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hilbert’s geometry starts with incidence, congruence, and order. it is a
synthetic geometry in the sense that it is not centrally built upon mea-
surement. nowadays, it is more common to take an metrical approach to
geometry, and to establish your geometry based upon a measurement. in
the metrical approach, you begin by defining a distance function– a func-
tion d which assigns to each pairs of points a real number and satisfies the
following requirements

(i) d(P,Q)≥ 0, with d(P,Q) = 0 if and only if P = Q,
(ii) d(P,Q) = d(Q,P), and

(iii) d(P,R)≤ d(P,Q)+d(Q,R).

Once the distance function has been chosen, the length of a segment is
defined to be the distance between its endpoints. I will follow the conven-
tion of using the absolute value sign to notate the length of a segment, so
|PQ|= d(P,Q). Then congruence is defined by saying that two segments
are congruent if they have the same length. Incidence and order also can
be defined in terms of d: points P, Q, and R are all on the same line, and Q
is between P and R when the inequality in (iii) is an equality. You see, syn-
thetic geometry takes a back seat to analytic geometry, and the synthetic
notions of incidence, order, and congruence, are defined analytically. I do
not have a problem with that approach– it is the one that we are going to
take in the development of hyperbolic geometry much later on. We have
been developing a synthetic geometry, though, and so what I would like
to do in this lesson is to build distance out of incidence, order, and con-
gruence. This is what Hilbert did when he developed the real number line
and its properties inside of the framework of his axiomatic system.

Modest expectations

Here we stand with incidence, order, congruence, the axioms describing
them, and at this point even a few theorems. Before we get out of this
section, I will throw in the last two axioms of neutral geometry, the axioms
of continuity, too. From all of this, we want to build a distance function
d. Look, we have all dealt with distance before in one way or another, and
we want our distance function to meet conditions (i)–(iii) above, so it is
fair to have certain expectations for d. i don’t think it is unreasonable to
expect all of the following.
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(1) The distance between any two distinct points should be a positive
real number and the distance from a point to itself should be zero.
that way, d will satisfy condition (i) above.

(2) Congruent segments should have the same length. That takes care
of condition (ii) above, since AB  BA, but it does a whole lot more
too. you see, let’s pick out some ray r and label its endpoint O. ac-
cording to the Segment Construction Axiom, for any segment AB,
there is a unique point P on r so that AB  OP. If congruent seg-
ments are to have the same length, then that means |AB|= d(O,P).
Therefore, if we can just work out the distance from O to the other
points on r, then all other distances will follow.

(3) If A∗B∗C, then
|AB|+ |BC|= |AC|.

This is just a part of property (iii) of a distance function. Since
we are going to develop the distance function on r, we don’t have
to worry about non-colinear points just yet (that will come a little
later). Relating back to your work in the last section, since d never
assigns negative values, this means that

AB ≺CD =⇒ |AB|< |CD|,
AB CD =⇒ |AB|> |CD|.

It is up to us to build a distance function that meets all three of these
requirements. The rest of this chapter is devoted to doing just that.

a b a+b

The additivity condition for d.
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Divide and combine: the dyadic points

With those conditions in mind, let’s start building the distance function
d. the picture that i like to keep in my mind as i’m doing this is that
simple distance measuring device: the good old-fashioned ruler. Not a
metric ruler mind you, but an english ruler with inches on it. here is
one way that you can classify the markings on the ruler. You have the 1
mark. That distance is halved, and halved, and halved again to get the
1/2, 1/4, and 1/8 marks. Depending upon the precision of the ruler,
there may be 1/16 or 1/32 markings as well. all the other marks on
the ruler are multiples of these. Well, that ruler is the blueprint for how
we are going to build the skeleton of d. First of all, because of condition
(1), d(O,O) = 0. now take a step along r to another point. any point is
fine– like the inch mark on the ruler, it sets the unit of measurement. Call
this point P0 and define d(O,P0) = 1. Now, as with the ruler, we want to
repeatedly halve OP0. That requires a little theory.

def: midPoint
a point M on a segment AB is the midpoint of AB if AM  MB.

thm: existence, uniQueness of midPoints
Every segment has a unique midpoint.

