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A theorem on perimeters

in the lesson on polygons, i defined the perimeter of a polygon P =
P1 · · ·Pn as

|P|=
n

∑
i=1

|PiPi+1|,

but i left it at that. in this lesson we are going to use perimeters of cyclic
polygons to find the circumference of the circle. along the way, i want
to use the following result which compares the perimeters of two convex
polygons when one is contained in the other.

THm 1
if P and Q are convex polygons and all the points of P are on or
inside Q, then |P| ≤ |Q|.

Proof. some of the edges of P may run along the edges of Q, but unless
P= Q, at least one edge of P must pass through the interior of Q. let s be
one of those interior edges. The line containing s intersects Q twice– call
those intersections a and b– dividing Q into two smaller polygons which
share the side ab, one on the same side of s as P, the other on the opposite
side. essentially we want to “shave off” the part of Q on the opposite side,
leaving behind only the polygon Q1 which consists of

◦ points of Q on the same side of s as P, and
◦ points on the segment ab.

a

s

b

P P

Q Q1

Shaving a polygon.
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There are two things to notice about Q1. first, Q1 and P have one more
coincident side (the side s) than Q and P had. second, the portions of
Q and Q1 on the side of s with P are identical, so the segments making
up that part contribute the same amount to their respective perimeters.
on the other side, though, the path that Q takes from a to b is longer
than the direct route along the segment ab of Q1 (because of the Triangle
inequality). combining the two parts, that means |Q1| ≤ |Q|.

now we can repeat this process with P and Q1, generating Q2 with even
smaller perimeter than Q1 and another coincident side with P. and again,
to get Q3. eventually, though, after say m steps, we run out of sides that
pass through the interior, at which point P= Qm. Then

|P|= |Qm| ≤ |Qm−1| ≤ · · · |Q2| ≤ |Q1| ≤ |Q|.

1

3

6

4

2 5

One at a time, shave the sides of the outer polygon down to the inner one.
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circumference

Geometers have drawn circles for a long time. i don’t think it is a big
surprise, then, that they would wonder about the relationship between the
distance around the circle (how far they have dragged their pencil) and the
radius of the circle. The purpose of this lesson is to answer that question.
our final result, the formula C = 2πr, sits right next to the Pythagorean
Theorem in terms of star status, but i think it is a misunderstood celebrity.
so let me be clear about what this equation is not. it is not an equation
comparing two known quantities C and 2πr. instead, this equation is the
way that we define the constant π . nevertheless, the equation is saying
something about the relationship between C and r– it is saying that the
ratio of the two is a constant.

To define the circumference of a circle, i want to take an idea from
calculus– the idea of approximating a curve by straight line segments, and
then refining the approximation by increasing the number of segments. in
the case of a circle C, the approximating line segments will be the edges
of a simple cyclic polygon P inscribed in the circle. conceptually, we
will want the circumference of C to be bigger than the perimeter of P. We
should also expect that by adding in additional vertices to P, we should be
able to get the perimeter of P as close as we want to the circumference of
C. all this suggests (to me at least) that to get the circumference of C, we
need to find out how large the perimeters of inscribed polygons can be.

def: circumference
The circumference of a circle C, written |C|, is

|C|= sup
�
|P|

���P is a simple cyclic polygon inscribed in C
�
.
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Approximation of an arc by segments.
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There is nothing in the definition to guarantee that this supremum ex-
ists. it is conceivable that the lengths of these approximating perimeters
might just grow and grow with bound. one example of such degeneracy
is given the deceptively cute name of “the Koch snowflake.” let me de-
scribe how it works. Take an equilateral triangle with sides of length one.
The perimeter of this triangle is, of course, 3. now divide each of those
sides into thirds. on each middle third, build an equilateral triangle by
adding two more sides; then remove the the original side. You have made
a shape with 3 ·4 sides, each with a length 1/3, for a perimeter of 4. now
iterate– divide each of those sides into thirds; build equilateral triangles
on each middle third, and remove the base. That will make 3 ·16 sides of
length 1/9, for a perimeter of 16/3. Then 3 · 64 sides of length 1/27 for a
perimeter of 64/9. Generally, after n iterations, there are 3 · 4n sides of
length 1/3n for a total perimeter of 4n/3n−1, and

lim
n→∞

4n

3n−1 = lim
n→∞

3
�

4
3

�n
= ∞.

The Koch snowflake, which is the limiting shape in this process, has in-
finite perimeter! The first thing we need to do, then, is to make sure that
circles are better behaved than this.

1 32

54

The first few steps in the construcion of the Koch snowflake.
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an uPPer Bound for circumference
if C is a circle of radius r, then |C| ≤ 8r.

