EUCLIDEAN GEOMETRY

My goal with all of these lessons is to provide an introduction to both
Euclidean non-Euclidean geometry. The two geometries share many fea-
tures, but they also have very fundamental and radical differences. Neutral
geometry is the part of the path they have in common and that is what we
have been studying so far, but I think we have finally come to the fork in
the path. That fork comes when you try to answer this question:

Given a line ¢ and a point P which is not on ¢, how many lines pass
through P and are parallel to £?

Using just the axioms of neutral geometry, you can prove that there is
always at least one such parallel. You can also prove that if there is more
than one parallel, then there must be infinitely many. But that is the extent
of what the neutral axioms can say. The neutral axioms just aren’t enough
to determine whether there is one parallel or many. This is what separates
Euclidean and non-Euclidean geometry— a single axiom: the final axiom
of Euclidean geometry calls for exactly one parallel, the final axiom of
non-Euclidean geometry calls for more than one parallel.
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Euclidean parallel non-Euclidean parallels

The next several lessons are devoted to Euclidean geometry. Now you
have to remember that Euclidean geometry is several millenia old, so there
is a lot of it. All that I hope to do in these lessons is to cover the funda-
mentals, but there are many excellent books that do much more. Geometry
Revisited [1] by Coxeter and Greitzer is an excellent one.

The first order of business is to put that final axiom in place. There are
many formulations of the parallel axiom for Euclidean geometry, but the
one that I think gets right to the heart of the matter is Playfair’s Axiom,
named after the Scottish mathematician John Playfair.

PLAYFAIR’S AXIOM
Let ¢ be a line, and let P be a point which is not on ¢. Then there is
exactly one line through P which is parallel to ¢.

In this lesson I would like to look at a small collection of theorems which
are almost immediate consequences of this axiom, and as such, are at the
very core of Euclidean geometry. The first of these is Euclid’s Fifth Pos-
tulate. This is the controversial postulate in The Elements, but also the one
that guarantees the same parallel behavior that Playfair’s Axiom provides.
In my opinion, Euclid’s postulate is a little unwieldy, particularly when
compared to Playfair’s Axiom, but it is the historical impetus for so much
of what followed. So let’s use Playfair’s Axiom to prove Euclid’s Fifth
Postulate.

EUCLID’S FIFTH POSTULATE

If lines ¢ and /¢, are crossed by a transversal 7, and the sum of adja-
cent interior angles on one side of # measure less than 180°, then ¢;
and ¢, intersect on that side of .
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Proof. First, some labels. Start with lines ¢,
and /¢, crossed by transversal 7. Label P, and
P, the points of intersection of ¢ with £; and
¢, respectively. On one side of 7, the two ad-
jacent interior angles should add up to less
than 180°. Label the one at P; as Z1 and the
one at P, at Z/2. Label the supplement of £1
as /3 and label the supplement of /2 as /4.
Primarily, of course, this postulate is about
the location of the intersection of ¢ and /5.
But you don’t want to overlook an important
prerequisite: the postulate is also guarantee-
ing that ¢; and ¢, do intersect. That’s really
the first thing we need to show. Note that /1
and /4 are alternate interior angles, but they
are not congruent— if they were, their supple-
ments Z2 and /3 would be too, and then

(L1)+(£2) = (L1)+ (£3) = 180°.

There is, however, another line ¢* through
P, which does form an angle congruent to
/4 (because of the Angle Construction Pos-
tulate), and by the Alternate Interior Angle
Theorem, ¢* must be parallel to ¢,. Because
of Playfair’s Axiom, ¢* is the only parallel to

£, through P;. That means ¢; intersects /5.
The second part of the proof is to figure
out on which side of ¢ that ¢; and ¢, cross.
Let’s see what would happen if they inter-
sected at a point Q on the wrong side of #:
the side with /3 and Z4. Then the trian-
gle AP, P,Q would have two interior angles,
/3 and /4, which add up to more than 180°.
This violates the Saccheri-Legendre theorem.
So ¢4 and ¢, cannot intersect on the side of
t with /3 and Z4 and that means that they
must intersect on the side with /1 and /2.
O

The labels.

Constructing the unique
parallel.