Proof. Existence. Given the segment AB,
choose a point P which is not on � AB .
according to the angle and segment con-
struction Axioms, there is a point Q on the
opposite side of � AB  from P so that
∠ABP  ∠BAQ (that’s the angle construc-
tion part) and so that BP  AQ (that’s the
segment construction part). since P and Q
are on opposite sides of�AB, the segment
PQ intersects it. Call that point of intersec-
tion M. i claim that M is the midpoint of AB.
Why? Well, compare MBP and MAQ.

P

Q

M

B

A
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in those triangles

∠AMQ  ∠BMP (vertical angles)
∠MAQ  ∠MBP (by construction)
BP  AQ (by construction)

so, by a·a·s, they must be congruent trian-
gles. that means that AM  MB. it is worth
noting that the midpoint of AB has to be be-
tween A and B. If it weren’t, one of two
things would have to happen:

M ∗A∗B =⇒ MA ≺ MB, or
A∗B∗M =⇒ MA  MB,

and either way, the segments MA and MB
couldn’t be congruent.

Uniqueness. suppose that a segment AB ac-
tually had two midpoints. let’s call them
M1 and M2, and just for the sake of conve-
nience, let’s say that they are labeled so that
they are ordered as

A∗M1 ∗M2 ∗B.

since A∗M1 ∗M2, AM1 ≺ AM2. since M1 ∗
M2 ∗B, BM2 ≺ BM1. But now M2 is a mid-
point, so AM2  BM2. let’s put that to-
gether

AM1 ≺ AM2  BM2 ≺ BM1.

In the last section you proved that ≺ is tran-
sitive. This would imply that AM1 ≺ BM1
which contradicts the fact that M1 is a mid-
point. Hence a segment cannot have two
distinct midpoints.

P

Q

M

B

A

P

Q

M

B

A

There are many choices 
for P, but they each lead 
to the same midpoint 
because a segment can 
have only one midpoint.
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let’s go back to OP0. We now know that it has a unique midpoint. Let’s
call that point P1. In order for the distance function d to satisfy condition
(3),

|OP1|+ |P1P0|= |OP0|.

But OP1 and P1P0 are congruent, so in order for d to satisfy condition (2),
they have to be the same length. Therefore 2|OP1|= 1 and so |OP1|= 1/2.
Repeat. take OP1, and find its midpoint. Call it P2. then

|OP2|+ |P2P1|= |OP1|.

again, OP2 and P2P1 are congruent, so the must be the same length. there-
fore 2|OP2|= 1/2, and so |OP2|= 1/4. By repeating this process over and
over, you can identify the points Pn which are distances of 1/2n from O.

With the points Pn as building blocks, we can start combining segments
of lengths 1/2n to get to other points. In fact, we can find a point whose
distance from O is m/2n for any positive integers m and n. It is just a
matter of chaining together enough congruent copies of OPn as follows.
Begin with the point Pn. By the first axiom of congruence, there is a
point P2

n on the opposite side of Pn from O so that PnP2
n  OPn. and

there is a point P3
n on the opposite side of P2

n from Pn so that P2
n P3

n  OPn.
and a point P4

n on the opposite side of P3
n from P2

n so that P3
n P4

n  OPn.
and so on. this can be continued until m segments are chained together

P0P1P3 P2O

O
r

P2
0P0

P3
0

P3
1P1

P5
1

P7
1

P3
2P2

P5
2

P7
2

P9
2

P11
2

P13
2
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stretching from O to a point which we will label Pm
n . In order for the

distance function to satisfy the additivity condition (3),

|OPm
n |= |OPn|+ |PnP2

n |+ |P2
n P3

n |+ · · ·+ |Pm−1
n Pm

n |.

All of these segments are congruent, though, so they have to be the same
length (for condition (2)), so

|OPm
n |= m · |OPn|= m ·1/2n = m/2n.

