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3 EUCLIDEAN TRANSFORMATIONS   

In the third part of this book, we will look at Euclidean geometry from
a different perspective, that of Euclidean transformations. It is a point
of view that has been most closely associated with Felix Klein– that the
way to study some property (such as congruence) is to study the maps
that preserve it. The first lesson sets the scene with a quick development
of analytic geometry. Then it is on to Euclidean isometries– bijections
of the Euclidean plane which preserve distance. Over several lessons we
will study these isometries, and ultimately we will classify all Euclidean
isometries into four types: reflections, rotations, translations, and glide
reflections. Then it is time to loosen the restriction a bit to consider bi-
jections which preserve congruence, but not necessarily distance. Finally,
we will look at inversion, a type of bijection of the punctured plane (the
Euclidean plane minus a point). As luck would have it, inversion provides
a convenient bridge into non-Euclidean geometry.
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This lesson is just a quick development of analytic geometry and trigonom-
etry in the language of Euclidean geometry. I feel an obligation to provide
the connection between traditional Euclidean geometry (as I have devel-
oped it in these lessons) and more contemporary analytic geometry, but
you should already be comfortable with this material, so feel free to skim
through it.

Analytic geometry

At the heart of analytic geometry, there is a correspondence between points
and coordinates, ordered pairs of real numbers. The Cartesian approach
to that correspondence is a familiar one, but let me quickly run through
it. Begin with two perpendicular lines (the choice is arbitrary). These are
the x- and y-axes. Their intersection is the origin O. We will want to mea-
sure signed distances from O along these axes, and that means we have to
assign a positive direction to each axis. From a geometric point of view,
the choice of those directions is arbitrary, but there is an established con-
vention as follows. Once directions have been chosen, each axis will be
divided into two rays that share O as their common vertex: a positive axis
consisting of points whose signed distance from O is positive, and a neg-
ative axis consisting of points whose signed distance from O is negative.
The convention is that the axes are assigned positive directions so that
the positive y-axis is a 90◦ counterclockwise turn from the positive x-axis.
Now here’s the catch: the geometry itself provides no way to distinguish
which direction is the counterclockwise direction. So this is a convention
that must be passed along by way of illustrations (and clocks).

counterclockwise

+

O

––

+
y x
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A point P on the x-axis is assigned the coordinates (p,0), where p is
the signed distance from O to P. A point Q on the y-axis is assigned
the coordinates (0,q) where q is the signed distance from O to Q. Most
points will not lie on either axis. For these points, we must consider their
projections onto the axes. If R is such a point, then we draw the two
lines that pass through R and are perpendicular to the two axes. If the
points where these perpendiculars cross the axes have coordinates (a,0)
and (0,b), then the coordinates of R are (a,b). With this correspondence,
every point corresponds to a unique coordinate pair, and every coordinate
pair corresponds to a unique point.

The next step is to figure out how to calculate the distance between points
in terms of their coordinates. This is pretty much essential for everything
else that we are going to do. Let’s begin with two special cases.

LEM: VERTICAL DISTANCE
For points that share an x-
coordinate, P1 = (x,y1) and
P2 = (x,y2),

|P1P2|= |y1 − y2|.

HORIZONTAL DISTANCE
For points that share a y-
coordinate, P3 = (x3,y) and
P4 = (x4,y),

|P3P4|= |x3 − x4|.

O

(a,0)

R: (a,b)

(0,b)
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Proof. I will just prove the first statement. Label two more points, Q1 =
(0,y1) and Q2 = (0,y2). The resulting quadrilateral P1P2Q2Q1 is a rectan-
gle, so its opposite sides P1P2 and Q1Q2 have to be the same length.

