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the ultimate objective of this lesson is derive a third triangle congruence
theorem, A·A·s. the basic technique i used in the last chapter to prove
s·A·s and A·s·A does not quite work this time though, so along the way
we are going to get to see a few more of the tools of neutral geometry:
supplementary angles, the Alternate interior Angle theorem, and the ex-
terior Angle theorem.

supplementary Angles

there aren’t that many letters in the alphabet, so it is easy to burn through
most of them in a single proof if you aren’t frugal. even if your variables
don’t run the full gamut from A to Z, it can be a little challenging just
trying to keep up with them. some of this notation just can’t be avoided;
fortunately, some of it can. one technique i like to use to cut down on
some notation is what i call “relocation”. let’s say you are working with
a ray AB . now you can’t change the endpoint A without changing the
ray itself, but there is a little flexibility with the point B. if B is any other
point on the ray (other than A), then AB  and AB  are actually the
same. so rather than introduce a whole new point on the ray, i like to just
”relocate” B to a more convenient location. the same kind of technique
can also be used for angles and lines. let me warn you: you must be
careful not to abuse this relocation power. i have seen students relocate a
point to one intersection, use the fact that the point is at that intersection in
their proof, and then relocate it again a few steps later to another location.
That is obviously bad! Yes there is some flexibility to the placement of
some of these points, but once you have used up that flexibility, the point
has to stay put.

Relocation of points is a shortcut to cut down on notation.  Illustrated here are 
the relocations of points A, B, and C to make the congruences needed for the 
proof that the supplements of congruent angles are congruent.
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three noncolinear points A, B, and C define an angle ∠ABC. When
they are colinear, they do not define a proper angle, but you may want to
think of them as forming a kind of degenerate angle. if A∗B∗C, then A,
B, and C form what is called a “straight angle”. one of the most basic
relationships that two angles can have is defined in terms of these straight
angles.

DeF: suPPleMentArY Angles
suppose that A, B and C form a straight angle with A∗B∗C. let D be
a fourth point which is not the line through A, B and C. then ∠ABD
and ∠CBD are supplementary angles.

supplements have a nice and healthy relationship with congruence as re-
lated in the next theorem.

tHM: congruent suPPleMents
the supplements of congruent angles are congruent:
given two pairs of supplementary angles
Pair 1: ∠ABD and ∠CBD and
Pair 2: ∠ABD and ∠CBD,
if ∠ABD  ∠ABD, then ∠CBD  ∠CBD.

Proof. the idea is to relocate points to create a set of congruent triangles,
and then to find a path of congruences leading from the given angles to
the desired angle. in this case the relocation is easy enough: position A,
C, and D on their respective rays BA, BC and BD so that

BA  BA BC  BC BD  BD.
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the path through the series of congruent triangles isn’t that hard either if
you just sit down to figure it out yourself. The problem is in writing it
down so that a reader can follow along. in place of a traditional proof,
i have made a chart that i think makes it easy to walk through the con-
gruences. to read the chart, you need to know that i am using a little
shorthand notation for each of the congruences. Here’s the thing– each
congruence throughout the entire proof compares segments, angles, or tri-
angles with the same letters. the difference is that on the right hand side,
the letters are marked with a , while on the left they are not. For in-
stance, the goal of this proof is to show that ∠CBD  ∠CBD. When i
was working through the proof i found it a little tedious have to write the
whole congruence out with every single step. since the left hand side of
the congruence determines the right hand side anyway, i just got in the
habit of writing down only the left hand side. in the end i decided that
was actually easier to read than the whole congruence, so in the chart, the
statement AB really means AB  AB. i still feel a little uneasy doing this,
so let me give another defense of this shorthand. one of the things i talked
about in the last lesson was the idea of these congruences “locking in” a
triangle– if you know s·A·s, for instance, then the triangle is completely
determined. the statements in this proof can be interpreted as the locking
in of various segments, angles, and triangles. For instance, B is between
A and C, so if AB and BC are given, then AC is locked in by the segment
Addition Axiom. okay, so that’s enough about the notation. Here’s the
chart of the proof.
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every angle has two supplements. to get a supplement of an angle, simply
replace one of the two rays forming the angle with its opposite ray. since
there are two candidates for this replacement, there are two supplements.
there is a name for the relationship between these two supplements.

DeF: verticAl Angles
Vertical angles are two angles which are supplementary to the same
angle.

every angle is part of one and only one vertical angle pair (something you
may want to prove). For ∠ABC, the other half of the pair is the angle
formed by the rays (BA )op and (BC )op. Without a doubt, the single
most important property of vertical angles is that

tHM: on verticAl Angles
vertical angles are congruent.

Proof. Two vertical angles are, by definition, supplementary to the same
angle. that angle is congruent to itself (because of the second axiom
of congruence). now we can use the last theorem. since the vertical
angles are supplementary to congruent angles, they themselves must be
congruent.

every angle has two supplements. to get a supplement of an angle, simply
replace one of the two rays forming the angle with its opposite ray. since
there are two candidates for this replacement, there are two supplements.
there is a name for the relationship between these two supplements.