Proof. The first step is to build a circum-
scribing square around C– the smallest pos-
sible square that still contains C. Begin by
choosing two perpendicular diameters d1 and
d2. each will intersect C twice, for a total of
four intersections, P1, P2, P3, and P4. for each
i between one and four, let ti be the tangent
line to C at Pi. These tangents intersect to
form the circumscribing square. The length
of each side of the square is equal to the di-
ameter of C, so the perimeter of the square is
4 ·2r = 8r.

now we turn to the theorem we proved to start this lesson. each simple
cyclic polygon inscribed in C is a convex polygon contained in the cir-
cumscribing square. Therefore the perimeter of any such approximating
polygon is bounded above by 8r. remember that we have defined |C| to
be the supremum of all of these approximating perimeters, so it cannot
exceed 8r either.

now that we know that any circle does have a circumference, the next step
is to find a way to calculate it. The key to that is the next theorem.

circumference/radius
The ratio of the circumference of a circle to its radius is a constant.

Proof. let’s suppose that this ratio is not a constant, so that there are two
circles C1 and C2 with centers O1 and O2 and radii r1 and r2, but with
unequal ratios

|C1|/r1 > |C2|/r2.

as we have defined circumference, there are approximating cyclic poly-
gons to C1 whose perimeters are arbitrarily close to its circumference.
in particular, there has to be some approximating cyclic polygon P =
P1P2 . . .Pn for C1 so that

|P|/r1 > |C2|/r2.

P1

P3

P2

P4
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The heart of the contradiction is that we can build a cyclic polygon Q

on C2 which is similar to P (intuitively, we just need to scale P so that it
fits in the circle). The construction is as follows

1. Begin by placing a point Q1 on
circle C2.

2. locate Q2 on C2 so that ∠P1O1P2
is congruent to ∠Q1O2Q2 (there are
two choices for this).

3. locate Q3 on C2 and on the
opposite side of O2Q2 from Q1 so
that ∠P2O1P3 � ∠Q2O2Q3.

4. continue placing points on C2
in this fashion until Qn has been
placed to form the polygon Q =
Q1Q2 . . .Qn.

Then

|O2Qi|
|O1Pi| =

r2

r1
=

|O2Qi+1|
|O1Pi+1| & ∠QiO2Qi+1 � ∠PiO1Pi+1,

so by s·a·s similarity, �QiO2Qi+1 ∼�PiO1Pi+1. That gives us the ratio
of the third sides of the triangle as |QiQi+1|/|PiPi+1| = r2/r1 and so we
can describe the perimeter of Q as

|Q|=
n

∑
i=1

|QiQi+1|=
n

∑
i=1

r2

r1
|PiPi+1|= r2

r1

n

∑
i=1

|PiPi+1|= r2

r1
|P|.

P1

P3

P2

Q2

Q3

Q4

Q5
Q6

Q1

P4

P5

P6

2

14
65

3

1
2 3

4
56
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Here’s the problem. That would mean that

|Q|
r2

=
|P|
r1

>
|C2|
r2

so |Q|> |C2| when the circumference of C2 is supposed to be greater than
the perimeter of any of the approximating cyclic polygons.

def: π
The constant π is the ratio of the circumference of a circle to its
diameter

π =
|C|
2r

.

The problem with this definition of circumference, and consequently this
definition of π , is that it depends upon a supremum, and supremums are
ungainly and difficult to maneuver. a limit is considerably more nimble.
fortunately, this particular supremum can be reached via the perimeters
of a sequence of regular polygons as follows. arrange n angles each mea-
suring 360◦/n around the center of any circle C. The rays of those angles
intersect C n times, and these points Pi are the vertices of a regular n-gon,
Pn = P1P2 . . .Pn. The tangent lines to C at the neighboring points Pi and
Pi+1 intersect at a point Qi. Taken together, these n points are the vertices
of another regular n-gon Qn = Q1Q2 . . .Qn. The polygon Pn is just one of
the many cyclic polygons inscribed in C so |Pn| ≤ |C|. The polygon Qn
circumscribes C, and every cyclic polygon inscribed on C lies inside Qn,
so |Qn| ≥ |C|.

P1

P3

P2

Q2

Q3 Q4

Q5

Q6Q1

P4

P5

P6

Regular inscribed and circumscribing hexagons.
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The lower bound prescribed by Pn.
each OQi � is a perpendicular bi-
sector of PiPi+1, intersecting it at a
point Ri and dividing �OPiPi+1 in
two. By the H·l congruence the-
orem for right triangles, those two
parts, �ORiPi and �ORiPi+1, are
congruent. That means that Pn is
built from 2n segments of length
|PiRi|. now

sin(360◦/2n) =
|PiRi|

r
=⇒ |PiRi|= r sin(360◦/2n)

so

|Pn|= 2nr sin(360◦/2n).

The upper bound prescribed by Qn.
each OPi � is a perpendicular bi-
sector of Qi−1Qi, intersecting it at
Pi and dividing �OQi−1Qi in two.
By s·a·s, the two parts, �OPiQi−1
and �OPiQi, are congruent. That
means Qn is built from 2n segments
of length |PiQi|. now

tan(360◦/2n) = |PiQi|/r
=⇒ |PiQi|= r tan(360◦/2n)

so

|Qn|= 2nr tan(360◦/2n).