This is where we make the direct connection between coordinates and
distance– the coordinates along each axis were chosen to reflect their
signed distance from the origin O. To be thorough, though, there are sev-
eral cases to consider:

O∗Q1 ∗Q2 : |Q1Q2|= |OQ2|− |OQ1|= y2 − y1 = |y1 − y2|
O∗Q2 ∗Q1 : |Q1Q2|= |OQ1|− |OQ2|= y1 − y2 = |y1 − y2|
Q1 ∗O∗Q2 : |Q1Q2|= |OQ1|+ |OQ2|=−y1 + y2 = |y1 − y2|
Q2 ∗O∗Q1 : |Q1Q2|= |OQ2|+ |OQ1|=−y2 + y1 = |y1 − y2|
Q1 ∗Q2 ∗O : |Q1Q2|= |OQ1|− |OQ2|=−y1 − (−y2) = |y1 − y2|
Q2 ∗Q1 ∗O : |Q1Q2|= |OQ2|− |OQ1|=−y2 − (−y1) = |y1 − y2|

No matter the case, |P1P2|= |Q1Q2|= |y1 − y2|.
The general distance formula is now an easy consequence of the Pythagorean
Theorem.

O

P1 P2

Q2Q1
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THM: THE DISTANCE FORMULA
For any two points P = (x1,y1) and Q = (x2,y2),

|PQ|=
√

(x1 − x2)2 +(y1 − y2)2.

Proof. If P and Q share either x-coordinates or y-coordinates, then this
formula reduces down to the special case in the previous lemma (because√

a2 = |a|). If not, mark one more point: R = (x2,y1).

Then |PR|= |x1 − x2|, and |RQ|= |y1 − y2|, and �PRQ is a right triangle.
By the Pythagorean theorem,

|PQ|2 = |PR|2 + |QR|2 = (x1 − x2)
2 +(y1 − y2)

2

Now take the square root to get the formula.

COR: THE EQUATION OF A CIRCLE
The equation of a circle C with center at P = (h,k) and radius r is

(x−h)2 +(y− k)2 = r2.

Proof. By definition, the points of C are all those points that are a distance
of r from P. Therefore (x,y) is on C if and only if

√
(x−h)2 +(y− k)2 = r.

Square both sides of the equation to get the standard form.

R = (x2, y1)

Q = (x2, y2)

P = (x1, y1)
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Moving along, lines are next. Intuitively, the key is the idea that a line
describes the shortest path between points. That is captured more formally
in the triangle inequality, which you should recall states that |AB|+ |BC| ≥
|AC|, but that the equality only happens when A∗B∗C.

PARAMETRIC FORM FOR THE EQUATION OF A LINE
Given two distinct points P1 = (x1,y1) and P2 = (x2,y2) on a line �,
a third point P = (x,y) lies on � if and only if its coordinates can be
written in the form

x = x1 + t(x2 − x1) & y = y1 + t(y2 − y1)

for some t ∈ R.

Proof. The different possible orderings of P, P1, and P2 on the line create
several scenarios

Let me just take the middle case, where t is between 0 and 1 and P is be-
tween P1 and P2. It is representative of the other two cases.

=⇒ Show that if P = (x1 + t(x2 − x1),y1 + t(y2 − y1)) for some value of
t between 0 and 1, then P is between P1 and P2.

We can directly calculate |P1P| and |PP2|:

|P1P|= [(x− x1)
2 +(y− y1)

2]1/2

= [(x1 + t(x2 − x1)− x1)
2 +(y1 + t(y2 − y1)− y1)

2]1/2

= [(tx2 − tx1)
2 +(ty2 − ty1)

2]1/2

= t[(x2 − x1)
2 +(y2 − y1)

2]1/2

= t|P1P2|.

P1

P2

P
P1

P2P
P1

P2
P

1 2 3
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|PP2|= [(x2 − x)2 +(y2 − y)2]1/2

= [(x2 − (x1 + t(x2 − x1)))
2 +(y2 − (y1 + t(y2 − y1)))

2]1/2

= [((1− t)x2 − (1− t)x1)
2 +((1− t)y2 − (1− t)y1)

2]1/2

= (1− t)[(x2 − x1)
2 +(y2 − y1)

2]1/2

= (1− t)|P1P2|.

According to the Triangle Inequality, then, P is between P1 and P2, since

|P1P|+ |PP2|= t|P1P2|+(1− t)|P1P2|= |P1P2|.

⇐= Show that if P is between P1 and P2, then the coordinates of P can be
written in the parametric form (x1 + t(x2 − x1),y1 + t(y2 − y1)) for some
value of t between 0 and 1.

