling with a fixed point at the origin. And if b += 0, then τ also translates, so it has
no fixed points. The more challenging case is when c += 0.

Theorem 20.7. Let
τ(z) =

az+b
cz+d

be a Möbius transformation with c += 0 which is normalized so that det(τ) = 1. Then
its fixed point(s) are given by the equation

z =
(a−d)±

√
(tr(τ))2−4

2c
.

Proof. The fixed points of τ will be the solutions to the equation τ(z) = z. Solving
this yields:

az+b
cz+d

= z

az+b = (cz+d)z

az+b = cz2 +dz

cz2 +(d−a)z+b = 0
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This equation can be solved by using the quadratic formula, and with a clever bit of
arithmetic, the discriminant can be written in terms of the trace and the determinant
(which is one)

z =
−(d−a)±

√
(d−a)2 +4bc

2c

=
(a−d)±

√
d2−2ad +a2 +4bc

2c

=
(a−d)±

√
d2 +2ad +a2 +4bc−4ad

2c

=
(a−d)±

√
(a+d)2−4(ad−bc)

2c

=
(a−d)±

√
(tr(τ))2−4

2c
. "#

Recall that we are looking for complex solutions, so this equation does have a
solution. In fact, it will have two solutions unless the discriminant is zero, when

tr(τ)2−4 = 0 =⇒ tr(τ) = ±2.

Möbius transformations are classified by this discriminant (and therefore by the
trace).

Definition 20.3. Classification of Mobius transformations. Let

τ(z) =
az+b
cz+d

be a Möbius transformation with c += 0 and which has been normalized so that its
determinant is 1. Then τ is called parabolic if tr(τ) =±2; τ is called elliptic if tr(τ)
is a real number between -2 and 2; τ is called loxodromic if tr(τ) is outside of the
real interval [−2,2].

If τ is a loxodromic transformation but its trace is a real number (so either larger
than 2 or smaller than -2), then τ is frequently called a hyperbolic transformation
in the literature. In fact, the loxodromic transformations that we consider will have
real traces, but using this terminology would seem to lead to confusion between
hyperbolic Möbius transformations and hyperbolic isometries in general. For this
reason, we will stick to the term loxodromic for these transformations.

Now we can restrict our attention to the types of Möbius transformations that we
are interested in, those that describe hyperbolic isometries. These transformations
all have the form

τ(z) =
Ez+F
Fz+E

20. Hyperbolic Isometries 343



20. Hyperbolic Isometries344



20.1 Orientation Preserving Isometries 11

with EE −FF = 1. This form greatly restricts the possible locations of the fixed
points. If F = 0, then τ is a linear transformation. In this case, because the determi-
nant of τ is one, EE must be one, so E must lie on the unit circle. If E = ±1, then τ
is the identity. Otherwise τ must be a rotation about the origin, and the origin is the
sole fixed point. When F += 0, the situation is a bit more complex. The next three
results examine the possible locations of the fixed points, and from those we will be
able to make some statements about the pair of reflections which generate them.

Theorem 20.8. Parabolic isometries. If τ(z) = (Ez +F)/(Fz +E) is a parabolic
isometry (with F += 0), then τ has a single fixed point which lies on the boundary of
the Poincaré disk.

Proof. Since τ is parabolic, tr(τ) = ±2, and so the discriminant in the fixed point
formula is zero. The only fixed point is then

z =
E−E

2F
=

2Im(E)i
2F

=
Im(E)i

F
.

Note that since tr(τ) = ±2,

E +E = 2Re(E) = ±2,

that is, Re(E) = ±1. Further, recall that

det(τ) = EE−FF = 1.

Using those two facts, we can calculate the norm of the fixed point:

z · z =
Im(E)2

FF

=
Im(E)2

EE−1

=
Im(E)2

Re(E)2 + Im(E)2−1

=
Im(E)2

Im(E)2

= 1.

Therefore the sole fixed point is on the boundary of the Poincaré disk. "#

Theorem 20.9. Elliptic isometries. If τ(z) = (Ez+F)/(Fz+E) is an elliptic isom-
etry (with F += 0) then τ has two fixed points, one in the interior of the Poincaré disk
and one outside it, but both on the same (Euclidean) line through the origin.

Proof. Since τ is elliptic, −2 < tr(τ) < 2, so the discriminant is a negative real
number, and the fixed points can be written in the form
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z =
(E−E)± i

√
4− tr(τ)2

2F

Recall that
E−E = 2Im(E)i & tr(τ) = E +E = 2Re(E)

so

z =
2Im(E)i± i

√
4−4Re(E)2

2F
=

(
Im(E)±

√
1−Re(E)2

)
i

F
.

The numerator here is a pure imaginary number, and therefore both fixed points
will have the same argument– that is, they will both lie on the same Euclidean line
through the origin.

What about their distances from the origin?

z · z =

(
Im(E)±

√
1−Re(E)2

)2

F ·F

=
Im(E)2 ±2Im(E)

√
1−Re(E)2 +1−Re(E)2

F ·F

=
Im(E)2 +Re(E)2−1±2Im(E)

√
1−Re(E)2 +2−2Re(E)2

F ·F

=
EE−1

FF
+

±2Im(E)
√

1−Re(E)2 +2−2Re(E)2

F ·F

= 1+2 · ±Im(E)
√

1−Re(E)2 +1−Re(E)2

F ·F

Now z · z has been written as 1 plus an additional term. The numerator in this ad-
ditional term has two values (because of the ± sign). In order to have one of the
fixed points inside the unit circle and the other outside, one of those values must
be positive and the other must be negative. Let’s see that this is the case. Because
EE−FF = 1 and F += 0, EE must itself be larger than one. Then

Im(E)2 +Re(E)2 > 1

Im(E)2 > 1−Re(E)2

|Im(E)| >
√

1−Re(E)2

Multiplying through by the (positive) term
√

1−Re(E)2 gives

|Im(E)| ·
√

1−Re(E)2 > 1−Re(E)2.

Therefore one of the terms
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±Im(E)
√

1−Re(E)2 +1−Re(E)2

will indeed be positive, and the other negative as required. "#

Theorem 20.10. Loxodromic Isometries. If τ(z) = (Ez + F)/(Fz + E) is a loxo-
dromic isometry (with F += 0), then it has two fixed points, both on the boundary of
the Poincaré disk.

Proof. The trace of τ is E + E = 2Re(E), a real number. If τ is to be loxodromic,
then |tr(τ)| must be greater than 2, so

√
tr(τ)2−4 is real (and positive). Then

z =
(E−E)±

√
tr(τ)2−4

2F

=
2Im(E)i±

√
4Re(E)2−4

2F

=
Im(E)i±

√
Re(E)2−1

F

and so

z · z =
Im(E)2 +Re(E)2−1

F ·F

=
EE−1

FF

=
(1+FF)−1

FF

= 1.

Hence both fixed points lie on the boundary of the Poincaré disk, and there are no
fixed points in the interior of the disk. "#

Elliptic transformations, with their single fixed point, are the hyperbolic counter-
part to Euclidean rotations. Both parabolic and loxodromic transformations do not
have any fixed points in D itself. In this way, they like Euclidean translations. We
can think of the “point at infinity” as a fixed point of a Euclidean translation in the
same way that parabolic and loxodromic transformations have fixed points on the
boundary of D. The fact that there are two types of hyperbolic isometries of this
form suggests that there is more flexibility when forming these “hyperbolic trans-
lations.” This is pretty much true: in a Euclidean translation, all points are moved
along parallel paths. Because of the Euclidean parallel axiom, there is only one way
to construct all of these parallel paths. In hyperbolic geometry, though, without the
Euclidean parallel axiom, there are more options for these parallel paths.

With this classification in hand it is easier to understand what happens when two
hyperbolic reflections are composed. Let τ1 and τ2 be hyperbolic reflections about
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lines !1 and !2 respectively. If the orthogonal arcs (or lines through 0) representing
!1 and !2 are tangent, then this point of tangency must occur on the boundary of
the unit disk, and it will be the only fixed point of the isometry τ1 ◦ τ2. In this
case, τ1 ◦τ2 will be parabolic. If the hyperbolic lines intersect, then the representing
orthogonal arcs (or lines through 0) will intersect at two points– one inside the disk
and one outside it. These will be the two fixed points of τ1 ◦ τ2, and τ1 ◦ τ2 will be
the elliptic. Finally, if the !1 and !2 are two hyperbolic lines which do not intersect,
either in the interior of D or on the boundary (at “∞”), then the isometry τ1 ◦ τ2 will
be loxodromic.

We will not pursue the topic of the composition of three reflections, other than to
state that every such composition results in either a hyperbolic reflection, or, more
likely, an isometry which is similar to the Euclidean glide reflection– a composition
of a hyperbolic reflection and a loxodromic isometry along the line of reflection.

Exercises

20.1. Find the equation for the reflection about the line which passes through 0 and
0.25+ .5i.

20.2. Find the equation for the reflection about the line which passes through the
points 0.5 and 0.5i.

20.3. Let τ be a hyperbolic isometry. Verify that if τ fixes two points on a line, then
it must fix all the points of that line.

20.4. Verify that the fact that every isometry can be written as a composition of at
most three reflections is actually true in any neutral geometry (it does not depend
upon the Euclidean Parallel axiom or any of its consequences).

20.5. Consider two reflections

s1(z) =
Az−B
Bz−A

& s2(z) =
Cz−D
Dz−C

where AA−BB = 1 and CC−DD = 1. Compute the composition s1 ◦ s2 and show
that it can be written in the form

τ(z) =
Ez+F
Fz+E

where EE−FF = 1.

20.6. Let

τ1(z) =
E1z+F1

F1z+E1
& τ2(z) =

E2z+F2

F2z+E2

where E1E1−F1F1 = 1 and E2E2−F2F2 = 1. Show that τ1 ◦τ2 can be written in the
form
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τ(z) =
Ez+F
Fz+E

where EE−FF = 1.

20.7. Consider two isometries

τ(z) =
E1z+F1

F1z+E1
& s(z) =

Az−B
Bz−A

where AA−BB = 1 and EE−FF = 1. Show that τ ◦ s and s◦ τ can both be written
in the form

σ(z) =
Cz−D
Dz−C

where CC−DD = 1.

20.8. Conclude, based on the results of the last several problems, that every hyper-
bolic isometry can be written in one of two forms

σ(z) =
Az−B
Bz−A

or τ(z) =
Az+B
Bz+A

where AA−BB = 1.

20.9. How can the translation
f (z) =

z−a
1−az

be written in the standard form

f (z) =
Az−B
Bz−A

?

20.10. Give an example of an elliptic isometry. Compute the fixed points of this map
and show that they lie on the same ray from the origin, with one inside the unit circle
and one outside it.

20.11. Give an example of a parabolic isometry. Compute the fixed point of this map
and show that it lies on the boundary of the unit disk.

20.12. Give an example of a loxodromic isometry. Compute the fixed points of this
map and show that they both lie on the boundary of the unit disk.
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Chapter 21
Hyperbolic Trigonometry

To start off this chapter, let’s look at the idea of similarity and see how it works (or
doesn’t work) in hyperbolic geometry. Recall that in Euclidean geometry, a good
deal of the theory of similarity hinges upon the idea of parallel projection. But par-
allel projection is fundamentally broken in hyperbolic geometry because there is not
a unique parallel through a point. To see the impact of this, let us look at an example.

Example 21.1. Consider two triangles, T1 with vertices O = 0, A1 = 1/2 and B1 =
1/2i, and T2 with vertices O = 0, A2 = 1/3 and B2 = 1/3i. Then

d(O,A1) = d(O,B1) = 2tanh−1(1/2)

d(O,A2) = d(O,B2) = 2tanh−1(1/3).

Therefore
|OA1| = k|OA2| & |OB1| = k|OB2|

where k = tanh−1(1/2)/ tanh−1(1/3). In Euclidean geometry we would expect (by
the S ·A · S triangle similarity theorem) that ∠A1 - ∠A2 and ∠B1 - ∠B2. But in
hyperbolic geometry this is not the case. Calculating those angles where they are is
not that easy, though, since the lines A1B1 and A2B2 are modeled by Euclidean arcs.
Instead, we will use two Möbius transformation, one mapping A1 to the origin, the
other mapping A2 to the origin. The first of these is

φA1(z) =
z−1/2
1− 1

2 z
.

It maps O to −1/2, A1 to 0 and

1355



The easiest way to calculate the angles at A1 and A2 is 
to translate them to the origin. In this position, the 
hyperbolic lines AiBi are modeled by Euclidean line 
segments, and the hyperbolic angle between them is the 
same as the Euclidean angle between them . 

A1
A2

B1

B2
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φA1(B1) =
i/2−1/2
1− i/4

· 4
4

=
−2+2i

4− i
· 4+ i

4+ i

=
−10+6i

17
.

Since a Möbius transformation preserves angle measure,

(∠OA1B1) = (∠φ(O)φ(A1)φ(B1))

= tan−1
(

6/17
10/17

)

= tan−1(3/5).