Rational numbers whose denominator can be written as a power of two
are called dyadic rationals. in that spirit, i will call these points the dyadic
points of r.

fill the hole

There are plenty of real numbers that aren’t dyadic rationals though, and
there are plenty of points on r that aren’t dyadic points. how can we
measure the distance from O to them? For starters, we are not going to be
able to do this without the last two axioms of neutral geometry.

P0P1P3 P2O

O
r

P2
0P0

P3
0

P3
1P1

P5
1

P7
1

P3
2P2

P5
2

P7
2

P9
2

P11
2

P13
2
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These last two axioms, the axioms of continuity, are a little more technical
than any of the previous ones. The first says that you can get to any point
on a line if you take enough steps. The second, which is inspired by
Dedekind’s construction of the real numbers, says that there are no gaps
in a line.

the axioms of continuity

Ct1 Archimedes’ Axiom If AB and CD are any two segments, there is
some positive integer n such that n congruent copies of CD con-
structed end-to-end from A along the ray AB  will pass beyond
B.

ct2 Dedekind’s Axiom let S< and S≥ be two nonempty subsets of a
line  satisfying: (i) S< ∪S≥ = ; (ii) no point of S< is between
two points of S≥; and (iii) no point of S≥ is between two points
of S<. Then there is a unique point O on  such that for any two
other points P1 and P2 with P1 ∈ S< and P2 ∈ S≥ then P1 ∗O∗P2

It is time to get back to the issue of distance on the ray r. so let P be
a point on r. Even if P is not itself a dyadic point, it is surrounded by
dyadic points. In fact, there are so many dyadic points crowding P, that
the distance from O to P can be estimated to any level of precision using
nearby dyadic points. For instance, suppose we consider just the dyadic
points whose denominator can be written as 20:

S0 = {O,P1
0 ,P

2
0 ,P

3
0 , . . .}.

By the Archimedean Axiom, eventually these points will lie beyond P. If
we focus our attention on the one right before P, say Pm0

0 , and the one right
after, Pm0+1

0 , then
O∗Pm0

0 ∗P∗Pm0+1
0 .

(1) Archimedes: Given 
enough steps, P will be 
passed.

(2) Dedekind: There is a 
point between any two 
separated partitions of a 
line.

S− S+
P

(1) (2)
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We can compare the relative sizes of the segments

OPm0
0 ≺ OP ≺ OPm0+1

0

and so, if our distance is going to satisfy condition (3),

|OPm0
0 |<|OP|< |OPm0+1

0 |
m0 <|OP|< m0 +1

Not precise enough for you? Replace S0, with S1, the set of dyadic points
whose denominator can be written as 21:

S1 = {O,P1,P2
1 = P0,P3

1 ,P
4
1 = P2

0 , . . .}.

Again, the Archimedean Axiom guarantees that eventually the points in
S1 will pass beyond P. let Pm1

1 be the last one before that happens. Then

O∗Pm1
1 ∗P∗Pm1+1

1

so

|OPm1
1 |<|OP|< |OPm1+1

1 |
m1/2 <|OP|< (m1+1)/2

and this gives |OP| to within an accuracy of 1/2.
continuing along in this way, you can use S2, dyadics whose denom-

inator can be written as 22, to approximate |OP| to within 1/4, and you
can use S3, dyadics whose denominator can be written as 23, to approx-
imate |OP| to within 1/8. generally speaking, the dyadic rationals in Sn
provide an upper and lower bound for |OP| which differ by 1/2n. as n
goes to infinity, 1/2n goes to zero, forcing the upper and lower bounds
to come together at a single number. This number is going to have to be
|OP|. now you don’t really need both the increasing and decreasing se-
quences of approximations to define |OP|. After all, they both end up at
the same number. Here is the description of |OP| using just the increasing
sequence: for each positive integer n, let Pmn

n be the last point in the list
Sn which is between O and P. In order for the distance function to satisfy
condition (3), we must set

|OP|= lim
n→∞

|OPmn
n |= lim

n→∞
mn/2n.
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Now do it in reverse

Every point of r now has a distance associated with it, but is there a point
at every possible distance? Do we know, for instance, that there is a point
at exactly a distance of 1/3 from O? The answer is yes– it is just a matter
of reversing the distance calculation process we just described and using
the Dedekind Axiom. Let’s take as our prospective distance some positive
real number x. for each integer n ≥ 0, let mn/2n be the largest dyadic
rational less than x whose denominator can be written as 2n and let Pmn

n be
the corresponding dyadic point on r. Now we are going to define two sets
of points:

S<: all the points of r that lie between O and any of the Pmn
n , together

with all the points of rop.