Point P is the only point in the plane which is a distance d1 = |P1P| from
P1 and a distance d2 = |PP2| from P2. Because of that uniqueness, we
just need to find a point in parametric form that is also those respective
distances from P1 and P2. The point that we are looking for is the one
where t = d1/(d1 +d2). The two calculations, that the distance from this
point to P1 is d1, and that the distance from this point to P2 is d2, are both
straightforward, so I will leave them to you.

P1

P2

P

d1

d2
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From the parametric form it is easy to get to standard form, and from there
to point-slope form, slope-intercept form, and so on. The latter steps are
standard fare for a pre-calculus course, so I will only go one step further.

STANDARD FORM FOR THE EQUATION OF A LINE
The coordinates (x,y) of the points of a line all satisfy an equation of
the form Ax+By =C where A, B, and C are real numbers.

Proof. Suppose that (x1,y1) and (x2,y2) are distinct points on the line. As
we saw in the last theorem, the other points on the line have coordinates
(x,y) that satisfy the equations

{
x = x1 + t(x2 − x1)

y = y1 + t(y2 − y1).

Now it is just a matter of combining the equations to eliminate the param-
eter t. {

x− x1 = t(x2 − x1)

y− y1 = t(y2 − y1).

At this point, you could divide the second equation by the first. That
eliminates the t variable and also serves as a definition of the slope of a
line (in particular, it shows that the slope is constant). But it also presents
a potential “divide by zero” scenario, so instead let’s multiply:

{
(x− x1)(y2 − y1) = t(x2 − x1)(y2 − y1)

(y− y1)(x2 − x1) = t(y2 − y1)(x2 − x1).

Set the two equations equal and simplify

(x− x1)(y2 − y1) = (y− y1)(x2 − x1)

x(y2 − y1)− x1(y2 − y1) = y(x2 − x1)− y1(x2 − x1)

x(y2 − y1)− y(x2 − x1) = x1(y2 − y1)− y1(x2 − x1).

This equation has the proper form, with

A = y2 − y1 B =−(x2 − x1) & C = x1(y2 − y1)− y1(x2 − x1).

Finally, it should be noted that any three real numbers A, B, C do describe
a line, so long as A and B are not both zero.
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The unit circle approach to trigonometry

At the end of the lesson on similarity, in the exercises, we defined the six
trigonometric functions. At that time, we defined them in terms of the
angles of a right triangle, which means that they were restricted to values
in the interval (0,π/2). As you know, there is also a “unit circle approach”
that extends these definitions beyond that narrow window. You have seen
this before, so I will be as brief as I can be. A point with two positive
coordinates (x,y) on the unit circle corresponds to a right triangle whose
vertices are (0,0), (x,0) and (x,y). If θ is the measure of the angle at the
origin, then cosθ = x and sinθ = y (because the hypotenuse has length
one). Now just continue that: any ray from the origin forms an angle
θ measured in the counterclockwise direction from the x-axis. That ray
intersects the unit circle at a point (x,y) and we define

cos(θ) = x sin(θ) = y.

Allowing for both proper and reflex angles, that extends the domains of
sine and cosine to [0,2π), but we can go farther. Informally, we need to
allow the ray to spin around the circle more than once (for θ values greater
than 2π) or in the counterclockwise direction (for negative θ ). Formally,
this can be done by imposing periodicity:

cos(θ +2nπ) = cos(θ) sin(θ +2nπ) = sin(θ) ∀n ∈N.

x2 + y2 = 1

(cosθ , sinθ)
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Use an isosceles and equilateral triangle to find sine and cosine values for π/3, 
π/4, and π/6. Use the symmetry of the circle to extend outside of quadrant I.
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The other four trigonometric functions (tangent, cotangent, secant, cose-
cant) are defined similarly as the ratios

tan(θ) = y/x cot(θ) = x/y sec(θ) = 1/x csc(θ) = 1/y.

There are a lot of relationships between the trigonometric functions, some
easy and some subtle. Let’s get the easy ones out of the way. From the
very definitions of the functions, we get the reciprocal identities

secθ =
1

cosθ
cscθ =

1
sinθ

cotθ =
1

tanθ
,

and identities that relate tangent and cotangent to sine and cosine

tanθ =
sinθ
cosθ

cotθ =
cosθ
sinθ

.

From the equation of the circle x2 + y2 = 1, we get the Pythagorean iden-
tities:

sin2θ + cos2θ = 1 tan2θ +1 = sec2θ 1+ cot2 θ = csc2θ .

