Methods of Integration



Integraton
by Parts

Example:
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Integration by parts is useful when the integrand is
a product of two different kinds of pieces. For in-
stance, an exponential term times a trigonometric term,
or a logarithmic term times an algebraic term.

Note that it may be necessary to do the procedure
more than once.

If after a few iterations you end up back at the start-
ing integral, you may be able to solve the integral by
gathering the occurrences of that integral on one side
of the equation.

Rule of Thumb for choosing u (expressions at the top
of the list tend to make better choices of u):

Inverse trigonometric
Logarithmic
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Exponential expression
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Trigonomewic
Integrals

/ sin™ xcos" xdx

If n is odd, use the identity
sin®x+ cos’x = 1,

to convert all but one cosine terms to sine. Then sub-
stitute # = sinx. Similarly, if m is odd, convert the
sine terms to cosine, leaving one sine term, and sub-
stitute u = cosx.

If both powers are even, then you must use a com-
bination of “double angle” identities to simplify the
integrand. Begin with:

sin(x) cos(x) = %sin(2x)

Then use:

l[1 —cos(2x)]

.2 _
sin (x)—2

cos®(x) = %[1 + cos(2x)]
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/ tan™ xsec” xdx

If n is even, use the identity

sec’x = 1 +tan’x
to convert all but two of the secants into tangents.
Then substitute ¥ = tanx. If m is odd, convert all but
one of the tangents into secant, and substitute u =
secx.

Similar strategies work for combinations of powers
of cotangent and cosecant.

Example:
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muldple angles

\\\

sin(mx) sin(nx) dx

cos(mx) cos(nx) dx

sin(mx) cos(nx) dx

Use the identities (derived from addition formulas for
sine and cosine):
. . 1.
sinAsinB = > [sin(A — B) — cos(A+ B)]
1
cosAcosB = 3 [cos(A — B) +cos(A+ B)]

1
sinAcosB = 3 [sin(A — B) +sin(A + B)]



Trigonomewic
Substitution

Trigonometric substitution is useful when the inte-

grand has a term of the form 2 4d? 2—d?, or

a* —x2. This term is often (but not always) inside of a
square root or in the denominator of a fraction. There
are essentially three cases, all involving replacing al-

gebraic expressions with trigonometric expressions.

Note that it may be necessary to complete the square.

Examples:
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Parcal
Fractions

If the degree of the numerator is higher than the de-
gree of the denominator, before beginning the partial
fractions procedure, you must perform polynomial
long division.

The first step in determining the partial fractions de-
composition is to factor the denominator. While in
practice this may be very difficult, in theory it is
possible to factor the denominator into the following
types of forms:
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¥ 4ax+b
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The corresponding terms in the partial fraction de-
composition:
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Use linear algebra to find the values of the coeffi-
cients in the numerators of these fractions.
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