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The euler line

I wrapped up the last lesson with illustrations of three triangles and their
centers, but I wonder if you noticed something in those illustrations? In
each one, it certainly appears that the circumcenter, orthocenter, and cen-
troid are colinear. Well, guess what– this is no coincidence.

THM: THe euler lIne
The circumcenter, orthocenter and centroid of a triangle are colinear,
on a line called the Euler line.

Proof. First, the labels. on �ABC, label

P: the circumcenter
Q: the orthocenter
R: the centroid
M: the midpoint of BC
�P: the perpendicular bisector to BC
�Q: the altitude through A
�R: the line containing the median AM

A dynamic sketch of all these points and lines will definitely give you a
better sense of how they interact. Moving the vertices A, B, and C creates
a rather intricate dance of P, Q and R. one of the most readily apparent
features of this construction is that both �P and �Q are perpendicular to
BC, and that means they cannot intersect unless they coincide. If you do
have a sketch to play with, you will see that they can coincide.
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This is a good place to start the investigation.

�P = �Q
⇐⇒ �R intersects BC at a right angle
⇐⇒ �AMB is congruent to �AMC
⇐⇒ AB � AC

so in an isosceles triangle with congruent sides AB and AC, all three of P
and Q and R will lie on the line �P = �Q = �R. It is still possible to line up
P, Q and R along the median AM without having �P, �Q and �R coincide.
That’s because �P intersects AM at M and �Q intersects AM at A, and it
turns out that it is possible to place P at M and Q at A.

M is the circumcenter
⇐⇒ BC is a diameter of the circumcircle
⇐⇒ ∠A is a right angle (Thales’ theorem)
⇐⇒ AB and AC are both altitudes of �ABC
⇐⇒ A is the orthocenter

so if �ABC is a right triangle whose right angle is at vertex A, then again
the median AM contains P, Q, and R.

Aligning an altitude and a perpendicular bisector.
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In all other scenarios, P and Q will not be found on the median, and this
is where things get interesting. At the heart of this proof are two triangles,
�AQR and �MPR. We must show they are similar.

S: We saw in the last lesson that the centroid is located two thirds of
the way down the median AM from A, so |AR|= 2|MR|.

A: ∠QAR � ∠PMR, since they are alternate interior angles between
the two parallel lines �P and �Q.

S: Q, the orthocenter of �ABC, is also the circumcenter of another
triangle �abc. This triangle is similar to �ABC, but twice as big.
That means that the distance from Q, the circumcenter of �abc to
side bc is double the distance from P, the circumcenter of �ABC, to
side BC (it was an exercise at the end of the last lesson to show that
distances from centers are scaled proportionally by a similarity– if
you skipped that exercise then, you should do it now, at least for this
one case). In short, |AQ|= 2|MP|.

By s·A·s similarity, then, �AQR ∼�MPR. That means ∠PRM is con-
gruent to ∠QRA. The supplement of ∠PRA is ∠PRM, so ∠PRM must
also be the supplement of ∠QRA. Therefore P, Q, and R are colinear.
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The nine point circle

While only three points are needed to define a unique circle, the next result
lists nine points associated with any triangle that are always on one circle.
six of the points were identified by Feuerbach (and for this reason the
circle sometimes bears his name). several more beyond the traditional
nine have been found since. If you are interested in the development of
this theorem, there is a brief history in Geometry Revisited by coxeter and
Greitzer [1].

THM: THe nIne PoInT cIrcle
For any triangle, the following nine points all lie on the same circle:
(1) the feet of the three altitudes, (2) the midpoints of the three sides,
and (3) the midpoints of the three segments connecting the orthocen-
ter to the each vertex. This circle is the nine point circle associated
with that triangle.

This is a relatively long proof, and I would ask that you make sure you are
aware of two key results that will play pivotal roles along the way.

1. Thales’ Theorem: A triangle �ABC has a right angle at C
if and only if C is on the circle with diameter AB.

2. The diagonals of a parallelogram bisect one another.
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Proof. Given the triangle �A1A2A3 with orthocenter R, label the follow-
ing nine points:

Li, the foot of the altitude which passes through Ai,
Mi, the midpoint of the side that is opposite Ai,
Ni, the midpoint of the segment AiR.

The proof that I give here is based upon a key fact that is not mentioned
in the statement of the theorem– that the segments MiNi are diameters of
the nine point circle. We will take C, the circle with diameter M1N1 and
show that the remaining seven points are all on it. Allow me a moment to
outline the strategy. First, we will show that the four angles

∠M1M2N1 ∠M1N2N1 ∠M1M3N1 ∠M1N3N1

are right angles. By Thales’ Theorem, that will place each of the points
M2, M3, N2, and N3 on C. second, we will show that M2N2 and M3N3 are
in fact diameters of C. Third and finally, we will show that each ∠MiLiNi
is a right angle, thereby placing the Li on C.

Lines that are parallel.
We need to prove several sets of lines are parallel to one another. The
key in each case is s·A·s triangle similarity, and the argument for that
similarity is the same each time. let me just show you with the first one,
and then I will leave out the details on all that follow.