The calculation for the measure of ∠A2 is similar. In this case, the map is

φA2(z) =
z−1/3
1− 1

3 z
;

it maps O to −1/3, A to 0, and

φA2(B2) =
i/3−1/3
1− i/9

=
−3+3i

9− i
· 9+ i

9+ i

=
−15+12i

41
,

so

(∠OA2B2) = (∠φ(O)φ(A2)φ(B2))

= tan−1
(

12/41
15/41

)

= tan−1(4/5).

Although the SAS similarity conditions are met, the two angles ∠A1 and ∠A2 are
not congruent.

From the calculations in that example we can get some insight into the problems
surrounding similarity in hyperbolic geometry, but for a more complete picture, let
us now take a geometric view of the problem.

Theorem 21.1. A - A - A Triangle Congruence. Suppose that all three corre-
sponding angles of the triangles*A1B1C1 and*A2B2C2 are congruent:
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In hyperbolic geometry, it is not possible to resize 
polygons without also changing the angle measures. To 
prove the A-A-A triangle congruence theorem, we 
overlay the two triangles, lining them up at A2. There 
are two possible configurations (top). If they do not 
match up, then they differ by a quadrilateral which has 
an angle sum of 2 , an impossibility in hyperbolic 
geometry.

A2

B3

B2

C2
C3

A2

B3

B2

C2C3

A2

B3

B2

C2C3
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∠A1 - ∠A2 ∠B1 - ∠B2 ∠C1 - ∠C2.

Then*A1B1C1 -*A2B2C2.

Proof. Let’s try to line up these triangles a little before we start comparing them.
Because ∠A1 - ∠A2, there is a hyperbolic isometry φ which maps

A1 :→ A2

B1 :→ a point on A2B2

C1 :→ a point on A2C2.

If the two triangles are really congruent, then of course the image of B1 will be B2,
and the image of C1 will be C2. [If you have an uncomfortable feeling that such an
isometry might not exist, consider this construction. There are maps φ1 and φ2 which
translate A1 and A2 to the origin, and then rotate A1B1 and A2B2 to the positive real
axis. Since ∠A1 - ∠A2, both A1C1 and A2C2 will be mapped to the same ray. Then
the composition φ−1

2 ◦φ1 is the desired isometry]. Let B3 = φ(B1) and C3 = φ(C1).
Then, since φ is an isometry,

∠B3 - ∠B1 - ∠B2 & ∠C3 - ∠C1 - ∠C2.

By the Alternate Interior Angle Theorem, BC and B′C′ must either coincide or they
must be parallel lines. If the two segments coincide, then the two triangles must
be congruent. Let us suppose that they do not coincide. This construction creates a
quadrilateral B2B3C3C2. Furthermore, the angle sum of this quadrilateral is

(∠B2)+(∠B3)+(∠C2)+(∠C3)
= (∠B2)+π− (∠B2)+(∠C2)+π− (∠C2) = 2π.

Together the angle sums of the triangles *B2B3C3 and *C3C2B2 must add up to
π , but in any neutral geometry, the angle sum of a triangle cannot exceed π . Thus
both triangles must have angle sums of exactly π . But we showed that the existence
of triangles with an angle sum of π implies Playfair’s axiom (and hence that the
geometry is Euclidean). Since we are working in hyperbolic geometry, this cannot
happen. Therefore B2 = B3 and C2 = C3, so

A1B1 - A3B3 - A2B2

A1C1 - A3C3 - A2C2

By S ·A ·S triangle congruence,*A1B1C1 -*A2B2C2. "#
So there are no non-congruent similar triangles in hyperbolic geometry. As a

consequence there are no hyperbolic transformations other than isometries. It also
means that all of trigonometry, based upon the relationships between the angles and
sides of a triangle, will take on a different complexion.

The Pythagorean Theorem is certainly one of the best known results in Euclidean
geometry. While this formula does not hold for hyperbolic geometry, there is a sim-
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A typical right triangle in 
hyperbolic geometry.

Right triangles with the right angle at 
the origin. Note that the smaller 
triangles look approximately Euclidean, 
but the larger triangles do not.

Repositioning to verify the Pythago-
rean theorem. First place C at the 
origin and A and B on the real and 
imaginary axes to get the measures of 
sides a and b. Then translate A to the 
origin to measure c.

A

B
A B
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ilar relationship between the lengths of the three sides of a right triangle in hyper-
bolic geometry. First, a lemma which will help with the proof of the hyperbolic
Pythagorean theorem.

Lemma 21.1.
cosh

[
ln
(

1+ x
1− x

)]
=

1+ x2

1− x2 .

Proof. This is a straightforward calculation from the definition of the hyperbolic
cosine function

cosh
[

ln
(

1+ x
1− x

)]
=

1
2

(
eln[(1+x)/(1−x)] + e− ln[(1+x)/(1−x)]

)

=
1
2

(
eln[(1+x)/(1−x)] + eln[(1−x)/(1+x)]

)

=
1
2

(
1+ x
1− x

+
1− x
1+ x

)

=
1
2

(
(1+ x)2− (1− x)2

1− x2

)

=
1
2

(
2+2x2

1− x2

)

=
1+ x2

1− x2 . "#

Theorem 21.2. Hyperbolic Pythagorean Theorem. Let*ABC be a right triangle
whose right angle is located at the vertex C. Let a, b, and c be the lengths of the sides
opposite the vertices A, B, and C, respectively (so that c is length of the hypotenuse).
Then

cosh(c) = cosh(a) · cosh(b).

Proof. There is a hyperbolic isometry which moves C to the origin, and positions
AC along the positive real axis and BC along the positive imaginary axis. This isom-
etry does not change any of the lengths a, b, or c. Therefore, without any loss of
generality, let us assume that *ABC is in that position. In that case, vertex A is lo-
cated at the complex number α +0i and vertex B is located at the complex number
0+β i. Since these two points are located at a hyperbolic distance of b and a respec-
tively from the origin, the values of a and β and the values of b and α are related by
the special formula for distance from origin:

a = ln
(

1+β
1−β

)
b = ln

(
1+α
1−α

)
.

To calculate c, the hyperbolic length of the segment AB, we will use the isometry

φα(z) =
z−α

1−αz
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(note that α is real, so α = α) which translates A to 0. Since φα preserves hyperbolic
distances,

c = dH(A,B)

= dH(0,φα(β i))

= dH

(
0,

β i−α
1−αβ i

)

= ln




1+
∣∣∣ β i−α

1−αβ i

∣∣∣

1−
∣∣∣ β i−α

1−αβ i

∣∣∣





Using the above lemma and a little arithmetic,

cosh(c) =
1+
∣∣∣ β i−α

1−αβ i

∣∣∣
2

1−
∣∣∣ β i−α

1−αβ i

∣∣∣
2

=
|1−αβ i|2 + |β i−α|2

|1−αβ i|2− |β i−α|2

=
(1−αβ i)(1+αβ i)+(β i−α)(−β i−α)
(1−αβ i)(1+αβ i)− (β i−α)(−β i−α)

=
1+α2β 2 +α2 +β 2

1+α2β 2−α2−β 2

Both the numerator and the denominator of this fraction can be factored, and then
with one more application of the preceding lemma, we have:

cosh(c) =
(1+α2)(1+β 2)
(1−α2)(1−β 2)

= cosh
[

ln
(

1+α
1−α

)]
· cosh

[
ln
(

1+β
1−β

)]

= cosha · coshb. "#

Despite appearances, this result is not completely unaffiliated with the Euclidean
version. The hyperbolic cosine function has Taylor series expansion
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cosh(z) =
1
2
(ez + e−z)

=
∞

∑
n=0

zn

n!
+

∞

∑
n=0

(−1)n zn

n!

=
∞

∑
n=0

(1+(−1)n)
zn

n!

The odd terms in this series cancel out, leaving

cosh(z) =
∞

∑
n=0

z2n

(2n)!
= 1+

1
2

z2 +
1
24

z4 + . . .

Rewriting the hyperbolic Pythagorean theorem in terms of those series:

cosh(a) · cosh(b) = cosh(c)
(

1+
1
2

a2 + · · ·
)(

1+
1
2

b2 + · · ·
)

=
(

1+
1
2

a2 +
1
2

b2 + · · ·
)

Now for large values of z, the higher powered terms in these series will end up
contributing substantially to the overall value. But for values of a, b, and c very
close to zero, those higher valued terms will not contribute all that much. Therefore,
for very small values of a, b and c, we get an approximation by discarding everything
higher than the quadratic term

1+
1
2

a2 +
1
2

b2 ≈ 1+
1
2

c2

and therefore
a2 +b2 ≈ c2.

This is an indication of an important theme, that at a very small scale, hyperbolic
geometry is close to Euclidean geometry.

As with Euclidean geometry, there is a relationship between the sine and co-
sine of an angle in a right triangle and the lengths of the sides of that triangle. To
prove these next results, we will need to use some basic identities of the hyperbolic
trigonometric functions. These are stated in the the next lemma.

Theorem 21.3. Hyperbolic Trigonometric Identities. The following hyperbolic
trigonometric identities hold for all complex numbers z for which the functions are
defined

Pythagorean Identities

cosh2 z = 1+ sinh2 z

tanh2 z = 1+1/(cosh(z))2
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As in the proof of the Pythagorean theorem, after 
measuring the lengths of AC and BC, translate A to the 
origin. The image of B under this translation provides 
all the necessary information to determine the measure 
of angle A. To make calculations easier, we replace this 
image with , which has the same argument.

As in Euclidean geometry, there are simple relation-
ships between the lengths of the sides and the measures 
of the angles of a right triangle.

a

b

c

A

B
A B

A

B
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Half Angle Identities

sinh2(z/2) = 1
2 (coshz−1)

cosh2(z/2) = 1
2 (coshz+1)

tanh2(z/2) =
coshz−1
coshz+1

Each of these identities can be proved by relating the hyperbolic trigonometric
functions to their definition in terms of exponentials, and these proofs are left to the
reader. Now let’s look at how the sides of a hyperbolic right triangle relate to its
acute angles.

Theorem 21.4. Hyperbolic sine. Let *ABC be a right triangle with hypotenuse
AB and right angle ∠C. Let a be the length of the leg adjacent to ∠A , b be the
length of the leg opposite ∠A, and let c be the length of the hypotenuse (the side
AB). Then

sinA =
sinha
sinhc

.

Proof. The first step is to move *ABC into a position where it will be (relatively)
easy to calculate the sides and angles. As in the proof of the Pythagorean theorem,
there is a hyperbolic isometry which maps C to zero, places A on the positive real
axis and B on the positive imaginary axis. Since this map preserves both segment
length and angle measure, it suffices, then, to verify this result just for triangles in
this special position. In this case, by the formula for distance from the origin,

b = 2tanh−1 A & a = 2tanh−1 B

so
A = tanh(b/2) & B = tanh(a/2).

The easiest way to work with ∠A is if it is positioned at the origin. In this position,
both AB and AC are modeled by Euclidean line segments, so the angle between them
can be measured using Euclidean trigonometry. To position A at the origin, we use
another hyperbolic translation,

τA(z) =
z−A

1−Az
.

This maps A to the origin and C to a point on the negative real axis, but of greatest
interest is what this map does to the point B, because it is the location of τ(B) which
determines the measure of ∠A. In the Euclidean triangle*OτA(B)τA(C), the length
of the opposite side is the imaginary part of τA(B), and the length of the hypotenuse
is |τA(B)|. Therefore

sin(∠A) =
Im(τA(B))
|τA(B)| .

So let us evaluate
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τA(B) =
tanh a

2 i− tanh b
2

1− tanh a
2 · tanh b

2 i
.

Multiply both numerator and denominator by the complex conjugate of the denom-
inator to get

τA(B) =
[
tanh a

2 i− tanh b
2
]
·
[
1+ tanh a

2 tanh b
2 i
]

1+ tanh2 a
2 · tanh2 b

2
.

Computing the imaginary part and the norm of this, while straightforward, is a little
bit messy. We can simplify the upcoming computations, by focusing our attention
on the numerator of this expression. Let β be this numerator. Since the denominator
is a real number, β has the same argument as τA(B). Therefore,

sin(∠A) =
Im(β )
|β | .

So now we simplify β ,

β =
(

tanh a
2 i− tanh b

2

)(
1+ tanh a

2 · tanh b
2 i
)

=
[
− tanh b

2 − tanh2 a
2 · tanh b

2
]
+
[
tanh a

2 − tanh a
2 · tanh2 b

2
]

i

=
[
tanh b

2
(
1+ tanh2 a

2
)]

+
[
tanh a

2
(
1− tanh2 b

2
)]

i

so
Im(β ) = tanh

(a
2

)
· 1

cosh2(b/2)

and

β ·β = tanh2
(

b
2

)[
1+ tanh2

(a
2

)]2
+

tanh2(a/2)
cosh4(b/2)

=
cosh2 b

2 · sinh2 b
2
[
1+ tanh2 a

2
]2 + tanh2 a

2

cosh4 b
2

.

