24 ISOMETRIES
BOW TO YOUR PARTNER. BOW TO YOUR CORNER.
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One of the prevailing philosophies of modern mathematics is that in order
to study something, you need to study the types of maps that preserve it—
that is, the types of maps that leave it invariant. For instance, in group
theory we study group homomorphisms because they preserve the group
operation (in the sense that f(a-b) = f(a)- f(b)). In Euclidean geometry
there are several structures that might be worth preserving— incidence, or-
der, congruence— but in the next few lessons our focus will be on mappings
that preserve distance.

Definitions

Let’s start with a review of some basic terminology associated with maps
from one set to another.

DEF: ONE-TO-ONE, ONTO, AND BIJECTIVE MAPPINGS
Amap f: X =Y is:

- one-to-one if f(x) = f(y) = x=y;

- onto if for every y € Y there is an x € X such that f(x) =y;
- bijective if it is both one-to-one and onto.

X

1-1
onto x x Vi

- EN
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Under the right circumstances, two mappings may be chained together:
the composition of f: X —Y and g:Y — Zis

gof:X —=Z:gof(x)=g(f(x)).

This type of composition is usually not commutative— in fact, f o g may
not even be defined. It is associative, though, and that is a very essential
property. For any space X the map

id:X —X:id(x)=x

is called the identity map. Two maps f: X — Y and g: Y — X are inverses
of one another if f o g is the identity map on Y and go f is the identity
map on X. In order for a map to have an inverse, it must be bijective (and
conversely, any bijection is invertible).

X g X

DEF: AUTOMORPHISM
An automorphism is a bijective mapping f from a space to itself.

We are interested in automorphisms of the Euclidean plane, but not just
any automorphisms. We want the ones that do not distort the distances
between points. These are called Euclidean isometries.
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DEF: ISOMETRY

Let E denote the set of points of the Euclidean plane. A Euclidean
isometry is an automorphism f : [E — [ that preserves the distance
between points: for all A, Bin E, |f(A)f(B)| = |AB|.

I will leave the proof of the following basic properties of isometries to you.
If you are familiar with the concept of a group, these properties mean that
the set of Euclidean isometries is a group.

LEM: BASIC PROPERTIES OF ISOMETRIES
The composition of two isometries is an isometry. The identity map
is an isometry. The inverse of an isometry is an isometry.

Recall that everything we have done in Euclidean geometry floats on five
undefined terms: point, line, on, between, and congruence. An isometry
is defined in terms of its behavior on points, but the distance preservation
condition has implications for the remaining undefined terms as well.

LEM: ISOMETRIES AND CONGRUENCE

An isometry preserves both segment and angle congruence. That is,
AB~A'B' = f(A)f(B) ~ f(A)f(B)
ZABC ~ /A'B'C' = Zf(A)f(B)f(C)~ Zf(A)f(B')f(C")
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Proof. The segment congruence part is easy, because isometries preserve
distance and hence segment length, and it is those lengths that determine
whether or not segments are congruent: if AB ~ A'B’, then

[F(A)f(B)| = |AB| = |A'B'| = | f(A") £ (B)]

Iir f(B)

and so f(A)f(B) ~ f(A")f(B’). The angle congruence part is not that hard
either, but we will need to use a few of the triangle congruence theorems.
Relocate, if necessary, A’ and C’ on their respective rays so that BA ~
B'A’ and BC ~ B'C'. By S-A-S, the triangles AABC and AA'B'C’ are
congruent. The corresponding sides of these two triangles are congruent,
and from the first part of the proof, the congruences are transferred by f:

AB~A'B' = f(A)f(B) ~ f(A))f(B)
BC~B'C" = f(B)f(C) = f(B)f(C')
CA~C'A" = f(C)f(4) = f(C)f(A)

@ e
A f(A)

~, S:AS ~, S:S:S

By S-S-S, triangles A f(A)f(B)f(C) and Af(A)f(B)f(C) are congruent,
and so the corresponding angles Zf(A)f(B)f(C) and Zf(A)f(B)f(C)
are congruent. [
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If you were paying attention in the last proof, you may have noticed that
it could easily be tweaked to say a bit more: an isometry doesn’t preserve
just distance— it also preserves angle measure, in the sense that

(ZABC) = (£f(A)f(B)f(C)).

This is useful. In fact, we will use it in the last proof of this lesson.