S≥: all of the remaining points of r.

so S< contains a sequence of dyadic rationals increasing to x

{Pm0
0 ,Pm1

1 ,Pm2
2 ,Pm3

3 , . . .},

P

Pm1
1

Pm1+1
1

Pm0
0

Pm0+1
0

Pm2
2

Pm2+1
2

(m
2
+

1)
4/

m
0

m
0
+

1

m
1

2/

Capturing a non-dyadic point between two sequences of dyadic points.
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and S≥ contains a sequence of dyadic rationals decreasing to x

{Pm0+1
0 ,Pm1+1

1 ,Pm2+1
2 ,Pm3+1

3 , . . .}.

together S< and S≥ contain all the points of the line through r, but they
do not intermingle: no point of S< is between two of S≥ and no point of
S≥ is between two of S<. According to the Dedekind Axiom, then, there
is a unique point P between S< and S≥. Now let’s take a look at how far
P is from O. for all n,

OPmn
n ≺OP ≺ OPmn+1

n

|OPmn
n |< |OP|< |OPmn+1

n |
mn/2n < |OP|< (mn +1)/2n

as n goes to infinity, the interval between these two consecutive dyadics
shrinks – ultimately, the only point left is x. so |OP|= x.

Finding a dyadic sequence approaching a particular number can be
tricky business. Finding such a sequence approaching 1/3 is easy,
though, as long as you remember the geometric series formula

∞

∑
n=0

xn =
1

1− x
if |x|< 1.

With a little trial and error, I found that by plugging in x = 1/4,

1+
1
4
+

1
16

+
1

64
+

1
256

+ · · · = 4
3
.

Subtracting one from both sides gives an infinite sum of dyadics to
1/3, and we can extract the sequence from that

1
4
= 0.25

1
4
+

1
16

=
5
16

= 0.3125

1
4
+

1
16

+
1

64
=

21
64

= 0.32825

Example: dyadics approaching 1/3
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Segment addition, redux

for any two points P and Q, there is a unique segment OR on the ray r
which is congruent to PQ. Define d(P,Q) = |OR|. With this setup, our
distance function will satisfy conditions (1) and (2). That leaves condition
(3)– a lot of effort went into trying to build d so that condition would
be satisfied, but it is probably a good idea to make sure that it actually
worked. let’s close out this lesson with two theorems that do that.

thm: a foRmula foR distance along a Ray
If P and Q are points on r, with |OP| = x and |OQ| = y, and if P is
between O and Q, then |PQ|= y− x.

Proof. If both P and Q are dyadic points, then this is fairly easy. First you
are going to express their dyadic distances with a common denominator:

|OP|= m/2n |OQ|= m/2n.

then OP is built from m segments of length 1/2n and OQ is built from
m segments of length 1/2n. to get |PQ|, you simply have to take the m
segments from the m segments– so |PQ| is made up of m −m segments
of length 1/2n. that is

|PQ|= (m −m) · 1
2n = y− x.

P

O

Q

m copies
m' copies

1 2n/
Measuring the distance between two dyadic points.
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If one or both of P and Q are not dyadic, then there is a bit more work to
do. in this case, P and Q are approximated by a sequence of dyadics Pmn

n

and Pm
n

n where

lim
n→∞

mn

2n = x & lim
n→∞

m
n

2n = y.

now we can trap |PQ| between dyadic lengths:

Pmn+1
n Pm

n
n ≺PQ ≺ Pmn

n Pm
n+1

n

|Pmn+1
n Pm

n
n |< |PQ|< |Pmn

n Pm
n+1

n |
m

n −mn −1
2n < |PQ|< m

n +1−mn

2n

as n approaches infinity, |PQ| is stuck between two values both of which
are approaching y− x.