With the fact that sin2 A = Im(β )2/|β |2 and enough identities

sin2A =
tanh2 a

2

cosh2 b
2 · sinh2 b

2
(
1+ tanh2 a

2
)2 + tanh2 a

2

=

cosha−1
cosha+1

1
2 (coshb+1) 1

2 (coshb−1)
[

1+
cosha−1
cosha+1

]2
+

cosha−1
cosha+1
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Multiplying through both numerator and denominator by the term (cosha + 1)2

gives

sin2 A =
cosh2 a−1

1
4 (cosh2 b−1)(cosha+1+ cosha−1)2 + cosh2 a−1

=
sinh2 a

1
4 (cosh2 b−1) ·4cosh2 a+ cosh2 a−1

=
sinh2 a

cosh2 acosh2 b−1

By the Pythagorean theorem, coshacoshb = coshc, so

sin2 A =
sinh2 a

cosh2 c−1
=

sinh2 a
sinh2 c

.

Since 0 < A < π/2, and both a and c are positive, all three of sinA, sinha and sinhc
are also positive, so we may take a square root of both sides of the expression to get

sinA =
sinha
sinhc

,

the desired result. "#

Theorem 21.5. Hyperbolic Cosine. Let*ABC be a right triangle with hypotenuse
AB and right angle ∠C. Let a be the length of the leg adjacent to ∠A , b be the length
of the leg opposite ∠A, and let c be the length of the hypotenuse (the side AB). Then

cosA =
tanh(b)
tanh(c)

.

Proof. By the formula for hyperbolic sine derived just above,

cos2 A = 1− sin2 A = 1− sinh2 a
sinh2 c

which can be simplified to

cos2 A = =
sinh2 c− sinh2 a

sinh2 c

=
(cosh2 c−1)− (cosh2 a−1)

sinh2 c

=
cosh2 c− cosh2 a

sinh2 c

By the Pythagorean theorem, cosha = coshc/coshb, so
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Approximating a hyperbolic circle with a regular 
polygon. In this case, the approximation is by an 
octagon.

The regular n-gon can be broken into 2n right triangles, 
and the lengths of the sides of these triangles can be 
calculated using trigonometry.

x
r

O M

P

O M

P
r

/n

21. Hyperbolic Trigonometry368



10 21 Hyperbolic Trigonometry

cos2 A =
cosh2 c− cosh2 c

cosh2 b

sinh2 c

=
cosh2 ccosh2 b− cosh2 c

cosh2 b · sinh2 c

=
cosh2 c(cosh2 b−1)

cosh2 b · sinh2 c

=
cosh2 c · sinh2 b
cosh2 b · sinh2 c

=
tanh2 b
tanh2 c

.

Again, all three of cosA, tanhb and tanhc must be positive for all possible values of
A, b and c on a right triangle, so

cosA = tanhb/ tanhc. "#

Theorem 21.6. Circumference of a Circle. Let C be a circle with radius r. Then
the circumference of C is given by the formula

C = 2π sinh(r).

Proof. We can approximate the circumference by calculating the perimeter of an
inscribed regular n-gon, and then taking a limit as n goes to infinity (the same strat-
egy as was employed to measure circumference in Euclidean geometry). Let O be
the center of the circle. If PP′ is one side of the inscribing polygon, and M is the
midpoint of that side, then*OMP is a right triangle with a hypotenuse of length r.
In this triangle ∠O can be measured as well:

(∠O) = 2π/2n = π/n.

Let x = |MP|. Then Pn, the perimeter of the inscribed regular n-gon is Pn = 2nx and
(sine in a hyperbolic right triangle)

sinhx = sinhr · sinθ .

First we will establish an upper bound for Pn. We will need to know that Pn does not
growth without bound when we evaluate the limit as n goes to infinity. The Taylor
series for sinhx (which can be calculated by differentiating the Taylor series for
coshx) is

sinhx =
∞

∑
n=0

1
(2n+1)!

x2n+1 = x+
x3

3!
+

x5

5!
+ · · ·

For positive x, all terms in the series are positive, so sinhx≥ x for all x≥ 0. Therefore
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There are only three possible 
tilings of the Euclidean plane 
by regular polygons�– a tiling 
by squares, a tiling by 
triangles, and a tiling by 
hexagons.
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Pn = 2nx
≤ 2nsinhx
≤ 2nsinhr sin(π/n)
≤ 2π sinhr.

To actually calculate C = limn→∞ Pn, we again use

sinhx = sinhr · sin(π/n).

Because x = Pn/2n, this is equivalent to

sinh
(

Pn

2n

)
= sinhr · sin(π/n).

Directly solving this equation for Pn is impractical, but the left hand side can be
expanded using the Taylor series for the hyperbolic sine

∞

∑
k=0

(Pn/2n)2k+1

(2k +1)!
= sinhr · sin(π/n),

and solving for the linear term in this series yields

Pn

2n
+

∞

∑
k=1

(Pn/2n)2k+1

(2k +1)!
= sinhr · sin(π/n)

=⇒ Pn = 2nsinhr sin(π/n)−2n
∞

∑
k=1

(Pn/2n)2k+1

(2k +1)!

Now the circumference is the limit of this expression as n goes to infinity. As n
approaches infinity,

2nsin(π/n)−→ 2π.

and each term in the series

P2k+1
n

22kn2k(2k +1)!
−→ 0

because the numerator is bounded and the denominator is not. Therefore

C = lim
n→∞

Pn = 2π sinhr. "#

A polygonal tiling {Pi} of the plane is a decomposition of the plane into poly-
gons Pi so that ∪Pi is the entire plane, and int(Pi)∩ int(P j) = /0 for i += j. A
regular tiling of the plane is a tiling by congruent regular polygons which are “edge-
to-edge” (this means that if two polygons share an edge, they must share the entire
edge) (Grunbaum). There are only three regular polygons which regularly tile the
plane: the equilateral triangle, the square, and the regular hexagon. The reason for
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In order for a regular polygon 
to tile the Euclidean plane, the 
interior angles of that polygon 
(at the vertices Pi) must be 
divisors of 2 .

The situation is different in the hyperbolic case. The interior 
angles of a regular polygon can be calculated by dividing the 
polygon into right triangles and using trigonometry to find the 
interior angles of the triangles.

The measure of angle Pi, one half of the interior angle of a 
regular n-gon, as a function of the radius of that n-gon. The 
bottom  curve corresponds to n=3, above that n=4, n=5, n=6, 
n=7, and the topmost curve, n=8.

O 2 / n
Pi 1

Pi

x

y
r

2 3 4
r

1

1

2

Pi 1

Pi

Pi

Qi
/n

Pi

Qi
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12 21 Hyperbolic Trigonometry

this is quite simple: at a meeting of the vertices, the interior angles of the polygons
must add up to exactly 2π . And this means that the interior angles of the regular
n-gon must be a divisor of 2π . Only a few values of n can meet this condition. Let
Pn = P1P2 . . .Pn be a regular n-gon centered at a point O. The interior angles of Pn
can be calculated by dividing Pn into n isosceles triangles. In*PiOPi+1

∠PiOPi+1 = 2π/n

so each of the other two angles in*PiOPi+1 measures

(∠Pi) =
1
2
(π−2π/n).

Two of these together form an interior angle of Pn, so and interior angle measures
π−2π/n. For small values of n, these interior angles are:

n θ
3 π/3
4 π/2
5 3π/5
6 2π/3
7 5π/7

Now 2π is only a multiple of three of those:

6∗π/3 = 2π
4∗π/2 = 2π
3∗2π/3 = 2π.

and there are indeed tilings of the plane by regular 3-, 4-, and 6-gons. When n = 5,

3θ = 9π/5 < 2π < 12π/5 = 4θ ,

so no multiple of this angle adds up to 2π . And when n≥ 7,

2θ ≤ 10π/7 < 2π < 15π/7≤ 3θ

Thus, no multiple of θ will be exactly 2π for any value of n≥ 7 either. The situation
in hyperbolic geometry is quite different.

Theorem 21.7. Tiling the Hyperbolic Plane. The hyperbolic plane can be tiled by
regular n-gons for any value of n≥ 3.

Proof. The key is again that some multiple of the interior angles of the n-gon must
be exactly 2π . The difference between the Euclidean case and the hyperbolic one is
that, in the hyperbolic case, adjusting the size of the n-gon also alters the measure
of the interior angles. This gives us the additional necessary flexibility to construct
tilings. Let Pn be a regular n-gon which is inscribed in a circle of radius r centered
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Four tilings of the hyperbolic plane by regular 
polygons. Hyperbolic tilings form the basis for some of 
the well-known prints of the artist M. C. Escher.

21. Hyperbolic Trigonometry374



21 Hyperbolic Trigonometry 13

at O. Then Pn can be broken into n isosceles triangles,*PiOPi+1. With our limited
calculating abilities in hyperbolic geometry, we need to subdivide these further. Let
Qi be the bisector of PiPi+1. Then*OPiQi is a right triangle. Let

x = |OQi| y = |PiQi|.

In this triangle ∠Pi is half of an interior angle of Pn, and (∠O) = π/n. To under-
stand ∠Pi, we now turn to trigonometric identities:

sin(Pi) = sinhx/sinhr

and
cos(π/n) =

tanhx
tanhr

so
tanhx = tanhr cos(π/n).

Multiplying through by coshx gives

sinhx = coshx tanhr cos(π/n)

By the Pythagorean theorem, coshx = coshr/coshy, so

sinhx =
coshr
coshy

· sinhr
coshr

· cos(π/n)

=
sinhr
coshy

· cos(π/n).

Since cosh2 y = 1+ sinh2 y, and coshy is positive,

sinhx =
sinhr√

1+ sinh2 y
· cos(π/n).

One more trigonometric identity: sin(π/n) = sinhy/sinhr. Substituting in place of
sinhy,

sinhx =
sinhr√

1+ sinh2(r)sin2(π/n)
· cos(π/n)

Therefore
sinPi =

sinhx
sinhr

=
cos(π/n)√

1+ sinh2 r · sin2(π/n)
.

This equation describes how sin(Pi) changes as r grows. As r approaches zero,
sin(Pi) approaches cos(π/n) = sin(π/2−π/n). Therefore (∠Pi) approaches π/2−
π/n. The interior angle of Pn is double this, so it approaches π − 2π/n. On the
other hand, as r approaches infinity, sin(Pi) approaches zero. Thus the interior an-
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gles of Pn approach zero as well. There is then some value of r between zero and
infinity for which the measure of the interior angle of Pn evenly divides 2π . "#

Exercises

21.1. Use lHopitals rule to calculate the limit in the proof of the circumference for-
mula.

21.2. Verify the following hyperbolic trigonometric identities.

cosh2 z = 1+ sinh2 z

tanh2 z = 1+1/cosh2 z

sinh2 z = (coshz−1)/2

cosh2 z = (coshz+1)/2

tanh2 z = (coshz−1)/(coshz+1)

21.3. Use the hyperbolic version of the Pythagorean Theorem to calculate the dis-
tance from 0.2 to 0.2i.

21.4. Suppose that you want to tile the plane with regular octagons so that three
octagons meet at each vertex. What will the length of a side of one of the octagons
be?

21.5. This time suppose the tiling by regular octagons is so that four octagons meet
at each vertex. What will the length of a side be then?

21.6. Suppose that the three angles of a triangle measure π/3, π/4, and π/5. What
are the lengths of the sides?

21.7. Find the circumference of a circle of radius 1.

21.8. Use a the compass and straight-edge construction in Euclidean geometry to
construct a regular hyperbolic hexagon centered at the origin.

21.9. Suppose that
|AB| = 3 |AC| = 4 |BC| = 5.

What is (∠ABC)?

21.10. Suppose that

|AB| = 2 |AC| = 3 (∠BAC) = π/3.

What is |BC|?

21.11. Locate the midpoint of the segment AB where A = 0.5 and B = 0.5+0.5i.
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P1

P1

P3

P3

P4

P4

P5

P5

P6

P6

P2

P2

P7

Two decompositions of an 
octagon into triangles. The area 
of the octagon should be the sum 
of the areas of the triangles. That 
amount should not depend upon  
which decomposition is used.



Chapter 22
Area

To this point, we have avoided entirely any discussion of area, a central concept
in a traditional geometry course. In these final two chapters, we will make up for
that omission, and look at the area of polygons. Calculus students know that, with
the help of a limit, this can lead to a discussion of areas of other (non-polygonal)
regions. While this opens up whole new avenues of study, we will go no further than
the area of a circle. This chapter is dedicated to area in Euclidean geometry, while
the next chapter deals with hyperbolic area.

To begin, a brief description of what should be expected of an area function. It
needs to assign to each polygon a positive real number. That is, if P denotes the set
of polygons, then area is a function

A : P −→ R+.

Furthermore, this function must satisfy a few conditions. The first condition is sim-
ply a recognition that congruent polygons ought to have the same area:

Condition 1 If polygons P1 and P2 are congruent, then

A(P1) = A(P2).