¥

An impossible triangle on
the wrong side of t.
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One of the truly useful theorems of neutral geometry is the Alternate
Interior Angle Theorem. In fact, we just used it in the last proof. But you
may recall from high school geometry, that the converse of that theorem is
often even more useful. The problem is that the converse of the Alternate
Interior Angle Theorem can’t be proved using just the axioms of neutral
geometry. It depends upon Euclidean behavior of parallel lines.

CONVERSE OF THE ALTERNATE INTERIOR ANGLE THEOREM
If ¢; and ¢, are parallel, then the pairs of alternate interior angles
formed by a transversal ¢ are congruent.

Proof. Consider two parallel lines crossed by a transversal. Label adja-
cent interior angles: /1 and /2, and /3 and /4, so that /1 and /4 are
supplementary and /2 and /3 are supplementary. That means that the
pairs of alternate interior angles are /1 and /3 and /2 and Z4. Now, we
just have to do a little arithmetic. From the two pairs of supplementary
angles:

(£1) 4 (£4) =180° (i)
(£2)+(£3) =180°. (i)

Notice that if you add all four angles together, then

(£1)+(£2) + (£3) + (£4) = 360°.
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Now, here is where Euclid’s Fifth comes into play— and actually, we will
need to use the contrapositive. You see, ¢; and ¢, are parallel, and that
means that they do not intersect on either side of . Therefore Euclid’s
Fifth says that on neither side of # may the sum of adjacent interior angles
be less than 180°:

(£1)+(£2) > 180°

(£3)+(£4) > 180°.

If either one of these sums was greater than 180°, though, the sum of all
four angles would have to be more than 360°— we saw above that is not
the case, so the inequalities are actually equalities:

(L1)+(£2) =180° (iii)
(£3)+ (£4) = 180°.  (iv)

Now you have two systems of equations with four unknowns— it is basic
algebra from here. Subtract equation (iv) from equation (i) to get (£1) =
(£3). Subtract equation (iii) from equation (i) to get (£2) = (£4). The
alternate interior angles are congruent. O
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One of the key theorems we proved in the neutral geometry section was
the Saccheri-Legendre Theorem: that the angle sum of a triangle is at most
180°. That’s all you can say with the axioms of neutral geometry, but in
a world with Playfair’s Axiom and the converse of the Alterante Interior
Angle Theorem, there can be only one triangle angle sum.

THM
The angle sum of a triangle is 180°.

Proof. Consider a triangle AABC. By Playfair’s Axiom, there is a unique
line ¢ through B which is parallel to « AC —. That line and the rays
BA - and BC — form three angles, /1, /2 and /3 as I have shown in the
illustration below.

4 B

;

By the converse of the Alternate Interior Angle Theorem, two pairs of
alternate interior angles are congruent:

Ll ~/A /3~ /C.
Therefore, the angle sum of AABC is

s(AABC) = (LA) + (£B) + (£C)
=(41)+(£2)+(4£3)
= 180°.
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In the last lesson on quadrilaterals I talked a little bit about the uncertain
status of rectangles in neutral geometry— that it is pretty easy to make a
convex quadrilateral with three right angles, but that once you have done
that, there is no guarantee that the fourth angle will be a right angle. Here
it is now in the Euclidean context:

RECTANGLES EXIST

Let ZABC be a right angle. Let r4 and rp be rays so that: r4 has
endpoint A, is on the same side of <~ AB— as C, and is perpendicular
to < AB —; r¢ has endpoint C, is on the same side of « BC — as A,
and is perpendicular to < BC —. Then r4 and r¢ intersect at a point
D, and the angle fomed at this intersection, ZADC, is a right angle.
Therefore LJABCD is a rectangle.

Proof. The first bit of business is to make sure that 74 and r¢ intersect. Let
l4 and {c be the lines containing r4 and r¢ respectively. By the Alternate
Interior Angle Theorem, the right angles at A and B mean that ¢4 and
«BC— are parallel. So «<BC— is the one line parallel to /4 through C, and
that means that /¢ cannot be parallel to Z4: it has to intersect /4. Let’s call
that point of intersection D. Now in the statement of the theorem, I claim
that it is the rays, not the lines, that intersect. That means that we need
to rule out the possibility that the intersection of /4 and /¢ might happen
on one (or both) of the opposite rays. Observe that since ¢4 is parallel to
+BC—, all of the points of /4 are on the same side of «BC— as A. None of
the points of ¥ are on that side of BC, so D cannot be on r¢’’. Likewise,
all the points of {¢ are on the same side of < AB— as C. None of the points

of i}’ are on that side of AB, so D cannot be on r}".