LEM: ISOMETRIES, INCIDENCE AND ORDER
If A, B,and C are collinear, in the order AxB+C, and f is an isometry,
then f(A), f(B), and f(C) are collinear, in the order f(A)* f(B)

f(C).
Proof. Suppose A Bx*C. Then, by segment addition
|AC| = |AB| + |BC|.
Distance is invariant under f, so we can make the substitutions

[f(A)f(B)| = |AB|, |f(B)f(C)] =I[BC|, |f(A)f(C)|=|AC],

to get
IF(AFO)] =I1f(A)f(B)+|F(B)f(C)I-
This is the degenerate case of the Triangle Inequality: the only way this

equation can be true is if f(A), f(B),and f(C) are collinear, and that f(B)
is between f(A) and f(C). O
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In the last result we were talking about three points, but by extension, this
means that all the points on a line are mapped again to collinear points. In
other words, an isometry, which is defined as a bijection of points, is also a
bijection of the lines of the geometry. Further, an isometry maps segments
to segments, rays to rays, angles to angles, and circles to circles. Well,
here’s an opportunity to simplify notation. When I apply an isometry f to
a segment AB, for example, instead of writing f(A) f(B), I will go with the
more streamlined f(AB). For an angle ZABC, instead of Zf(A) f(B) f(C),
I will write f(£ZABC). And so on.

Fixed points

The overarching goal of the next few lessons is to classify all Euclidean
isometries. It turns out that one of the keys to this is fixed points.

DEF: FIXED POINT
A point P is a fixed point of an isometry f if f(P) = P.

The first big step towards a classification is to answer the following ques-
tion:

Given isometries fi and f>, which may be described in very different
ways, how do we figure out if they are really the same?

Showing that they are not the same is usually easy— you just need to find
one point P where fi(P) # f>(P). Showing that they are the same seems
like a more difficult task. At the most basic level, isometries are functions
of the Euclidean plane. Without any additional structure, the only way to
show two functions are equal is to show that they agree on the value of
all points. This is because the behavior of an arbitrary function is quite
unconstrained. Fortunately, the bijection and distance-preserving proper-
ties of an isometry impose significant constraints on its behavior. Those
constraints mean that we can determine whether or not two isometries are
the same by looking at just a few points.
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A(C) must still be on both of these circles.

THM: TWO FIXED POINTS
If an isometry f fixes two distinct points A and B, then it fixes all the
points of the line <~ AB—.

Proof. Let C be a third point on this line. Label its distances from A as ¢
and from B as d,. The key here is that C is the only point that is a distance
d; from A and a distance d, from B (I think this is intuitively clear, but for
a more formal point of view, you can look back at our investigation of the
possible intersections of circles in Lesson 16). Now hit these three points
with the isometry f. Distances stay the same, so f(C) is still a distance d
from f(A) = A, and f(C) is still a distance &, from f(B) = B. That means
that f(C) must be C. O

THM: THREE (NON-COLLINEAR) FIXED POINTS
If an isometry f fixes three non-collinear points A, B, and C, then it
fixes all points (it is the identity isometry).

Proof. By the last result, f must fix all the points on each of the lines
«~AB—, < AC —, and « BC —. Now suppose that D is a point that is not
on any of those lines. We need to show that D is a fixed point as well.
Choose a point M that is between A and B. It is fixed by f. According to
Pasch’s lemma, the line «+ DM — must intersect at least one other side of
AABC. Call this intersection N. It too is fixed by f. Therefore D is on a
line < MN — with two fixed points. According to the previous result, it is
a fixed point. O
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B

A line through D intersecting two fixed lines.

Now we can answer the question I posed at the start of this section: how
much do we need to know about two isometries before we can say they
are the same?

THM: THREE NON-COLLINEAR POINTS ARE ENOUGH

If two isometries f; and f, agree on three non-collinear points, then
they are equal.

Proof. Suppose that A, B, and C are three non-collinear points, and that

fi(A) = 12(A)  fi(B) = fa(B)  fi(C) = f2(C).

Applying f,° !'to both sides of each of these equations,

£t o fi(A) = £y o fo(A) = id(A) = 4,
£ "o fi(B) = fy "o f2(B) = id(B) = B,
£ lofilC)=f o (C)=id(C) =C.