The second condition requires a bit more explanation, but it is essentially a recogni-
tion that, in layman’s terms, the whole should be equal to the sum of its parts. Let P
be a polygon, A finite or countable set of polygons {Pi} is a decomposition of P if

(i)
⋃

Pi = P
(ii) int(Pi)∩ int(Pj) = /0 for i += j.

Condition 2 If {Pi} is a decomposition of P, then

A(P) = ∑
i

A(Pi).

1379



The three possible configura-
tions of the altitude in relation to 
the base.
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b
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2 22 Area

Traditionally, the fundamental building block in the study of Euclidean area is
the rectangle. The area of a rectangle is given by the formula A = lw, where l and
w, the length and width of the rectangle are the lengths of adjacent sides. Because
opposite sides of a rectangle have the same length, it does not matter which side is
the “length” and which is the “width.” It is clear from this definition that two con-
gruent rectangles will have the same area. It is not as clear that the second condition,
concerning decomposition, will hold. Rather than address that issue here, though,
let us postpone it. For really, we should not be basing the area function on the area
of rectangles, but rather on the area of triangles.

Theorem 22.1. Let b be the length of one side of a triangle T , and let h be length of
the altitude from the opposite vertex. Then

A(T ) =
1
2

bh.

Proof. Let T =*ABC with the side AB identified as the “base” of T . The altitude
that determines the height of T then lies on the line through C which is perpendicular
to AB. Now this line will intersect the triangle T in one of three ways. It may pass
along a side of T (either AC or BC) in which case T is a right triangle. Or it may
cross into the interior of T . Or it may only touch T at C and otherwise lie entirely
outside T .

Case 1. In the first case, either ∠A or ∠B is a right angle. Without loss of gen-
erality, assume that it is ∠A which is the right angle. In this case, the perpendicular
bisector to AB through B and the perpendicular bisector to AC through C intersect at
a point– call this D. Then ABDC is a rectangle, and BC is a diagonal which divides
that rectangle into two congruent triangles T =*ABC and T ′ =*BCD. Using both
the decomposition and congruence properties of area:

A(T )+A(T ′) = bh
2A(T ) = bh

A(T ) = 1
2 bh.

Case 2 In the second case, the altitude from C passes through the interior of T ,
dividing it into two right triangles T1 and T2 with shared altitude h and bases b1 and
b2 with b1 + b2 = b. Then, using the decomposition property of area together with
the result from the first case:

A(T ) = A(T1)+A(T2)

= 1
2 b1h+ 1

2 b2h

= 1
2 (b1 +b2)h

= 1
2 bh

Case 3 In the final case, the foot of the altitude through C lies on the line !AB"
but does not lie between B and C. Letting D be this foot, either A∗B∗D or D∗A∗B.
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To derive Heron�’s formula, we 
use basic trigonometry to find 
the altitude and the Law of 
Cosines to find the base.

b AC

B

a casinC
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Assume, again without loss of generality, that A ∗ B ∗D. Then T1 = *ADC and
T2 =*BDC are right triangles with height h. Letting b1 denote the length of AD
and b2 the length of BD, then b = b1−b2. By the decomposition property of area,

A(T ) = A(T1)−A(T2)

= 1
2 b1h− 1

2 b2h

= 1
2 (b1−b2)h

= 1
2 bh.

This accounts for all possible cases, and in each case, the result is the same. "#
The one bit of unfinished business from the previous theorem is an important

bit. The formula given there requires a choice to be made: one of the three sides of
the triangle has to be chosen to be the base, and the resulting formula seemingly
depends heavily upon this choice. But the area should not depend upon which side
is chosen. To reveal that this formula does in fact calculate the same area, no matter
which base is used, we now derive a more symmetric formula for the area of a
triangle.

Theorem 22.2. Heron’s formula. Let T be a triangle with side of lengths a, b, and
c. Let

s =
1
2
(a+b+ c).

(this value s is called the semiperimeter of T ). Then

A =
√

s(s−a)(s−b)(s− c).

Proof. This proof (from Coxeter [?]) uses trigonometry in general, and the Law of
Cosines in particular. Suppose that the side of T with length a is chosen to be its
base. Let ∠C be the angle opposite the side with length c and let ∠A be the angle
opposite side A. Both of these angles cannot be obtuse. Let us assume, for notational
convenience, that ∠C is acute. Then the length of the altitude of T is

h = bsinC.

Using the Law of Cosines,

c2 = a2 +b2−2abcosC

and so

cosC =
a2 +b2− c2

2ab
.

Since ∠C is acute, both sinC and cosC are positive and so

sinC =
√

1− cos2 C.

Thus
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sinC =

√

1−
(

a2 +b2− c2

2ab

)2

=

√
1− a4 +2a2b2−2a2c2 +b4−2b2c2 + c4

4a2b2

=

√
2a2b2 +2a2c2 +2b2c2−a4−b4− c4

4a2b2

=
1

2ab

√
2a2b2 +2a2c2 +2b2c2−a4−b4− c4.

Hence the area of the triangle T is given by

A = 1
2 absinC

= 1
4

√
2a2b2 +2a2c2 +2b2c2−a4−b4− c4

The rest of the calculation is an exercise in factoring. Regrouping the terms under
the radical,

A = 1
4

√
−(b4−2b2c2 + c4)− (a4−2a2b2−2a2c2)

= 1
4

√
−(b2− c2)2− (a4−2(b2 + c2)a2)

Now “complete the square” in the second group by adding and subtracting the term
(b2 + c2)2:

A = 1
4

√
(b2 + c2)2− (b2− c2)2− [a4−2(b2 + c2)a2 +(b2 + c2)2]

= 1
4

√
(b2 + c2)2− (b2− c2)2− [a2− (b2 + c2)]2

= 1
4

√
b4 +2b2c2 + c4−b4 +2b2c2− c4− [a2− (b2 + c2)]2

= 1
4

√
4b2c2− [a2− (b2 + c2)]2

Inside the radical is a difference of perfect squares which can be factored as

A = 1
4

√
(2bc− (a2− (b2 + c2)))(2bc+(a2− (b2 + c2)))

= 1
4

√
((b2 +2bc+ c2)−a2)(a2− (b2−2bc+ c2))

= 1
4

√
((b+ c)2−a2)(a2− (b− c)2)

= 1
4

√
(a+b+ c)(b+ c−a)(a−b+ c)(a+b− c)

Substituting a+b+ c = 2s, reveals Heron’s formula
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On the left, a bad triangulation. On the right, it has been 
further subdivided to create a good triangulation.

Two bad configurations of triangles. A triangulation 
containing either of these configurations would not be a 
good one.
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A = 1
4

√
2s(2s−2a)(2s−2b)(2s−2c)

= 1
4

√
16s(s−a)(s−b)(s− c)

=
√

s(s−a)(s−b)(s− c). "#

While this formula for area relies on the lengths of all three sides of T , it does so
in a symmetric way: observe that rearranging the letters a, b, and c will not change
the value of s, nor will it change the value of A. Thus, the simpler A = bh/2 formula
from which this is derived does not in fact depend upon which side is chosen as the
base.

Once the area of a triangle has been established, the area of any polygon which
can be decomposed into a collection of triangles can be calculated. That is, if poly-
gon P can be decomposed as ∪Ti, we can define

A(P) = ∑A(Ti).

This approach raises a couple of questions, however. First, it may not be clear that
any polygon can in fact be decomposed into a collection of triangles. That this is
indeed the case is a consequence of the “two ears” theorem. We will not prove that
result, but refer the interested reader to [computation geometry book]. Second, a
polygon will in fact have many triangulations. We need to make sure that the area
of a polygon does not depend upon which triangulation is chosen.

Not all triangulations are created equal. The types of triangulations we would
like to look at have the nice property that all vertices and edges “line up” with one
another. Let us state the two parts of this restriction more precisely. The first part
deals with matching of vertices. Let T and T ′ be triangles in a triangulation which
share a point P. If each shared point which is a vertex of T is also a vertex of T ′,
and each point which is a vertex of T ′ is also a vertex of T , then T and T ′ are
“vertex-to-vertex.” If every pair of triangles in the triangulation is arranged vertex-
to-vertex, then the triangulation itself is said to be vertex-to-vertex. The second part
deals with matching of edges. Two triangles T and T ′ which share some non-vertex
points on their respective edges e and e′ are said to be “edge-to-edge” if e = e′. If
every pair of triangles is arranged edge-to-edge, then the triangulation itself is said
to be edge-to-edge. Good triangulations are those which are both vertex-to-vertex
and edge-to-edge. Certainly not every triangulation is good, but every triangulation
can be further subdivided into a good triangulation. In the arguments that follow, we
will assume that our triangulations are good.

The first step in this process is yet another formula for the area of a triangle, this
time in terms of the coordinates of its vertices.

Theorem 22.3. Let (x1,y1), (x2,y2), and (x3,y3) be the coordinates of the three ver-
tices of a triangle T listed in counterclockwise order. Then

A(T ) = 1
2 (x1y2− x2y1 + x2y3− x3y2 + x3y1− x1y3)

This formula has a particularly nice formulation in terms of 2×2 determinants:
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To derive the coordinate formula for the area of a 
triangle, position the triangle so that its base is along 
the horizontal axis.

b

h

x1, y1

x2, y2

x3, y3
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A(T ) =
1
2

(∣∣∣∣
x1 x2
y1 y2

∣∣∣∣+
∣∣∣∣
x2 x3
y2 y3

∣∣∣∣+
∣∣∣∣
x3 x1
y3 y1

∣∣∣∣

)
.

Proof. A direct attack on this area calculation by determining base and height, or
by using Heron’s formula, leads to a pretty big mess. The right isometry helps with
this (since an isometry will map T to a congruent triangle, it will not alter the area).
Let φ1 be the isometry which translates (x1,y1) to the origin. Then

φ1(x1,y1) = (0,0)
φ1(x2,y2) = (x2− x1,y2− y1)
φ1(x3,y3) = (x3− x1,y3− y1)

To further simplify, let φ2 be the rotation about the origin which maps the image of
(x2,y2) onto the positive real axis. If θ is the angle of this rotation, then

cosθ =
x2− x1√

(x2− x1)2 +(y2− y1)2

and
sinθ =

y2− y1√
(x2− x1)2 +(y2− y1)2

,

so the equation for this rotation is

φ2

(
x
y

)
=

1√
(x2− x1)2 +(y2− y1)2

(
x2− x1 y2− y1
y1− y2 x2− x1

)(
x
y

)
.

Plugging in the coordinates of the vertices of the triangle,

φ2(x2,y2) =
(√

(x2− x1)2 +(y2− y1)2,0
)

φ2(x3,y3) =

(
(x2− x1)(x3− x1)+(y2− y1)(y3− y2)√

(x2− x1)2 +(y2− y1)2
,

(x3− x1)(y1− y2)+(x2− x1)(y3− y1)√
(x2− x1)2 +(y2− y1)2

)

In this image triangle, with the base chosen to be the side from (x1,y1) to (x2,y2),
the length of base will be the x-coordinate of the second point, and that of the height
will be the y-coordinate of the third point. That is,

b =
√

(x2− x1)2 +(y2− y1)2

and
h =

(x3− x1)(y1− y2)+(x2− x1)(y3− y1)√
(x2− x1)2 +(y2− y1)2
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A larger illustration of the internal cancellation, in this 
case of a triangulation of a triangle.

(left) A counterclockwise listing of the vertices of this 
triangle would be A-B-C. (right) Triangles ABC and 
BCD share a side. Its counterclockwise listing in ABC 
is BC but its counterclockwise listing in BCD is CB. 
The internal edges in a triangulation will cancel each 
other out in that way.

A

D

CB

A

CB
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so

A = 1
2 bh

= 1
2 [(x3− x1)(y1− y2)+(x2− x1)(y3− y1)]

= 1
2 [x3y1− x1y1− x3y2 + x1y2 + x2y3− x2y1− x1y3 + x1y1]

= 1
2 [(x1y2− x2y1)+(x2y3− x3y2)+(x3y1− x1y3)]. "#

Theorem 22.4. Consider a good triangulation {Ti} of a polygon P = P1P2 . . .Pn. The
area of P depends only upon the vertices Pi, and not upon the individual triangles
Ti in the triangulation.

Proof. According to the previous lemma, if the vertices of Ti are labelled in a coun-
terclockwise manner as (x1,y1), (x2,y2), and (x3,y3), then

A(Ti) =
1
2

(∣∣∣∣
x1 x2
y1 y2

∣∣∣∣+
∣∣∣∣
x2 x3
y2 y3

∣∣∣∣+
∣∣∣∣
x3 x1
y3 y1

∣∣∣∣

)
.