L1

L3

L2

M1

M2
M3

N

R

1

A1

A2 A3

N2 N3



7concurrence II

observe in triangles �A3M1M2 and �A3A2A1 that

|A3M2|= 1
2 |A3A1| ∠A3 = ∠A3 |A3M1|= 1

2 |A3A2|.

By the s·A·s similarity theorem, then, they are similar. In particular, the
corresponding angles ∠M2 and ∠A1 in those triangles are congruent. Ac-
cording to the Alternate Interior Angle Theorem, M1M2 and A1A2 must be
parallel. let’s employ that same argument many more times.

�A3M1M2 ∼�A3A2A1

=⇒ M1M2 � A1A2

�RN1N2 ∼�RA1A2

=⇒ N1N2 � A1A2

�A1N1M2 ∼�A1RA3

=⇒ N1M2 � A3R

�A2M1N2 ∼�A2A3R
=⇒ M1N2 � A3R

�A2M1M3 ∼�A2A3A1

=⇒ M1M3 � A1A3

�RN1N3 ∼�RA1A3

=⇒ N1N3 � A1A3

�A1M3N1 ∼�A1A2R
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Angles that are right.

now A3R is a portion of the alti-
tude perpendicular to A1A2. That
means the first set of parallel lines
are all perpendicular to the sec-
ond set of parallel lines. Therefore
M1M2 and M2N1 are perpendicu-
lar, so ∠M1M2N1 is a right angle;
and N1N2 and N2M1 are perpendic-
ular, so ∠M1N2N1 is a right angle.
By Thales’ Theorem, both M2 and
N2 are on C.

similarly, segment A2R is perpen-
dicular to A1A3 (an altitude and
a base), so M1M3 and M3N1 are
perpendicular, and so ∠M1M3N1
is a right angle. likewise, N1N3
and N3M1 are perpendicular, so
∠M1N3N1 is a right angle. Again
Thales’ Theorem tells us that M3
and N3 are on C.

Segments that are diameters.
We have all the M’s and N’s placed on C now, but we aren’t done with
them just yet. remeber that M1N1 is a diameter of C. From that, it is just
a quick hop to show that L1 is also on C. It would be nice to do the same
for L2 and L3, but in order to do that we will have to know that M2N2 and
M3N3 are also diameters. Based upon our work above,

M1M2 � N1N2 & M1N2 � M2N1
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That makes �M1M2N1N2 a parallelogram (in fact it is a rectangle). Its
two diagonals, M1N1 and M2N2 must bisect each other. In other words,
M2N2 crosses M1N1 at its midpoint. Well, the midpoint of M1N1 is the
center of C. That means that M2N2 passes through the center of C, and
that makes it a diameter. The same argument works for M3N3. The paral-
lelogram is �M1M3N1N3 with bisecting diagonals M1N1 and M3N3.

More angles that are right.
All three of M1N1, M2N2, and M3N3 are diameters of C. All three of
∠M1L1N1, ∠M2L2N2 and M3L3N3 are formed by the intersection of an al-
titude and a base, and so are right angles. Therefore, by Thales’ Theorem,
all three of L1, L2 and L3 are on C.

The center of the nine point circle

The third result of this lesson ties together the previous two.

THM
The center of the nine point circle is on the euler line.
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Proof. This proof nicely weaves together a lot of what we have developed
over the last two lessons. on �ABC, label the circumcenter P and the
orthocenter Q. Then �PQ� is the euler line. label the center of the nine
point circle as O. our last proof hinged upon a diameter of the nine point
circle. let’s recycle some of that– if M is the midpoint of BC and N is the
midpoint of QA, then MN is a diameter of the nine point circle. now this
proof really boils down to a single triangle congruence– we need to show
that �ONQ and �OMP are congruent.

S: ON �OM. The center O of the nine point circle bisects the diameter
MN.

A: ∠M �∠N. These are alternate interior angles between two parallel
lines, the altitude and bisector perpendicular to BC.

S: NQ � MP. In the euler line proof we saw that |AQ|= 2|MP|. Well,
|NQ|= 1

2 |AQ|, so |NQ|= |MP|.

By s·A·s, the triangles �ONQ and �OMP are congruent, and in partic-
ular ∠QON � ∠POM. since ∠NOP is supplementary to ∠POM, it must
also be supplementary to ∠QON. Therefore Q, O, and P are colinear, and
so O is on the euler line.
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exercises

1. consider a triangle �ABC. let D and E be the feet of the altitudes on
the sides AC and BC. Prove that there is a circle which passes through
the points A, B, D, and E .

2. under what conditions does the incenter lie on the euler line?

3. consider an isosceles triangle �ABC with AB � AC. let D be a point
on the arc between B and C of the circumscribing circle. show that DA
bisects the angle ∠BDC.

4. let P be a point on the circumcircle of triangle �ABC. let L be the foot
of the perpendicular from P to AB, M be the foot of the perpendicular
from P to AC, and N be the foot of the perpendicular from P to BC.
show that L, M, and N are collinear. This line is called a Simson line.
Hint: look for cyclic quadrilaterals and use the fact that opposite angles
in a cyclic quadrilateral are congruent.
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