Now while this result only gives a formula for lengths of segments on the
ray r, it is easy to extend it to a formula for lengths of segments on the line
containing r. In fact, this is one of the exercises for this lesson. The last
result of this lesson is a reinterpretation of the Segment Addition Axiom
in terms of distance, and it confirms that the distance we have constructed
does satisfy condition (3).

thm: segment addition, the measuRed VeRsion
If P∗Q∗R, then |PQ|+ |QR|= |PR|.

Proof. The first step is to transfer the problem over to r so that we can
start measuring stuff. So locate Q and R on r so that:

O∗Q ∗R, PQ  OQ, QR  QR.

According to the Segment Addition Axiom, this means that PR  OR.
now we can use the last theorem,

|QR|= |QR|= |OR|− |OQ|= |PR|− |PQ|.

Just solve that for |PR| and you’ve got it.

P

O

Q

Measuring the distance between two non-dyadic points.

Pm
n

Pm+1
n

Pm+1
n

Pm
n
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OR − OQ

Q

P

O

R

Q R

If one or both of P and Q are not dyadic, then there is a bit more work to
do. in this case, P and Q are approximated by a sequence of dyadics Pmn

n

and Pm
n

n where

lim
n→∞

mn

2n = x & lim
n→∞

m
n

2n = y.

now we can trap |PQ| between dyadic lengths:

Pmn+1
n Pm

n
n ≺PQ ≺ Pmn

n Pm
n+1

n

|Pmn+1
n Pm

n
n |< |PQ|< |Pmn

n Pm
n+1

n |
m

n −mn −1
2n < |PQ|< m

n +1−mn

2n

as n approaches infinity, |PQ| is stuck between two values both of which
are approaching y− x.

Now while this result only gives a formula for lengths of segments on the
ray r, it is easy to extend it to a formula for lengths of segments on the line
containing r. In fact, this is one of the exercises for this lesson. The last
result of this lesson is a reinterpretation of the Segment Addition Axiom
in terms of distance, and it confirms that the distance we have constructed
does satisfy condition (3).

thm: segment addition, the measuRed VeRsion
If P∗Q∗R, then |PQ|+ |QR|= |PR|.

Proof. The first step is to transfer the problem over to r so that we can
start measuring stuff. So locate Q and R on r so that:

O∗Q ∗R, PQ  OQ, QR  QR.

According to the Segment Addition Axiom, this means that PR  OR.
now we can use the last theorem,

|QR|= |QR|= |OR|− |OQ|= |PR|− |PQ|.

Just solve that for |PR| and you’ve got it.
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exercises

1. Our method of measuring distance along a ray r can be extended to the
rest of the line. In our construction each point on r corresponds to a
positive real number (the distance from O to that point). suppose that
P is a point on rop. there is a point Q on r so that OP  OQ. If x
is the positive real number associated with Q, then we want to assign
the negative number −x to P. now suppose that P1 and P2 are any two
points on the line and x and y are the associated real numbers. show
that

d(P1,P2) = |x− y|.

2. Write 1/7, 1/6, and 1/5 as an infinite sum of dyadic rationals.

3. Since writing this, it has come to my attention (via Greenberg’s book
[1]) that Archimedes’ Axiom is actually a consequece of Dedekind’s
Axiom. You can prove this yourself as follows. If Archimedes were
not true, then there would be some point on a ray that could not be
reached by via end-to-end copies of a segment. In that case, the ray
can be divided into two sets: one consisting of the points that can be
reached, the other of the points that cannot. By including the opposite
ray in with the set of points that can be reached, you get a partition of
a line into two sets. Prove that these sets form a Dedekind cut of the
line. Then by Dedekind’s Axiom there is a point between them. Now
consider what would happen if you took one step forward or backward
from this point.
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