Here it is important to be quite careful about order in which points are listed. In
triangle T =*PaPbPc, all three points Pa, Pb and Pc are equidistant from the circum-
center. Therefore, there are counterclockwise rotations about the circumcenter of
the triangle mapping Pa to Pb and and Pa to Pc. If the angle of rotation mapping Pa to
Pb is less than that mapping Pa to Pc, then we say that the listing PaPb is in counter-
clockwise order with respect to T . Note that this means that PbPc and PcPa are also
listings in counterclockwise order. Let {Pk} be the set of all vertices of all of the tri-
angles Ti in the triangulation. Define a set E to be the subset of all pairs {(a,b)} for
which PaPb is an edge of a triangle Ti and PaPb is listed in counterclockwise order
with respect to Ti.

Each of the determinant terms in this expression corresponds to an edge of Ti. In
P, we need to distinguish between two types of edges: those that are along an edge
of P itself, and those that are in the interior of P. All of the edges of Ti which lie
along an edge of P serve as the edge of only one triangle in the triangulation. Let Eδ
be the set of pairs corresponding to edges of an edge of P. All the edges of Ti which
lie in the interior of P are edges for two triangles in the triangulation. Let Eint be set
of pairs corresponding to edges in the interior of P. If PaPb is an interior edge shared
by triangles Ti and Tj, then for one of the triangles PaPb is the counterclockwise
listing, and for the other, PbPa is the counterclockwise listing. The area of P can be
calculated by summing up the determinants corresponding to each of the edges.
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Vertices of the triangulation which are not vertices of 
the polygon also make no contribution to the calcula-
tion of the area.

x1, y1

x2, y2

x3, y3
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A(P) =
1
2 ∑

(i, j)∈E

∣∣∣∣
xi x j
yi y j

∣∣∣∣

=
1
2

(

∑
(i, j)∈Eδ

∣∣∣∣
xi x j
yi y j

∣∣∣∣+ ∑
(i, j)∈Eint

∣∣∣∣
xi x j
yi y j

∣∣∣∣

)

=
1
2

(

∑
(i, j)∈Eδ

∣∣∣∣
xi x j
yi y j

∣∣∣∣+ ∑
(i, j)∈Eint , i< j

(∣∣∣∣
xi x j
yi y j

∣∣∣∣+
∣∣∣∣
x j xi
y j yi

∣∣∣∣

))

The pairs of determinants in the second sum differ by a swap of columns. Thus
∣∣∣∣
xi x j
yi y j

∣∣∣∣=−
∣∣∣∣
x j xi
y j yi

∣∣∣∣

and all of the terms in the second sum cancel each other out. Thus

A(P) =
1
2 ∑

(i, j)∈Eδ

∣∣∣∣
xi x j
yi y j

∣∣∣∣

In other words, the area of P is entirely determined by edges of the triangulation
which are on the edges of P itself.

The last step in the proof is to show that the area does not actually depend upon
the edges in the triangulation, but only upon the edges of P itself. The key is that,
just as above, the triangulation vertices along the edge of P essentially cancel out
unless they are vertices of P itself. We take a special case (which can be fairly
easily extended to the general case): suppose that e is the edge of P between vertices
(x1,y1) and (x3,y3), and that there is one more vertex of the triangulation (x2,y2) on
e. The component of the area contributed by these edges is:

A(e) =
∣∣∣∣
x1 x2
y1 y2

∣∣∣∣+
∣∣∣∣
x2 x3
y2 y3

∣∣∣∣= x1y2− x2y1 + x2y3− y2x3

Now since the three points are collinear, the slopes of the segments are equal (if
the segments are vertical the slope is undefined, but even then the relationship holds
after cross multiplying).

y2− y1

x2− x1
=

y3− y2

x3− x2

(y2− y1)(x3− x2) = (y3− y2)(x2− x1)
y2x3− x2y2− x3y1 + x2y1 = x2y3− x1y3− x2y2 + x1y2

(x1y2− x2y1)+(x2y3− y2x3) = x1y3− x3y1

Therefore
A(e) = x1y3− x3y1 =

∣∣∣∣
x1 x3
y1 y3

∣∣∣∣

22. Area392



22 Area 9

In this way, we can see that the area of P does not depend upon the how the triangu-
lation partitions the edges of P either. The area depends only upon the coordinates of
the vertices of P. That is, the area of P is independent of the choice of triangulation.
"#

We will finish this chapter by looking at the areas of a few more complicated
shapes.

Theorem 22.5. Let Pn be a regular n-gon inscribed in a circle with radius r. Then
its area is

A(P) =
nr2

2
· sin(2π/n)

Proof. Polygon Pn can be divided into 2n congruent right triangles with one vertex
at the center O of the circumscribing circle. Let *OPQ be one such triangle, with
P one of the vertices of Pn and Q the midpoints of one its sides. In this triangle
(∠O) = π/n and so the two legs of the triangle have lengths

b = r cos(π/n) & h = r sin(π/n).

The area of*OPQ is then

A(*OPQ) =
1
2

r sin(π/n) · r cos(π/n)

With the double angle formula for sine, this can be rewritten as:

A(*OPQ) =
1
4

r2 sin(2π/n)

To get the area of the Pn, simply add up the areas of all of these triangles

A(Pn) =
nr2

2
sin(2π/n). "#

Finally, the area of a circle. We are not in a position to properly deal with areas
of non-polygonal shapes. But the circle is such a central shape in geometry, that its
area should be calculated.

Theorem 22.6. The area of a circle of radius r is πr2.

Proof. To calculate this area, we take the limit of the area of inscribed regular n-
gons as n approaches infinity:

A = lim
n→∞

nr2

2
· sin(2π/n)

Letting, m = n/2, the expression can be rewritten as

A = lim
m→∞

mr2 sin(π/m)
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Recall that in the calculation of the circumference of a circle, π was defined to to be
the limit

π = lim
m→∞

msin(π/m)

Substituting this into the equation for A gives the desired result

A = πr2. "#.

Exercises

22.1. Find the area of a regular octagon in terms of the radius r of its circumscribing
circle.

22.2. Find the area of a regular octagon in terms of the length x of one of its sides.

22.3. Generalizing the previous problem, find the area of a regular n-gon in terms
of the length of one of its sides.

22.4. Consider the arbelos formed by removing half-circles of radius r1 and r2 from
a half-circle of radius r. What is the area of this arbelos (in terms of r1, r2 and r)?

22.5. Let C be a circle with center O and radius r. Let ∠AOB be an angle with an
angle measure of θ . The sector of C bounded by ∠AOB is the portion of the circle
which is bounded by the two segments OA and OB and the arc #AB. Show that the
area of this arc is

A(#AOB) =
1
2

r2θ

where θ is measured in radians.

22.6. Consider the triangle*ABC where the coordinates of the three vertices are

A = (0,0) B = (3,1) C = (4,2).

Compute the area of this triangle using the formula A = bh/2.

22.7. Let *ABC be as defined in the previous problem. Compute the area of this
triangle using Heron’s formula.

22.8. Let ABCD be a parallelogram. Let b be the length of the base AB of this par-
allelogram. Let h be the altitude of the parallelogram, the perpendicular distance
between AB and CD. Show that the area of the parallelogram is

A(ABCD) = bh.

22.9. Let ABCD be a trapezoid where AB and CD are the opposite parallel sides. Let
b1 = |AB| and b2 = |CD|, and let h be the altitude, the vertical distance between AB
and CD. Show that the area of the trapezoid is

A(ABCD) =
1
2
(b1 +b2)h.
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22.10. Let *ABC be as defined in the previous two problems. Compute the area of
this triangle using the coordinate formula for area.

22.11. Roger Penrose has constructed an aperiodic tiling of the Euclidean plane
with two types of rhombuses with sides of unit length, R1 and R2. In R1, one of the
interior angles measures π/5. In R2, one of the interior angles measures 2π/5. Find
the areas of both R1 and R2.

22.12. Let ABCDE be a regular pentagon with a side length of one. Consider the
five pointed star ACEBD. What is the area of the region bounded by this star?

22.13. We introduced the Koch curve as an example of a curve which is not rec-
tifiable in chapter 4. The Koch snowflake is formed by starting with an equilateral
triangle (with a side length of, say, one) and then performing the Koch curve algo-
rithm on each of the sides. Compute the area of the Koch snowflake.

22.14. Let P be a point in the interior of *ABC. Let [x : y : z] be the barycentric
coordinates for this point, normalized so that x+ y+ z = 1. Show that

x = A(*PBC)
y = A(*PAC)
z = A(*PAB).
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Chapter 23
Hyperbolic Area

Area in hyperbolic geometry is very different animal. Unlike Euclidean area, hy-
perbolic area cannot originate from rectangles, because there are no rectangles in
hyperbolic geometry. It would be reasonable to hope that the A = 1

2 bh formula for
triangle area could form the building block for hyperbolic area, but that is not the
case, as this next calculation shows.

Example 23.1. Let *ABC be the right triangle with vertices at the following points
in the complex plane: A = 0, B = 1/2, C = 1/2i. One way to evaluate the expression
1
2 bh would be with b = |AB| and h = |AC|, so that

b = h = ln

(
1+ 1

2
1− 1

2

)
= ln3.

Then
1
2

bh =
1
2
(ln3)2 ≈ 0.60347.

Alternatively, the base of the triangle could be the segment BC. Calculation of
1
2 bh in this case is a little more difficult. To calculate b, use the Möbius transforma-
tion which maps 1/2 to the origin:

φ(z) =
z− (1/2)

1− (1/2)z

Plugging i/2 into this equation and then multiplying by the complex conjugate to
simplify gives

φ(i/2) =
i/2−1/2
1− i/4

=
−10+6i

17

and so
|φ(i/2)| =

√
136/17.

Therefore

1397



Two different bases and heights of the same triangle. 
The resulting values of bh/2 are not the same.

1.0986

1.
09

86

0.6412

1.6807
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b = d(B,C) = ln

(
1+

√
136/17

1−
√

137/17

)
.

The corresponding height of the triangle is measured from the origin to the mid-
point of the segment BC. This midpoint is the intersection of the line y = x and the
orthogonal circle through (1/2,0) and (0,1/2). We have worked out the equation
for this orthogonal circle

x2− 5
2

x+ y2− 5
2

y =−1

To find the coordinates of this intersection, set y = x to get

2x2−5x+1 = 0,

and by the quadratic equation,

x =
5±

√
17

4
.

Therefore the intersection which lies inside the unit circle is at the complex point

z =
5−

√
17

4
+

5−
√

17
4

i.

The hyperbolic distance from this point to the origin is

h = ln
(

1+ |z|
1− |z|

)
= ln

(
1+(5−

√
17)/2

√
2

1− (5−
√

17)/2
√

2

)

Therefore

1
2

bh =
1
2

ln

(
1+

√
136/17

1−
√

137/17

)
ln

(
1+(5−

√
17)/2

√
2

1− (5−
√

17)/2
√

2

)

≈ 0.53879.

Two different choices of b lead to two different results when calculating bh/2. Thus,
this formula cannot form the basis for a well defined area function in hyperbolic
geometry.

Since the formula A = bh/2 does not work for the area of hyperbolic trian-
gles, the question becomes– what does? The answer is surprisingly different from
the Euclidean manifestation of area. Recall that in hyperbolic geometry, the angle
sum s(*ABC) of a triangle *ABC is always strictly less than π . The angle defect
d(*ABC) of a triangle is the amount that this angle sum deviates from π . That is,

d(*ABC) = π− s(*ABC) = π− (∠A)− (∠B)− (∠C)
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An inductive proof of Euler�’s formula. There are two 
possible ways to remove a face from a polygon.

An example of Euler�’s formula: v=16, e=40, and f=25, 
so v-e+f=1.
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We define the hyperbolic area of a triangle to be its defect. Building from that, the
area of any hyperbolic polygon is defined by dividing that polygon into triangles,
calculating the defect of each triangle, and adding these up. Unlike the Euclidean
case, in which the area of a triangle seemed at first to depend upon a choice of base,
this formula is more obviously symmetric, and requires no such choices to be made.
Furthermore, in this construction, the area of a polygon as determined by a triangu-
lation is clearly a positive real number. The only major hurdle to verifying that this
truly is an area function is to show that the area of a polygon, when calculated in
this way, does not depend upon the choice of triangulation of the polygon.

To do this, we must take a short detour, to look at a special case of the famous
topological formula known as Euler’s formula. For this, it is helpful to remember
that a good triangulation is one in which the vertices and sides of adjacent triangles
match up.

Theorem 23.1. Euler’s Formula for Planar Polygons. Let P be a polygon with a
good triangulation. Let v be the number of vertices in the triangulation; let e be the
number of edges in the triangulation; and let f be the number of triangles (faces) in
the triangulation. Then

v− e+ f = 1.

Proof. We will use a proof by induction on the number of faces in the triangulation.
The base case is a triangulation τ (of a triangle) into a single triangle T . Then f = 1
and v = e = 3, so

v− e+ f = 1.