Pi+1

Pi

Pi

Ri

Qi–1

Qi

O
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let’s compare |Pn| and |Qn| as n increases (the key to this calculation is
that as x approaches zero, cos(x) approaches one):

lim
n→∞

|Qn|= lim
n→∞

2nr tan(360◦/2n)

= lim
n→∞

2nr sin(360◦/2n)
cos(360◦/2n)

=
limn→∞ 2nr sin(360◦/2n)

limn→∞ cos(360◦/2n)
= lim

n→∞
2nr sin(360◦/2n)/1

= lim
n→∞

|Pn|.

since |C| is trapped between |Pn| and |Qn| for all n, and since these are
closing in upon the same number as n goes to infinity, |C| must also be
approaching this number. That gives a more comfortable equation for
circumference as

|C|= lim
n→∞

2nr sin(360◦/2n),

and since |C|= 2πr, we can disentangle a definition of π as

π = lim
n→∞

nsin(360◦/2n).

2.52.0 3.0 3.5 4.0 4.5 5.0 5.5

5.196

4.0002.828

2.598

3.6332.939

3.4643.000

3.3713.037

3.3143.061

π=3.14159265...

n=3

=4

=5

=6

=7

=8

|Pn| / 2r |Qn| / 2r

Upper and lower bounds for π.
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Lengths of arcs and radians.

it doesn’t take much modification to get a formula for a length of arc. The
360◦ in the formula for |C| is the measure of the central angle correspond-
ing to an arc that goes completely around the circle. To get the measure
of any other arc, we just need to replace the 360◦ with the measure of the
corresponding central angle.

lenGTHs of circular arcs
if �AB is the arc of a circle with radius r, and if θ is the measure of
the central angle ∠AOB, then

|�AB|= π
180◦

θ · r.

Proof. To start, replace the 360◦ in the circumference formula with θ :

|�AB|= lim
n→∞

2nr sin(θ/2n) = 2r · lim
n→∞

nsin(θ/2n).

This limit is clearly related to the one that defines π . i want to absord
the difference between the two into the variable via the substitution n =
m ·θ/360◦. note that as n approaches infinity, m will as well, so

|�AB|= 2r · lim
m→∞

m ·θ
360◦

sin
�

θ
2m ·θ/360◦

�

=
2rθ
360◦

· lim
m→∞

msin(360◦/2m)

=
θ

180◦
rπ.

θ

r

A

B

O
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There is one more thing to notice before the end of this lesson. This arc
length formula provides a most direct connection between angle measure
(of the central angle) and distance (along the arc). and yet, the π

180◦ factor
in that formula suggests that distance and the degree measurement system
are a little out of sync with one another. This can be fixed by modernizing
our method of angle measurement. The preferred angle measurement sys-
tem, and the one that i will use from here on out, is radian measurement.

def: radian
one radian is π/180◦.

The measure of a straight angle is π radians. The measure of a right
angle is π/2 radians. one complete turn of the circle is 2π radians. if
θ = (∠AOB) is measured in radians, then

|�AB|= r ·θ .
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1
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The Koch snowflake is an example of a fractal. Gerald edgar’s book Mea-
sure, Topology, and Fractal Geometry [1], deals with these objects and
their measures.

[1] Gerald a. edgar. Measure, Topology, and Fractal Geometry.
springer-Verlag, new York, 1st edition, 1990.
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exercises

1. let A and B be points on a circle C with radius r. let θ be the mea-
sure of the central angle corresponding to the minor arc (or semicircle)
�AB. What is the relationship (in the form of an equation) between θ ,
r, and |AB|?

2. let AB be a diameter of a circle C, and let P be a point on AB. let C1
be the circle with diameter AP and let C2 be the circle with diameter
BP. show that the sum of the circumferences of C1 and C2 is equal to
the circumference of C (the shape formed by the three semicircles on
one side of AB is called an arbelos).

3. in the construction of the Koch snowflake, the middle third of each
segment is replaced with two-thirds of an equilateral triangle. suppose,
instead, that middle third was replaced with three of the four sides of
a square. What is the perimeter of the n-th stage of this operation?
Would the limiting perimeter still be infinite?

4. This problem deals with the possibility of angle measurement systems
other than degrees or radians. let A be the set of angles in the plane.
consider a function

� : A→ (0,∞) : ∠A → (∠A)�

which satisfies the following properties

(1) if ∠A � ∠B, then (∠A)� = (∠B)�

(2) if D is in the interior of ∠ABC, then

(∠ABC)� = (∠ABD)�+(∠DBC)�.

Prove that the � measurement system is a constant multiple of the de-
gree measurement system (or, for that matter, the radian measurement
system). That is, prove that there is a k > 0 such that for all ∠A ∈A,

(∠A)� = k · (∠A).