10 LESSON 13

So now we have a quadrilateral LJABCD with three right angles, ZA,
/B, and ZC. It is actually a convex quadrilateral too (I leave it to you
to figure out why), so the diagonal AC divides LJABCD into two triangles
AABC and AADC. Then, since the angle sum of a triangle is 180°,

s(AABC) +s(AADC) = 180° + 180°
(LCAB) + (4B)+ (£LACB) + (LCAD) + (£D) + (LACD) = 360°
(LA)+ (£B) + (£C) + (4£D) = 360°
90° +90° 4-90° + (£D) = 360°
(£D) =90°.

O]

That means that, yes, rectangles do exist in Euclidean geometry. In the
next lemma, I have listed some basic properties of a rectangle. I will leave
it to you to prove these (they aren’t hard).

LEM: PROPERTIES OF RECTANGLES

Let LJABCD be a rectangle. Then

1. «<~AB— is parallel to <CD— and < AD— is parallel to < BC—
2. AB~CD and AD ~ BC and AC ~ BD.
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For the last result of this section, I would like to get back to parallel
lines. One of the things that we will see when we study non-Euclidean ge-
ometry is that parallel lines tend to diverge from each other. That doesn’t
happen in non-Euclidean geometry. It is one of the key differences be-
tween the two geometries. Let me make this more precise. Suppose that
P is a point which is not on a line ¢. Define the distance from P to ¢ to be
the minimum distance from P to a point on £:

d(PY) :min{|PQ| ‘Qis on E}.

That minimum actually occurs when Q is the foot of the perpendicular to
¢ through P. To see why, let Q' be any other point on ¢. In APQQ’, the
right angle at Q is the largest angle. By the Scalene Triangle Theorem,
that means that the opposite side PQ’ has to be the longest side, and so

PQ'| > |PQI.

The distance from a point to a line is measured along the segment from the point
to the line which is perpendicular to the line.

Now, for a given pair of parallel lines, that distance as measured along
perpendiculars does not change.
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THM: PARALLEL LINES ARE EVERYWHERE EQUIDISTANT
If ¢ and ¢’ are parallel lines, then the distance from a point on ¢ to ¢’
is constant. In other words, if P and Q are points on ¢, then

d(P.0) =d(Q.0).

Proof. Let P' and Q' be the feet of the perpendiculars on ¢ from P and Q
respectively. That way,

d(PV)=|PP'| d(Q,0')=|00.

Then /PP'Q’ and ZQQ'P' are right angles. By the converse of the Al-
ternate Interior Angle Theorem, /P and ZQ are right angles too— so
OPQQ'P' is a rectangle. Using the previous lemma on rectangles, PP’
and QQ', which are the opposite sides of a rectangle, are congruent. [
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Exercises

1. Suppose that ¢1, ¢, and ¢3 are three distinct lines such that: ¢; and ¢
are parallel, and ¢, and /3 are parallel. Prove then that /; and /3 are
parallel.

2. Find the angle sum of a convex n-gon as a function of .

3. Prove that the opposite sides and the opposite angles of a parallelogram
are congruent.

4. Consider a convex quadrilateral L1ABCD. Prove that the two diagonals
of LJABCD bisect each other if and only if LJABCD is a parallelogram.

5. Show that a parallelogram [LJABCD is a rectangle if and only if AC ~
BD.

6. Suppose that the diagonals of a convex quadrilateral LJABCD intersect
one another at a point P and that

AP ~BP ~CP ~ DP.

Prove that LJABCD is a rectangle.

7. Suppose that the diagonals of a convex quadilateral bisect one another
at right angles. Prove that the quadrilateral must be a rhombus.

8. Consider a triangle AABC and three additional points A’, B’ and C'.
Prove that if AA’, BB’ and CC’ are all congruent and parallel to one
another then AABC ~ NA'B'C’.

9. Verify that the Cartesian model (as developed through the exercises in
lessons 1 and 3) satisfies Playfair’s Axiom.
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