Now assume that the result has been established for all triangulations of polygons
into f −1 triangles, and suppose that τ is a triangulation of a polygon P into f faces,
with v vertices and e edges. Let T be one of the triangles in this triangulation which
has one edge e which lies along an edge of P. If e is the only edge T shares with P,
then removing e and T results in a polygon P′ with f − 1 faces, e− 1 edges and v
vertices. By the inductive hypothesis,

v− (e−1)+( f −1) = 1,

and so v− e + f = 1 as desired. If, on the other hand, T and P share a second edge
e′ in addition to e, then it is necessary to remove both e and e′, the face T , as well as
the vertex between e and e′ to get a polygon P′. This polygon has f −1 faces, e−2
edges and v−1 vertices. Again, by the inductive hypothesis,

(v−1)− (e−2)+( f −1) = 1,

and v− e+ f = 1. If P is not itself a triangle, then P and T cannot share more than
two sides. Therefore, all cases have been considered, and the induction is complete.

"#
Theorem 23.2. The area of an n-gon P = P1P2 . . .Pn is

A(P) = (n−2)π−∑
i
(∠Pi).
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Hyperbolic area of a polygon is computed by triangu-
lating the polygon, and summing the defects of all the 
triangles.

An isosceles right triangle. The measures of the two 
acute triangles are approximately 0.36717. The defect 
of this triangle (and hence its area) is approximately 
0.8776.
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Proof. Let {Ti} be a good triangulation of an n-gon P into k triangles (faces). Each
of these faces has three edges, but interior edges are shared by two faces. Therefore

e = n+
3k−n

2
=

n
2

+
3k
2

Now, by Euler’s formula the number of vertices in the triangulation is

v = 1+ e− f = 1+
n
2

+
k
2

Exactly n of these vertices are on P itself, so the rest must be in the interior. That
means that there are then 1− n

2 + k
2 interior vertices. The angles around these inte-

rior angles all add up to 2π . The angles around the vertex Pi all add up to (∠Pi).
Therefore the sum of the angle defects is of all the triangles {Ti} is

A = kπ−2π
(

1− n
2

+
k
2

)
−∑

i
(∠Pi)

= kπ−2π +nπ− kπ−∑
i
(∠Pi)

= (n−2)π +∑
i
(∠Pi). "#

Note that this depends upon the angles of the polygon, but not of the triangula-
tion. Therefore the area of a polygon is independent of the triangulation chosen.

Theorem 23.3. The area of circle with radius r in hyperbolic geometry is

A = 2π(coshr−1).

Proof. Once again, the strategy is to approximate the area of the circle by the area An
of an inscribed regular n-gon. The area of the circle is calculated by computing the
limit A = limn→∞ An. To find the area of the approximating n-gon, we must subdivide
it into triangles. This can be done by adding two sets of subdividing segments:
segments connecting the center of the circle to each of the the vertices and segments
connecting the center of the circle to each of the midpoints of the sides. This divides
the n-gon into 2n triangles. By S · S · S, they are all congruent to one another, and
therefore, they are all right triangles. Let P be one of the vertices of the n-gon and
M the midpoint of an adjacent side, so that *OMP is one of the right triangles in
question. Now let

a = |OM| b = |MP| α = (∠P).

Since (∠O) = 2π/(2n) = π/n, and (∠M) = π/2, the area of*OMP, as calculated
by its defect is
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O M

P Approximating a circle with a square, 
octagon, 16-gon and 32-gon. Add up the 
areas of 2n congruent triangles to 
compute the  area of the regular n-gon. 

23. Hyperbolic Area404



23 Hyperbolic Area 5

A(*OMP) = π− π
n
− π

2
−α

=
π(n−2)

2n
−α

Since the n-gon is composed of 2n congruent copies of this triangle,

An = 2n ·A(*OMP) = (n−2)π−2nα.

Now let’s take this equation and solve for α

α =
(n−2)π−An

2n
=

π
2
−
(

π
n

+
An

2n

)
.

We would like to relate this angle back to the sides of the triangle (the radius in
particular) and this is done with trigonometry. Using the cofunction identity relating
cosine and sine,

cos(α) = cos
(

π
2
−
(

π
n

+
An

2n

))

= sin
(

π
n

+
An

2n

)
.

We have a formula for cosine in a hyperbolic right triangle

cosα =
tanhb
tanhr

=
sinhb
coshb

· coshr
sinhr

and since sinhb = sinhr · sin(π/n) (the sine formula) and coshb = coshr/cosha
(the Pythagorean theorem)

cosα =
sinhr · sin(π/n)
coshr/cosha

· coshr
sinhr

= sin(π/n) · cosha.

Combining these two rewritings of cosα ,

sin
(

π
n

+
An

2n

)
= sin(π/n) · cosha.

In this expression, as n approaches infinity, An→A and a→ r. Since limn→∞ nsin(x/n)=
x, then, as n approaches infinity,

nsin
(

π +An/2
n

)
→ π +

A
2

and
nsin(π/n)→ π,
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A comparison of the growth of the area of a Euclidean 
and hyperbolic circle as a function of its radius.
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Taking the limit then gives

π +
A
2

= π coshr.

Solving for A yields the desired formula

A = 2π(coshr−1). "#

Another frequently used formulation for the area of a hyperbolic circle is just a
short calculation away.

A = 2π(coshr−1)

= 2π ·
(

er + e−r

2
−1
)

= π · (er−2+ e−r)

= π(er/2− e−r/2)2

= π(2sinh(r/2))2

= 4π sinh2(r/2).

Additionally, note that while this formula looks very different from its Euclidean
counterpart, the two are not that far apart for small circles. The series expansion of
the hyperbolic cosine function is

coshr =
∞

∑
n=0

1
(2n)!

x2n

and so for small values of r,

coshr ≈ 1+
1
2

r2,

in which case
A≈ 2π

(
1+

1
2

r2−1
)

= πr2.

This is where we stop. Of course it is only the beginning. There is a rich tradi-
tion in both Euclidean geometry and hyperbolic geometry whose surface we only
scratched. These subjects have been intertwined with the development of mathemat-
ics from its very start. The book has been devoted to plane geometry, but a whole
new set of questions open up when we consider higher dimensions. Geometry on
curved surfaces and higher dimensional objects is quite heavily studied today. Much
of this study hinges upon the internal symmetries of these objects, in the way that
we used isometries to better understand Euclidean and hyperbolic geometry. All of
this requires a deeper understanding of many fundamental concepts that we have
not touched upon in this book– manifolds, group theory, Riemannian metrics and
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beyond. I hope that this text has pointed you in the direction for even greater dis-
coveries.

Exercises

23.1. What is the area of a hyperbolic triangle with angles measuring π/3, π/6, and
π/9?

23.2. What is the hyperbolic area of a Saccheri quadrilateral with a summit angle of
π/3?

23.3. What is the hyperbolic area of a Lambert quadrilateral which has a non-right
angle measuring 70◦.

23.4. Let *ABC be a hyperbolic triangle whose coordinates in the Poincare disk
model are (0,0) (a,0) and (0,a), where 0 < a < 1. What is the area of*ABC?

23.5. Prove that two Saccheri quadrilaterals with congruent summits and equal an-
gle defects are congruent.

23.6. Prove that a triangle is has the same area as its associated Saccheri quadrilat-
eral.

23.7. Find the area of the hyperbolic triangle with angles π/3, π/4 and π/5.

23.8. Find the area of the hyperbolic triangle with vertices located at the points
0+0i, 0+0.3i and 0.3+0i.

23.9. Find the area of a regular octagon whose interior angles measure π/2.

23.10. Find the area of a regular octagon which is inscribed in a circle of radius 1.

23.11. Find the area of a regular octagon whose sides all have a length of one.

23.12. What is the (least) upper bound for the area of a regular n-gon (as a function
of n)?
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Appendix A
The Construction of the Real Numbers

As mathematicians, we tend to take for granted the real numbers, and seldom pause
to think about what they are. This was not always the case. The ancient Greek ge-
ometers were greatly troubled by the existence of irrational numbers. A systematic
description of the real number system took a long to develop, and was only finally
resolved with the work of Peano and Dedekind in the nineteenth century. This ap-
pendix briefly discusses that process– it is required to understand how the geometric
line relates to the real number line– but only at the most superficial level. For a more
detailed explanation, the reader is referred to [??].

There are several steps before we get to the entire set of real numbers. The first
step is the construction of the natural numbers N (including zero). Peano is credited
with an axiomatic description of N which works as follows. There is an element in
N called 0, an equivalence relation =, and there is a successor function s : N→ N
(which essentially tells us what comes next). This successor function is injective,
and 0 is not in its image. Any set which contains 0 and all successors contains the
natural numbers. Note that the successor function prescribes an order of the natural
numbers– we can m < n if some number of iterations of s when applied to m results
in n.

There are several constructions of natural numbers conforming to these require-
ments. Perhaps the most popular is due to von Neumann and works as follows.
Define 0 to be the empty set /0. Then, for any natural number n, define the successor
function s(n) = n∪ {n} (where here {n} denotes the set of all the elements of n).
With s defined this way, the first few natural numbers are defined as

0 := /0
1 := /0∪{ /0}
2 := /0∪{ /0}∪{ /0∪{ /0}}
3 := /0∪{ /0}∪{ /0∪{ /0}}∪{ /0∪{ /0}∪{ /0∪{ /0}}}

and so on. This construction is wonderfully elegant in that the natural numbers are
being constructed from the empty set, or, in a more spiritual tone, from nothingness.
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2 A The Construction of the Real Numbers

There is more to N than counting though– there are arithmetic operations as well.
Addition in N can be defined in relation to the successor function s. First define an
addition of 0: n+0 = n. Now think about how we would want to define an addition
of 1: the result n+1 should be the successor of n. Since 1 is the successor of 0, this
can be written as

n+ s(0) = s(n+0).

For an addition of 2, n+2 should be the successor of n+1, and since 2 = s(1), this
can be written as

n+ s(1) = s(n+1).

Generally speaking, once addition by zero has been defined, all subsequent cases
are defined recursively as

n+ s(m) = s(n+m).

Once addition has been defined, multiplication is a short step away, with

n ·m = n+n+ · · ·+n (m times).

With these definitions, all of the standard properties regarding the addition and mul-
tiplication of numbers in N can be derived.

The integers Z are an extension of N to also include negatives. No two nonzero
numbers in N add together to give 0. Given any nonzero natural number n, we define
its negative −n to be a number with the property n+(−n) = 0. Now we can define
the subtraction a− b, the inverse of the addition operation, as the addition of the
negative a+(−b). Each negative number is less than zero (and hence less than any
positive number), and if −m and −n are both negative numbers, then

−m <−n ⇐⇒ m > n.

From these definitions, several more of the traditional properties of arithmetic fol-
low. For readers familiar with abstract algebra, this makes Z a ring. Every element
has an additive inverse and there is an inverse operation subtraction. Still missing,
though, are multiplicative inverses and an inverse operation to multiplication. To get
these, we must again extend our set of numbers.

The rational numbers Q are defined as the set of ordered pairs (m,n)∈Z×Z\{0}
modulo the equivalence relation

(m,n)∼ (m′,n′) ⇐⇒ m ·n′ = m ·n′.

Of course, a rational number is not usually written in the form (m,n), but rather as
m/n. The ordering of the integers can be extended to an ordering of the rationals:
if two rational numbers m/n and m′/n′ are written so that their denominators are
positive, then

m
n

<
m′

n′
⇐⇒ m ·n′ < m′ ·n.
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A The Construction of the Real Numbers 3

The formulas for addition and multiplication of rational numbers are, as you already
know

m
n

+
m′

n′
=

mn′+m′n
nn′

m
n
· m′

n′
=

mm′

nn′
.

This brings us to the last step, moving from the rationals Q to the reals R. For
our purposes (relating R to a geometric line), this is the really important part. This
extension uses the idea, due to Richard Dedekind, of a Dedekind cut. We have es-
tablished an ordering < on Q. Let A and B be two subsets of Q such that

(1) A∪B = Q
(2) A∩B = /0
(3) every element of A is less than every element of B
(4) A does not contain a greatest element

Such a partition, written (A,B), is called a cut. The real numbers are defined to be the
set of all such cuts. Each rational number q corresponds to a cut where A = (−∞,q)
and B = [q,∞). Note that in these cases, B contains its least element. If B does
not contain its least element, then (A,B) does not correspond to a rational number.
Instead, it represents an irrational number. If we write x for that irrational number,
then A = (−∞,x) and B = (x,∞). These cuts fill in the gaps between the rational
numbers. It is clear that the Dedekind Axiom of neutral geometry is designed to
imitate this construction, and therefore to make the geometric line like R.
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Two right triangles with a shared acute angle. 
The triangles are similar, so the ratios of the 
sides are the same.

Adjacent (a)

The naming of the sides of a right triangle in 
relation to one of its acute angles.