By comparing angles taken in the counterclockwise and clockwise direc-
tions, we see that cosine and secant are even functions (where f (−x) =
f (x)) and that the other four are odd functions (where f (−x) =− f (x)).

Beyond these, there is a second tier of identities– double angle, half angle,
power reduction, etc – that are not so immediately clear. They can all be
derived from two big identities, the addition formulas for sine and cosine,
but the proofs of those two formulas require a more careful look at the
geometry of the unit circle. To close out this lesson, I will prove the two
addition formulas.

ADDITION RULE FOR COSINE

cos(α+β ) = cosα cosβ − sinα sinβ

Proof. The key to the proof is to compare two distances which we know
to be the same– one distance expressed in terms of the angle α + β , the
other in terms of the individual angles α and β . The real trick to this is to
make the right choice of distances. In particular, you have to be careful so
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that you don’t get stuck with a sin(α+β ) term in the first calculation. On
the unit circle, label the following points:

P0 = (1,0)
Pα = (cosα ,sinα)
P−β = (cos(−β ),sin(−β ))

= (cosβ ,−sinβ )
Pα+β = (cos(α+β ),sin(α+β ))

If O is the origin, then the triangles �OP0Pα+β and �OP−βPα are con-
gruent (S·A·S: in each triangle, two of the sides are radii, and the angle
between them measures α+β ). That means that the two segments P0Pα+β
and P−βPα have to be congruent, and so we can compare their lengths (it
is actually easier to work with the squares of those lengths). Through-
out these calculations, we make repeated use of the Pythagorean Identity
sin2 x+ cos2 x = 1.

|P0Pα+β |2 = (cos(α+β )−1)2 +(sin(α+β )−0)2

= cos(α+β )2 −2cos(α+β )+1+ sin2(α+β )

= 2−2cos(α+β ).

|P−βPα |2 = (cosα− cosβ )2 +(sinα+ sinβ )2

= cos2α−2cosα cosβ + cos2β

+ sin2α+2sinα sinβ + sin2β

= 2−2cosα cosβ +2sinα sinβ .

Set these two expressions equal to each other, subtract 2 and divide by -2
to get the desired formula

cos(α+β ) = cosα cosβ − sinα sinβ .

Pα
Pα+β

P– β

P0

that you don’t get stuck with a sin(α+β ) term in the first calculation. On
the unit circle, label the following points:

P0 = (1,0)
Pα = (cosα ,sinα)
P−β = (cos(−β ),sin(−β ))

= (cosβ ,−sinβ )
Pα+β = (cos(α+β ),sin(α+β ))
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ADDITION RULE FOR SINE

sin(α+β ) = sinα cosβ + cosα sinβ

Proof. For this proof, one approach would be to use the cofunction iden-
tity sin(x) = cos(π/2−x) followed by the addition rule for cosine that we
just derived. That is pretty easy, but you would have to verify the cofunc-
tion identity first. That too is easy for x values between 0 and π/2, but
gets to be a nuisance once you have to consider all the other possible val-
ues of x. I think it is easier to do something like the last proof– compare
some distances and then do a little algebra. On the unit circle, label the
following points

P0 = (1,0)
Pα = (cosα ,sinα)
Pβ = (cosβ ,sinβ )
Pα+β = (cos(α+β ),sin(α+β )).

By S·A·S, the segments PαPα+β and P0Pβ are congruent. Let’s compare
those two distances. Here we go (note the use of the addition rule for
cosine midway through the first distance calculation).

|PαPα+β |2 = (cos(α+β )− cos(α))2 +(sin(α+β )− sin(α))2

= cos2(α+β )−2cosα cos(α+β )+ cos2α

+ sin2(α+β )−2sinα sin(α+β )+ sin2α

= 2−2cosα cos(α+β )−2sinα sin(α+β )

= 2−2cosα(cosα cosβ − sinα sinβ )−2sinα sin(α+β )

= 2−2cos2α cosβ +2sinα cosα sinβ −2sinα sin(α+β )

Pα

Pα+β

P0

Pβ
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and

|P0Pβ |2 = (cosβ −1)2 +(sinβ −0)2

= cos2β −2cosβ +1+ sin2β

= 2−2cosβ .