Therefore f, Yo f; has three non-collinear fixed points— it must be the
identity, and so

fz_lofl =id
frofytofi=froid
idofi=f

fi=fo
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The analytic viewpoint

To wrap up this lesson, let’s look at isometries from the analytical point
of view. Any isometry defines a function on the coordinate pairs. As we
have seen, isometries themselves are fairly structured, so it makes sense,
then, that the functions they define on the coordinate pairs would have to
be similarly inflexible. That is indeed the case.

GENERAL FORM FOR AN ISOMETRY
Any Euclidean isometry 7" has analytic equations that can be written
in one of two matrix forms

0 ()= (e ) ()
@ ()= (1) (e %) (3)

where h, k, and 0 are real numbers.

Proof. Let T be an isometry. Ultimately, we want to know about 7'(x,y),
but it will take a few steps to get there, starting with the origin, moving to
the point (x,0), and then finally to (x,y).

The origin (0,0). This is the easy one. Since the origin is our first point
of consideration, there are no limitations on where it goes (we don’t know
it yet, but there are isometries that take any point to any other point of
the plane). Set 2 and k by looking at what happens to the origin: set
(h,k) =T(0,0).

0 *.0) T(x,0)
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The point (x,0). An isometry preserves distances, and the distance from
(x,0) to the origin is |x|. Applying the isometry to both of those points, the
distance from 7'(x,0) to (h,k) also has to be |x|. In other words, T'(x,0)
is on the circle with center (h,k) and radius |x|. If you did the exercise
in the last lesson on parametrizing circles (or if you have worked with
parametrized circles in calculus), then you know this means that 7'(x,0)
has to have the form

(h+|x|cos 6, k+ |x|sinB)

for some value of 6. In fact (and I will leave it to you to figure out why),
the absolute value signs around the x are not needed.

o (x.y)
T(x,y) 4

O

The point (x,y). Likewise, since the distance from (x,0) to (x,y) is |y|,
T(x,y) has to be on the circle centered at 7T'(x,0) with radius |y|. That
means its coordinates can be written in the form

(h+xcos0+ |y|cos¢, k+xsinB + |y|sin¢)

for some value of ¢. The possibilities are more limited than that, though:
the three points (0,0), (x,0) and (x,y) form a right angle at (x,0). Since
an isometry preserves angle measures, the images of these three points
must also form a right angle. This can only happen if ¢ = 6 +7/2 or
¢ =60 —¢/2. As before, the absolute value signs around the y can be
dropped and that gets us to:

(h—i-xcosG + ycos (6 + g) , k+xsin 0 + ysin (6 + g)) )
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Now use the addition formulas for sine and cosine

cos(0 +m/2) = cos O cos(+m/2) —sinOsin(+m/2) = Fsin O
sin(0 £ 7/2) = sin O cos(+mw/2) +cos O sin(+x/2) = £cos O

and the coordinates for 7'(x,y) take on the form

(1) T(x,y)=(h+xcos0 —ysin6,k+xsin +ycos )
(2) T(x,y) = (h+xcosB0+ysin0,k+xsin —ycos0).

Written in matrix form, these are
X h cosf —sinf)\ [(x
n T <y> - <k> + <sin8 cos 8 > <y>
X h cos® sinf X
2 T <y> - <k> * <sin8 —cos 6> <y> ’
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Exercises

1. Let T be an isometry and let r be a ray with endpoint O. Prove that
T(r) is also a ray, with endpoint 7'(0).

2. Verify that if ¢; and ¢, are parallel lines and 7 is an isometry, then
T(¢) and T (¢;) will be parallel.

3. Let T be an isometry and let A and B be two points that are on the same
side of a line £. Prove that T(A) and T (B) are on the same side of T'(¢).

4. Let T be an isometry and let D be a point in the interior of angle ZABC.
Prove that 7'(D) is a point in the interior of 7 (ZABC).

5. Let M be the midpoint of a segment AB, and let T be an isometry so
that T(A) = B and T(B) = A. Prove that M is a fixed point of this
isometry.

6. Given a proper angle ZABC and an isometry T such that
(1) T(BA—»)=BC— & (2) T(BC—)=BA-,
show that T fixes all the points of the angle bisector of ZABC.

7. In the final theorem of this lesson I showed that every isometry can be
written in one of two forms. Prove the converse, that any mapping of
that form is an isometry.