Hypotenuse (h) O
pposite (o)

CC

B
B

A A



Appendix B
Trigonometry

Trigonometry is the study of the relationships between the sides and angles of a right
triangle. This appendix is meant to be a brief review of the subject for students who
are already familiar with the subject. It is not meant to be a thorough development
of the subject. In trigonometry a naming convention is used to relate the sides of a
right triangle to a chosen (non-right) angle in that triangle. It works as follows. Let
*ABC be a right triangle whose right angle is located at vertex C. In relation to ∠A,
the side AC is called the adjacent side, the side BC is called the opposite side, and
the side AB is called the hypotenuse. In relation to ∠B, the roles of adjacent and
opposite sides are reversed.

Definition B.1. Trigonometric functions. Let *ABC be a right triangle whose
right angle is located at the vertex C. For ∠A, let a denote the length of the adjacent
side, o the length of the opposite side, and h the length of the hypotenuse. The six
trigonometric values of ∠A are defined as the ratios

Name Abbreviation Definition
sine sin(A) o/h
cosine cos(A) a/h
tangent tan(A) o/a
cosecant csc(A) h/o
secant sec(A) h/a
cotangent cot(A) a/o

It should be noted that these definitions describe these values as functions of the
angle ∠A, not the triangle*ABC. This raises a question about whether these values
are actually well-defined for the angle itself. After all, it is possible to build many
different right triangles with an angle congruent to ∠A. Fortunately,

Lemma B.1. The six trigonometric values are functions of the measure of an angle.
They do not depend upon which right triangle contains that angle.

Proof. The key here is that if two right triangles have a pair of congruent angles
(other than the right angles) then they must be similar. Suppose that *ABC and
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Triangles for determining special values of the trigonometric functions.
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6 B Trigonometry

*A′B′C′ right triangles with right angles at C and C′ respectively and suppose fur-
ther that ∠A- ∠A′. Since the angle sum of the triangles is 180◦,

(∠B) = 180◦ − (∠A)− (∠C) = 180◦ − (∠A′)− (∠C′) = (∠B′).

By the A ·A ·A triangle similarity theorem, *ABC ∼*A′B′C′. The ratios of corre-
sponding sides in two similar triangles must be the same. Therefore, the six trigono-
metric values for ∠A will be the same as the six trigonometric values for ∠A′. "#

A few special values of these functions are easy to derive with a little basic ge-
ometry. Consider a right triangle whose legs have a length of one. By the Isosceles
Triangle Theorem, the angles opposite these sides are congruent, so they must mea-
sure 45◦. By the Pythagorean Theorem, the hypotenuse has a length of

√
2. Reading

off the ratios,

sin(45◦) =
√

2/2 csc(45◦) =
√

2

cos(45◦) =
√

2/2 sec(45◦) =
√

2
tan(45◦) = 1 cot(45◦) = 1

Consider an equilateral triangle whose sides have a length of two. Any altitude of
this triangle divides it into two 30◦ −60◦ −90◦ right triangles with sides measuring
1,
√

3 and 2 (again the Pythagorean theorem determines the third side). So,

sin(30◦) = cos(60◦) = 1/2 csc(30◦) = sec(60◦) = 2

cos(30◦) = sin(60◦) =
√

3/2 sec(30◦) = csc(60◦) = 2
√

3/3

tan(30◦) = cot(60◦) =
√

3/3 cot(30◦) = tan(60◦) =
√

3.

The problem with this triangle-based definition of the trigonometric functions
is that, because it depends upon the measure of an angle in a right triangle, the
trigonometric functions are only defined for values between 0 and 90◦. Fortunately,
these functions can be extended to the rest of the real numbers (or at least almost all
of them) by using the idea of the unit circle, a circle with radius one centered at the
origin. Here is how it works. Suppose we want to find the trigonometric values of
an angle θ measuring between 0 and 90◦. This was a calculation we did before with
triangles, and we can now use those definitions by properly placing a right triangle
into the unit circle. There is a unique right triangle lying in the first quadrant with a
vertex at the origin and one leg along the positive x-axis such that: (a) the angle at the
origin measures θ , and (b) the other acute vertex is on the unit circle. If we let (x,y)
be the coordinates of the vertex on the unit circle, the length of the adjacent side is x,
the length of the opposite side is y, and the length of the hypotenuse is 1. Therefore
we may write the six trigonometric values for θ in terms of the coordinates of the
point on the unit circle:

sin(θ) = y cos(θ) = x tan(θ) = y/x
csc(θ) = 1/y sec(θ) = 1/x cot(θ) = x/y
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B Trigonometry 7

The advantage of this approach is that these values are not restricted to the first
quadrant. Hence we may define the trigonometric values for angles larger than 90◦,
or 180◦, or even (by wrapping around the circle completely) of angles larger than
360◦. Negative values can also be defined by turning in the clockwise, rather than the
counter-clockwise direction. As a result, we can extend the domains of the trigono-
metric functions to include all real numbers (as long as the denominator in the ratio
is not zero). It should be noted that when working with triangles, angles are quite
often measured in degrees. When working with the unit circle, or the graphs of these
functions, radian measure is much more common. The few special values for trian-
gles extend a little further on the unit circle by considering symmetry as illustrated–
it is a common chore for precalculus students to memorize these values.

To work with these functions, it is important to have some understanding of
their properties and their complex inter-relationships. First, we list properties which
would most likely be associated with the function’s graph. The domain of any
trigonometric function is all real numbers as long as the denominator in the ratio is
nonzero. The range of sine and cosine is limited to [−1,1] because the hypotenuse
will always be longer than the legs. Inverting values in this interval gives the range
of cosecant and secant:(−∞,−1]∪ [1,∞). The range of both tangent and cotangent
is R. Another key property of all trigonometric functions is that they are periodic.
In the unit circle interpretation, once the angle has traced its way all the way around
the circle, it comes back to the start and all of the trigonometric values begin to
repeat. The sine, cosine, secant, and cosecant have periods of 2π . The tangent and
cotangent functions have periods of π , though, because of canceling signs in the
numerator and denominator. Finally, looking again at the unit circle and comparing
clockwise and counterclockwise turns, we can see that cosine and secant are even
functions while the other four trigonometric functions are odd. To recap,

Name Domain Range Periodicity Symmetry
sine R [−1,1] 2π odd
cosine R [−1,1] 2π even
tangent R\{π/2+nπ} (−∞,∞) π odd
cosecant R\{nπ} (−∞,−1]∪ [1,∞) 2π odd
secant R\{π/2+nπ} (−∞,−1]∪ [1,∞) 2π even
cotangent R\{nπ} (−∞,∞) π odd

The most elementary relationships between these functions comes directly from
their definition using the unit circle.

Theorem B.1. The Reciprocal Identities.

cscθ = 1/sinθ secθ = 1/cosθ cotθ = 1/ tanθ
cotθ = cosθ/sinθ tanθ = sinθ/cosθ

Pairs of trigonometric functions are also related by horizontal shifting and reflec-
tion as indicated by the cofunction identities.
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Proving the cofunction relationship for sine and cosine. 
The result is easy for angles of a right triangle. Beyond 
that, we use the symmetry of the unit circle.

2 2
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8 B Trigonometry

Theorem B.2. The Cofunction Identities.

sin(π/2−θ) = cos(θ) cos(π/2−θ) = sin(θ)
csc(π/2−θ) = sec(θ) sec(π/2−θ) = csc(θ)
tan(π/2−θ) = cot(θ) cot(π/2−θ) = tan(θ)

Proof. There are three pairs of identities here, but the first of these is the critical
one– once it has been established the other two are easy to derive using the recipro-
cal identities. In this proof we will look at only the first of these identites. Looking
back to the triangle definition of the trigonometric functions, if one of the acute an-
gles measures θ , then the other must measure π/2−θ . The adjacent side of θ is the
opposite side of π/2−θ and the opposite side of θ is the adjacent side of π/2−θ .

If the angle θ is between π/2 and π , we can relate to previous case by using
symmetry and working with the angle π−θ (which is between 0 and π/2)

cosθ =−cos(π−θ)
=−sin(π/2− (π−θ))
=−sin(−π/2+θ)
= sin(π/2−θ).

If the angle θ is between −π and 0, we relate to the angle θ +π , which is in the
interval for which we have already established the identity

cosθ =−cos(θ +π)
=−sin(π/2− (θ +π))
=−sin(−π/2−θ)
= sin(π/2+θ)
= sin(π/2−θ)

(note that the last step in this calculation is easy to see by looking at the symmetry
in the unit circle). If the angle θ is any other value (that is, less than −π or greater
than π), then there is some integer n such that θ +2nπ is in the interval [−π,π], and
in this case

cosθ = cos(θ +2nπ)
= sin(π/2− (θ +2nπ))
= sin(π/2−θ −2nπ)
= sin(π/2−θ).

This completes this part of the argument. The proof with the roles of sine and cosine
switched is similar. "#
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The setup for the derivation of the Addition Formula 
for Cosine. The key is that the distance from P1 to P2 is 
the same as the distance from Q1 to Q2 . 
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Q1

P1
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B Trigonometry 9

The most fundamental identities in trigonometry are three identities called the
Pythagorean Identities. They are absolutely critical when working with these func-
tions.

Theorem B.3. The Pythagorean Identities.

sin2 θ + cos2 θ = 1

1+ tan2 θ = sec2 θ
cot2 θ +1 = csc2 θ

Proof. The values of sinθ and cosθ correspond to the y and x values of a point
on the unit circle x2 + y2 = 1. Plugging into this equation gives the first identity.
For the second, divide the first identity through by cos2 θ on both sides and use the
reciprocal identities. For the third, divide through by sin2 θ instead. "#

Beyond these identities, which are pretty immediate consequences of the defini-
tions of these functions, at least one more set of identities is needed, the addition
and subtraction formulas for sine and cosine.

Theorem B.4. The Addition and Subtraction Formulas.

sin(α +β ) = sinα cosβ + cosα sinβ
cos(α +β ) = cosα cosβ − sinα sinβ
sin(α−β ) = sinα cosβ − cosα sinβ
cos(α−β ) = cosα cosβ + sinα sinβ

Proof. Of these, we will prove the addition formula for cosine only. The addition
formula for sine can be derived from the formula for cosine by using the cofunction
identities to write sine in terms of cosine. The two subtraction formulas are then easy
to derive using the fact that sine is an odd function and cosine is an even function.

Let O denote the origin, and label four points on the unit circle

P1 = (1,0)
P2 = (cos(α +β ),sin(α +β ))
Q1 = (cosα,sinα)
Q2 = (cos(−β ),sin(−β ))

Observe that triangles *P1OP2 and *Q1OQ2 both have two sides which are radii
of the unit circle, and their angles at O both measure α + β . Therefore, by the
S ·A ·S triangle congruence theorem, these two triangles are congruent. In particular,
this means that P1P2 - Q1Q2. Using the distance formula, we can work out the
lengths of both of those segments in terms of α and β . Simplify those expressions
using a little algebra and the facts that sin(−x) = −sin(x), cos(−x) = cos(x) and
sin2 x+ cos2 x = 1:
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10 B Trigonometry

|P1P2| =
[
(cos(α +β )−1)2 + sin2(α +β )

]1/2

=
[
cos2(α +β )−2cos(α +β )+1+ sin2(α +β )

]1/2

= [2−2cos(α +β )]1/2

|Q1Q2| =
[
(cosα− cos(−β ))2 +(sinα− sin(−β ))2]1/2

=
[
(cosα− cosβ )2 +(sinα + sinβ )2]1/2

=
[
cos2 α−2cosα cosβ + cos2 β + sin2 α +2sinα sinβ + sin2 β

]1/2

= [2−2cosα cosβ +2sinα sinβ ]1/2

Now set these equal and square both sides to get an equation which easily reduces
to the addition formula for cosine

2−2cos(α +β ) = 2−2cosα cosβ +2sinα sinβ
cos(α +β ) = cosα cosβ − sinα sinβ . "#

Corollary B.1. The Double Angle Formulas.

sin(2θ) = 2sinθ cosθ
cos(2θ) = cos2 θ − sin2 θ

Proof. Plug in θ for both α and β in the addition formulas for sine and cosine.

sin(2θ) = sin(θ +θ)
= sinθ cosθ + cosθ sinθ
= 2sinθ cosθ

cos(2θ) = cos(θ +θ)
= cosθ cosθ − sinθ sinθ
= cos2 θ − sin2 θ . "#

There are a couple of variations two the second formula. Replacing the term
cos2 θ with 1− sin2 θ gives

cos(2θ) = 1−2sin2 θ

while replacing the term sin2 θ with 1− cos2 θ gives

cos(2θ) = 2cos2 θ −1.

Corollary B.2. The Half Angle Formulas.

cos2(θ/2) = (1+ cosθ)/2

sin2(θ/2) = (1− cosθ)/2

Appendix424



The proof of the Law of Sines�– the case for 
acute triangles.

The case for obtuse triangles.
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B Trigonometry 11

Proof. Solving for sin2 θ and cos2 θ in the double angle formulas above gives

sin2 θ =
cos(2θ)−1

2
cos2 θ =

cos(2θ)+1
2

.