DeF: verticAl Angles
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angle.

every angle is part of one and only one vertical angle pair (something you
may want to prove). For ∠ABC, the other half of the pair is the angle
formed by the rays (BA )op and (BC )op. Without a doubt, the single
most important property of vertical angles is that

tHM: on verticAl Angles
vertical angles are congruent.

Proof. Two vertical angles are, by definition, supplementary to the same
angle. that angle is congruent to itself (because of the second axiom
of congruence). now we can use the last theorem. since the vertical
angles are supplementary to congruent angles, they themselves must be
congruent.
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Two intersecting lines generate 
two pairs of vertical angles. 
 
Pair 1: ∠ABC and ∠ABC

Pair 2: ∠ABA and ∠CBC
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The Alternate interior Angle Theorem

the farther we go in the study of neutral geometry, the more we are go-
ing to bump into issues relating to how parallel lines behave. A lot of
the results we will derive are maddeningly close to results of euclidean
geometry, and this can lead to several dangerous pitfalls. the Alternate
Interior Angle Theorem is maybe the first glimpse of that.

DeF: trAnsversAls
given a set of lines, {1, 2, . . . , n}, a transversal is a line which
intersects all of them.

DeF: AlternAte AnD ADjAcent interior Angles
let t be a transversal to 1 and 2. Alternate interior angles are pairs
of angles formed by 1, 2, and t, which are between 1 and 2, and
on opposite sides of t. Adjacent interior angles are pairs of angles on
the same side of t.

the Alternate interior Angle theorem tells us something about transver-
sals and parallel lines. read it carefully though. the converse of this
theorem is used a lot in euclidean geometry, but in neutral geometry this
is not an “if and only if” statement.

t
A transversal t of a set of lines.

2

34

1

Alternate pairs: 1 and 3, 2 and 4. Adjacent pairs: 1 and 4, 2 and 3.
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tHe AlternAte interior Angle tHeoreM
let 1 and 2 be two lines, crossed by a transversal t.
if the alternate interior angles formed are congruent,
then 1 and 2 are parallel.

Proof. First i want to point out something that may not be entirely clear
in the statement of the theorem. the lines 1, 2 and t will actually form
two pairs of alternate interior angles. However, the angles in one pair are
the supplements of the angles in the other pair, so if the angles in one
pair are congruent then angles in the other pair also have to be congruent.
now let’s get on with the proof, a proof by contradiction. suppose that
1 and 2 are crossed by a transversal t so that alternate interior angles are
congruent, but suppose that 1 and 2 are not parallel. label

A: the intersection of 1 and t;

B: the intersection of 2 and t;

C: the intersection of 1 and 2.

by the segment construction Axiom there are also points

D on 1 so that D∗A∗C and so that AD  BC, and

D on 2 so that D ∗B∗C and so that BD  AC.

in terms of these marked points the congruent pairs of alternate interior
angles are

∠ABC  ∠BAD & ∠ABD  ∠BAC.

Take the first of those congruences, together with the fact that that we
have constructed AD  BC and AB  BA, and that’s enough to use s·A·s:
ABC BAD. i really just want to focus on one pair of corresponding
angles in those triangles though: ∠ABD  ∠BAC. now ∠BAC is con-
gruent to its alternate interior pair ∠ABD, so since angle congruence is
transitive, this means that ∠ABD  ∠ABD. Here’s the problem. there is
only one way to construct this angle on that side of t, so the rays BD and
BD must actually be the same. that means that D, which we originally
placed on 1, is also on 2. that would imply that 1 and 2 share two
points, C and D, in violation of the very first axiom of incidence.

If 1 and 2 crossed on one side of t, they would have to cross on the other side.

D

D

A

B

C

1

2

D
D

A

B

C



57congruence ii

The exterior Angle Theorem

We have talked about congruent angles, but so far we have not discussed
any way of saying that one angle is larger or smaller than the other. that
is something that we will need to do eventually, in order to develop a
system of measurement for angles. For now though, we need at least some
rudimentary definitions of this, even if the more fully developed system
will wait until later.

DeF: sMAller AnD lArger Angles
given two angles ∠A1B1C1 and ∠A2B2C2, the Angle construction
Axiom guarantees that there is a point A on the same side of �B2C2
as A2 so that ∠AB2C2 ∠A1B1C1. if A is in the interior of ∠A2B2C2,
then we say that ∠A1B1C1 is smaller than ∠A2B2C2. if A is on
the ray B2C2, then the two angles are congruent as we have previ-
ously seen. if A is neither in the interior of ∠A2B2C2, nor on the ray
B2C2, then ∠A1B1C1 is larger than ∠A2B2C2.

tHe AlternAte interior Angle tHeoreM
let 1 and 2 be two lines, crossed by a transversal t.
if the alternate interior angles formed are congruent,
then 1 and 2 are parallel.