Now set these two expressions equal, subtract 2 from both sides and divide
through by -2 to get

cos2α cosβ − sinα cosα sinβ + sinα sin(α+β ) = cosβ .

In this equation solve for the sin(α+β ) term

sinα sin(α+β ) = cosβ − cos2α cosβ + sinα cosα sinβ
= cosβ (1− cos2α)+ sinα cosα sinβ
= cosβ sin2α+ sinα cosα sinβ
= sinα(sinα cosβ + cosα sinβ ).

As long as sinα is not zero, we can divide both sides by that, and what’s
left over is what we want. What if sinα is zero? Well, that happens when
α is any multiple of π , and those cases are easy enough to handle on their
own. On the left side, adding nπ corresponds to a half-turn or a whole
turn around the unit circle, so

sin(nπ+β ) =

{
sinβ if n is even
−sinβ if n is odd.

Compare that to the right side

sin(nπ)cosβ + cos(nπ)sinβ = 0 · cosβ + cos(nπ)sinβ

=

{
sinβ if n is even
−sinβ if n is odd

They are the same.
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Exercises

1. Prove the midpoint formula. Let P = (a,b) and Q = (c,d). Verify that
the coordinates of the midpoint of PQ are

(
a+ c

2
,
b+d

2

)
.

2. Show that the points on the circle with center (h,k) and radius r can be
described by the parametric equations

{
x(θ) = h+ r cosθ
y(θ) = k+ r sinθ

.

3. Let �1 and �2 be perpendicular lines, neither of which is a vertical line.
Show that the slopes of �1 and �2 are negative reciprocals of one an-
other.

4. Verify that the triangle with vertices at (0,0), (2a,0), and (a,a
√

3) is
equilateral.

5. Find the equation of the circle which passes through the three points:
(0,0), (4,2) and (2,6).

6. Let �ABC be the triangle with vertices at the coordinates A = (0,0),
B = (1,0), C = (a,b). Find the coordinates of its circumcenter, ortho-
center, and centroid (in terms of a and b).

7. All of the special values on the unit circle can be written in the form
nπ/12, but not all values of that form are represented. Find the coor-
dinates on the unit circle for the angles θ = π/12, 5π/12, 7π/12, and
11π/12.
The remaining exercises verify some common trigonometric identities
that we will need to for later calculations. You don’t need to do them
all– I really just want to have all of these identities together in one
place.
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8. Use the addition formulas to derive the cofunction identities.

sin
(π

2
−θ

)
= cosθ cos

(π
2
−θ

)
= sinθ

tan
(π

2
−θ

)
= cotθ cot

(π
2
−θ

)
= tanθ

sec
(π

2
−θ

)
= cscθ csc

(π
2
−θ

)
= secθ

9. Use the addition formulas to derive the double angle formulas

sin(2θ) = 2sinθ cosθ

cos(2θ) = cos2 θ − sin2θ

= 2cos2θ −1
= 1−2sin2 θ

tan(2θ) =
2tanθ

1− tan2θ

10. Use the double angle formulas for cosine to derive the power-reduction
formulas

sin2 θ =
1− cos(2θ)

2

cos2 θ =
1+ cos(2θ)

2

tan2 θ =
1− cos(2θ)
1+ cos(2θ)

11. Use the power-reduction formulas to derive the half-angle formulas

sin
θ
2
=±

√
1− cosθ

2

cos
θ
2
=±

√
1+ cosθ

2

tan
θ
2
=

1− cosθ
sinθ

=
sinθ

1+ cosθ
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12. Verify the product-to-sum formulas

sinα sinβ =
1
2
[cos(α−β )− cos(α+β )]

cosα cosβ =
1
2
[cos(α+β )+ cos(α−β )]

sinα cosβ =
1
2
[sin(α+β )+ sin(α−β )]

13. Verify the sum-to-product formulas

sinα+ sinβ = 2sin
(
α+β

2

)
cos

(
α−β

2

)

sinα− sinβ = 2cos
(
α+β

2

)
sin

(
α−β

2

)

cosα+ cosβ = 2cos
(
α+β

2

)
cos

(
α−β

2

)

cosα− cosβ =−2sin
(
α+β

2

)
sin

(
α−β

2

)