Plugging in θ/2 in place of θ then gives the two half angle formulas. "#

While trigonometry is the study of the relationship between the sides and angles
of a right triangle, not all triangles are right. The final two results in this appendix
describe two applications of trigonometry to the study of non-right triangles.

Theorem B.5. The Law of Sines. In*ABC, let a = |BC|, b = |AC|, and c = |AB|.
Then

sinA
a

=
sinB

b
=

sinC
c

.

Proof. There are two cases, depending upon whether or not the triangle in question
is acute or obtuse (if the triangle is right, then the three terms devolve into the
traditional trigonometric relationships). If*ABC is acute, let h1 be the length of the
altitude from vertex A, and let h2 be the length of the altitude from vertex B. Each
altitude divides*ABC into two right triangles allowing us to write

h1 = csinB = bsinC =⇒ sinB
b

=
sinC

c

h2 = csinA = asinC =⇒ sinA
a

=
sinC

c
.

Combining those equalities gives the result.
There is a little more work if *ABC is obtuse. Suppose that ∠C is the obtuse

angle in the triangle. Let h1 be the length of the altitude from vertex C. As before,
this divides*ABC into two right triangles, from which we may write

h1 = bsinA = asinB =⇒ sinA
a

=
sinB

b
.

The problem is that the other two altitudes do not pass through the interior of*ABC.
Let D be the foot of the altitude from vertex B (D will lie outside of the triangle),
and let h2 = |BD|. In the right triangle*ADB,

h2 = csinA

and in the smaller right triangle*BCD,

h2 = asin(π−C)
= a(sinπ cosC− cosπ sinC)
= asinC.

Setting these two expressions equal to one another
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The proof of the Law of Cosines.
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12 B Trigonometry

csinA = asinC =⇒ sinA
a

=
sinC

c
. "#

The next result is, in some ways, a generalization of the Pythagorean Theorem (or
at least the Pythagorean Theorem is a special case of it).

Theorem B.6. The Law of Cosines. In *ABC, let a = |BC|, b = |AC|, and c =
|AB|. Then

c2 = a2 +b2−2abcosC.

Proof. Let h be the length of the altitude from vertex A. As with the proof of the
Law of Sines, this altitude may or may not pass through the interior of *ABC. For
this proof we will assume that it does, and leave the other possibility to the reader.
In this case we can mark the foot of the altitude D, and this altitude splits BC into
two segments. Let

a1 = |CD| a2 = |BD|.

The altitude also splits *ABC into two right triangles from which we may deduce
that

a1 = bcosC1 h = bsinC.

Furthermore, by the Pythagorean Theorem,

c2 = h2 +a2
2

= h2 +(a−a1)2

= (bsinC)2 +(a−bcosC)2

= b2 sin2 C +a2−2abcosC +b2 cos2 C

= a2 +b2−2abcosC "#
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Appendix C
Complex Numbers

Many of the calculations that we do when working with either inversion or with
hyperbolic geometry work best by treating the plane not as the real plane R2, but
instead as the complex plane (or complex line, if you prefer to think in terms of
complex dimension) C. This appendix offers a quick review of the fundamentals of
complex arithmetic necessary for these calculations.

We define the complex numbers C to be the extension of the real numbers R
consisting of

C = {x+ iy |x,y ∈ R}

where i2 =−1. For any complex number z = x+ iy, the x value is called the real part,
the y value is called the imaginary part, and we write Re(z) = x, Im(z) = y. Note
that the reals are contained as a subset of C as the subset of all complex numbers
whose imaginary part is zero. There is a simple bijective correspondence between
the points of C and those of the real plane R2 given by

z↔ (Re(z), Im(z)).

However, the complex numbers also carry with them arithmetic operations which
the points of R2 do not. For any two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2,
their sum is formed by combining “like” components

z1 + z2 = (x1 + iy1)+(x2 + iy2)
= (x1 + x2)+ i(y1 + y2),

and their product by multiplying out using “FOIL” (together with the fact that i2 =
−1)

z1 · z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + ix1y2 + ix2y1 + i2y1y2

= (x1x2− y1y2)+(x1y2 + x2y1)i
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The powers of i. 
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14 C Complex Numbers

As a consequence of this, the product of a real r = r+0i and a complex z = x+ iy is

r · z = r(x+ iy) = rx+ iry.

Specializing even further, if r =−1, we get the negative of a complex number

−z =−1 · z =−x− iy.

Hence subtraction may be defined for complex numbers z1 = x1 + iy1 and z2 =
x2 + iy2 as

z1− z2 = z1 +(−z1)
= (x1 + iy1)+(−x2− iy2)
= (x1− x2)+ i(y1− y2)

When multiplying it is common to run into situations that involve simplifying pow-
ers of i. Fortunately, there is an easy pattern to these powers

i0 = 1 i1 = i i2 =−1 i3 =−i i4 = 1.

From this point, the powers of i begin to repeat.
Every complex number z = x + iy has a complex conjugate z = x− iy. Any real

number is its own complex conjugate. More generally, the complex conjugation
operation is the reflection about the real line in C. It should be noted that the product
of a complex number and its conjugate is always a real number:

z · z = (x+ iy)(x− iy) = x2 + y2.

This provides the mechanism for the division of complex numbers z1/z2 (provided
z2 += 0):

z1

z2
=

z1 · z2

z2 · z2

=
(x1 + iy1) · (x2− iy2)
(x2 + iy2)(x2− iy2)

=
x1x2 + ix1y2 + ix2y1− i2y1y2

x2
2 + y2

2

=
x1x2 + y1y2

x2
2 + y2

2
+ i

x1y2 + x2y1

x2
2 + y2

2
.

The complex conjugate interacts with the arithmetic operations in some fairly pre-
dictable ways. It is easy to verify each of the following properties.

Theorem C.1. Properties of the complex conjugate. For complex numbers z, z1,
and z2
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The polar and exponential forms of a complex number.
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C Complex Numbers 15

(z) = z
z1 + z2 = z1 + z2

z1− z2 = z1− z2

z1 · z2 = z1 · z2

z1/z2 = z1/z2 (z2 += 0)

Let us take a look at the geometry of these complex numbers. As in the real case,
the absolute value of a complex number z = x + iy, written |z|, is its distance from
zero. This can be calculated with the distance formula

|z| =
√

x2 + y2.

This value is also called the norm of z. It should be noted that

|z|2 = z · z.

It is again straightforward to verify some properties of the norm.

Theorem C.2. Properties of the norm. For any complex numbers z, z1, and z2,

|z| = |z|
|z1 · z2| = |z1| · |z2|
|z1/z2| = |z1|/|z2| (z2 += 0)

There is no way to separate absolute value of the sum of two complexes |z1±z2|,
but because of the triangle inequality,

|z1 ± z2|≤ |z1|+ |z2|.

If we let r denote |z|, and θ represent the angle between z and the real axis, then,
with some elementary trigonometry

z = r cosθ + ir sinθ = r(cosθ + isinθ).

This is called the polar form for the complex number. The angle θ is called the ar-
gument of z and is written θ = arg(z). There is an even more convenient description
of z, in terms of r and θ , though, called the exponential form. Comparing the Taylor
expansions of cosθ + isinθ and eiθ reveals

cosθ + isinθ =
∞

∑
n=0

(−1)n

(2n)!
θ 2n + i

∞

∑
n=0

(−1)n

(2n+1)!
θ 2n+1

=
(

1− θ 2

2!
+

θ 4

4!
− · · ·

)
+ i
(

θ − θ 3

3!
+

θ 5

5!
− · · ·

)

= 1+ iθ − θ 2

2!
− iθ 3

3!
+

θ 4

4!
+

iθ 5

5!
− · · ·
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A geometric view of complex addition (top) and 
multiplication (bottom).
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16 C Complex Numbers

and

eiθ =
∞

∑
n=0

1
n!

(iθ)n

= 1+ iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ 4)4

4!
+

(iθ 5)
5!

+ · · ·

= 1+ iθ − θ 2

2!
− iθ 3

3!
+

θ 4

4!
+

iθ 5

5!
− · · ·

They are the same. Hence we may write z in the form z = reiθ . Multiplying two
complex numbers in this form is particularly easy. Using the rules of exponents

z1 · z2 = r1eiθ1 · r2eiθ2 = r1r2ei(θ1+θ2).

The complex conjugate is also easy in this format, with z = re−iθ . From a geometric
point of view, addition of complex numbers is essentially like addition of vectors. If
z1 = x1 + iy1 and z2 = x2 + iy2 then we may think of adding z2 to z1 as translating z1
over by x2 and up by y2. Multiplication also has an interesting interpretation which
is easiest to see if the complex numbers are written in exponential form z1 = r1eiθ1

and z2 = r2eiθ2 so that
z1 · z2 = r1r2ei(θ1+θ2).

There are two parts to this. Multiplying z1 by z2 scales the distance that z1 is from
0 by an amount r2. So if r2 < 1, it scales in, and if r2 > 1, it scales out. The second
effect of this multiplication is that z1 is rotated by an angle of θ2 about the origin.
These geometric interpretations of the operations can be helpful when attacking
geometric problems in the complex plane.
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Appendix D
Taylor Series

This is a brief review of the necessary Taylor series for some of the calculations in
the hyperbolic geometry section. Recall that the idea behind a Taylor series is to
approximate a function f (x) by a series of the form

s(x) =
∞

∑
n=0

an(x−a)n.

This is done by matching up the derivatives of f (x) at the point a with those of s(x).
When we take n derivatives of s(x), the terms of degree less than n drop out. When
the value a is plugged in, the terms of degree greater than n go to zero. That leaves
only the n-th term, whose n-th derivative is

n(n−1)(n−2) · · ·3 ·2 ·1(x−a)0an = n!an.

Setting this equal to f (n)(a) gives the value of the coefficient

an =
f (n)(a)

n!
.

Taken all together then, the Taylor series for f (x) expanded about the point a is

s(x) =
∞

∑
n=0

f (n)(a)

n!
(x−a)n.

Now the natural question is how well this series approximates f (x). In fact, it may
not be clear that s(x) converges at all, much less what it converges to. These ques-
tions are usually resolved by looking at some form of the “remainder”, RN(x), the
difference between the function and

sN =
N

∑
n=0

f (n)

n!
(x−a)n,
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Taylor polynomials for the cosine function. Here the polynomials are 
expanded about zero and the degree 4, 8, 12, and 16 polynomials are 

shown.
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18 D Taylor Series

the N-th partial sum of the series. One estimate for this remainder is the Lagrange
form

RN(x) =
M

(N +1)!
|x−a|N+1

where M is the maximum value of | f (n+1)(x)| for all values of c between a and x.
The good news is that the Taylor series we deal with converge to the function for all
real numbers.

Let us see how this works for the function f (x) = cosx expanded about the point
a = 0. The derivatives of f (x) at 0 tell us the coefficients in the series. To make it is
easier to keep up with them, they are arranged in the table below.

n f (n) f (n)(0)
0 cosx 1
1 −sinx 0
2 −cosx -1
3 sinx 0
4 cosx 1
5 −sinx 0
6 −cosx -1

A pretty simple pattern emerges, and hence we can write down the Taylor series for
cosx expanded about the point a = 0 as

s(x) = 1− 1
2!

x2 +
1
4!

x4− 1
6!

x6 + · · ·

which can be written in more concisely summation notation as

s(x) =
∞

∑
n=0

(−1)n

(2n)!
x2n.

Before we can address the issue of the convergence of this series, we need to know
the value of one particularly important limit.

Lemma D.1. For any x ∈ R,

lim
n→∞

xn

n!
= 0.

Proof. Consider the series
∞

∑
n=0

xn

n!
.

The convergence of this series can be determined by the ratio test

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣= lim
n→∞

|x|n+1

(n+1)!
· n!
|x|n = lim

n→∞

|x|
n+1

= 0.

Therefore the series converges (for all x). Since a series can only converge if the
terms in the series go to zero,
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D Taylor Series 19

lim
n→∞

xn

n!
= 0. "#

Now we can return to the Lagrange form of the the remainder for the Taylor
series of the cosine function. With the above limit, it is easy to calculate. All the
derivatives of cos(x) are one of the four functions ±sin(x) or ±cos(x). Each of
these is bounded between -1 and 1, so an upper bound for M is 1. Therefore

RN(x)≤ 1
(N +1)!

|x|N+1.

By the lemma above, limN→∞ RN(x) = 0, and so the series does converge to f (x) =
cosx for all x.

Other Taylor series can be derived similarly (although usually the calculations
are more challenging). The ones that we need for our calculations are

ex =
∞

∑
n=0

xn

n!

sinx =
∞

∑
n=0

(−1)n x2n+1

(2n+1)!

cosx =
∞

∑
n=0

(−1)n x2n

(2n)!

sinhx =
∞

∑
n=0

x2n+1

(2n+1)!

coshx =
∞

∑
n=0

x2n

(2n)!
.

Each of these series does converge to the function for all real values of x. In fact,
although this discussion has only focused on real values, each of these series con-
verges (to the function) for all complex values as well.
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