Proof. First i want to point out something that may not be entirely clear
in the statement of the theorem. the lines 1, 2 and t will actually form
two pairs of alternate interior angles. However, the angles in one pair are
the supplements of the angles in the other pair, so if the angles in one
pair are congruent then angles in the other pair also have to be congruent.
now let’s get on with the proof, a proof by contradiction. suppose that
1 and 2 are crossed by a transversal t so that alternate interior angles are
congruent, but suppose that 1 and 2 are not parallel. label

A: the intersection of 1 and t;

B: the intersection of 2 and t;

C: the intersection of 1 and 2.

by the segment construction Axiom there are also points

D on 1 so that D∗A∗C and so that AD  BC, and

D on 2 so that D ∗B∗C and so that BD  AC.

in terms of these marked points the congruent pairs of alternate interior
angles are

∠ABC  ∠BAD & ∠ABD  ∠BAC.

Take the first of those congruences, together with the fact that that we
have constructed AD  BC and AB  BA, and that’s enough to use s·A·s:
ABC BAD. i really just want to focus on one pair of corresponding
angles in those triangles though: ∠ABD  ∠BAC. now ∠BAC is con-
gruent to its alternate interior pair ∠ABD, so since angle congruence is
transitive, this means that ∠ABD  ∠ABD. Here’s the problem. there is
only one way to construct this angle on that side of t, so the rays BD and
BD must actually be the same. that means that D, which we originally
placed on 1, is also on 2. that would imply that 1 and 2 share two
points, C and D, in violation of the very first axiom of incidence.

1 2 3

∠3 is larger than ∠2∠1 is smaller than ∠2
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in lesson 8, i will come back to this in more detail. Feel free to skip ahead
if you would like a more detailed investigation of this way of comparing
non-congruent angles.

DeF: eXterior Angles
An exterior angle of a triangle is an angle supplementary to one of
the triangle’s interior angles.

tHe eXterior Angle tHeoreM
the measure of an exterior angle of a triangle is
greater than the measure of either of the nonadjacent
interior angles.

Proof. i will use a straightforward proof by contradiction. starting with
the triangle ABC, extend the side AC past C: just pick a point D so
that A ∗C ∗D. now suppose that the interior angle at B is larger than the
exterior angle at ∠BCD. then there is a ray r from B on the same side
of BC as A so that BC  and r form an angle congruent to ∠BCD. this
ray will lie in the interior of ∠B, though, so by the crossbar theorem,
r must intersect AC. call this intersection point P. now wait, though.
the alternate interior angles ∠PBC and ∠BCD are congruent. According
to the Alternate interior Angle theorem r and AC must be parallel– they
can’t intersect. this is an contradiction.

in lesson 8, i will come back to this in more detail. Feel free to skip ahead
if you would like a more detailed investigation of this way of comparing
non-congruent angles.

DeF: eXterior Angles
An exterior angle of a triangle is an angle supplementary to one of
the triangle’s interior angles.

tHe eXterior Angle tHeoreM
the measure of an exterior angle of a triangle is
greater than the measure of either of the nonadjacent
interior angles.

Proof. i will use a straightforward proof by contradiction. starting with
the triangle ABC, extend the side AC past C: just pick a point D so
that A ∗C ∗D. now suppose that the interior angle at B is larger than the
exterior angle at ∠BCD. then there is a ray r from B on the same side
of BC as A so that BC  and r form an angle congruent to ∠BCD. this
ray will lie in the interior of ∠B, though, so by the crossbar theorem,
r must intersect AC. call this intersection point P. now wait, though.
the alternate interior angles ∠PBC and ∠BCD are congruent. According
to the Alternate interior Angle theorem r and AC must be parallel– they
can’t intersect. this is an contradiction.

Three pairs of exterior angles Exterior Angle Th’m: a proof by contradiction
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A·A·s triAngle congruence
in triangles ABC and ABC, if

∠A  ∠A ∠B  ∠B BC  BC,

then ABC ABC.

Proof. the setup of this proof is just like the proof of A·s·A, but for the
critical step we are going to need to use the exterior Angle theorem.
locate A on BA  so that AB  AB. by s·A·s, ABC  ABC.
therefore ∠A  ∠A  ∠A. now if B∗A∗A (as illustrated) then ∠A is
an exterior angle and ∠A is a nonadjacent interior angle of the triangle
AAC. Acording to the exterior Angle theorem, these angles can’t be
congruent. if B∗A∗A, then ∠A is an exterior angle and ∠A is a nonadja-
cent interior angle. Again, the exterior Angle theorem says these angles
can’t be congruent. the only other possibility, then, is that A = A, so
AB  AB, and by s·A·s, that means ABC ABC.
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A familiar chase to 
prove AAS, but this 
time we have to call 
upon the Exterior 
Angle Theorem.
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exercises

1. Prove that for every segment AB there is a point M on AB so that AM 
MB. this point is called the midpoint of AB.

2. Prove that for every angle ∠ABC there is a ray BD  in the interior
of ∠ABC so that ∠ABD  ∠DBC. this ray is called the bisector of
∠ABC.

3. Working from the spaghetti diagram proof that the supplements of con-
gruent angles are congruent, write a traditional proof.






