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Permanent Coexistence for Omnivory Models

James A. Vance

(ABSTRACT)

One of the basic questions of concern in mathematical biology is the long-term survival
of each species in a set of populations. This question is particularly puzzling for a natural
system with omnivory due to the fact that simple mathematical models of omnivory are
prone to species extinction. Omnivory is defined as the consumption of resources from more
than one trophic level. In this work, we investigate three omnivory models of increasing
complexity. We use the notion of permanent coexistence, or permanence, to study the
long-term survival of three interacting species governed by a mixture of competition and
predation. We show the permanence of our models under certain parameter restrictions and
include the biological interpretations of these parameter restrictions. Sensitivity analysis is
used to obtain important information about meaningful parameter data collection. Examples
are also given that demonstrate the ubiquity of omnivory in natural systems.
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Chapter 1

Introduction

The question of long-term survival of species in an ecological community should be of
upmost importance to humans. Human survival depends upon biodiversity and the under-
standing of natural systems. However, most natural systems contain very complex multi-
species food webs and when looked at as a unit are unmanageable for detailed analysis. In
an attempt to gain some insight into the world around us, we must examine a small number
of species and their ecological interactions in a community. This in turn can shed light on
interactions in more complex systems. Of paramount importance for conservation, biological
control, and nuisance control is the long-term survival or extinction of the community as a
whole.

The community interactions of predation and competition have a rich history of research
and analysis. However, the unique combination of predation and competition known as
omnivory has a relatively recent history of mathematical and biological study. Holt et al.
[40] when discussing intraguild predation (IGP), a subset of omnivory, state that “there is
growing evidence for the importance of IGP in many natural communities, yet little formal
ecological theory addresses this particular blend of interactions”. The mathematical theory
is also lacking, especially for models with stage structure.

In order to study the long-term survival of species, we use a growing body of mathe-
matical theory known as permanence theory. We model omnivorous systems with ordinary
differential equations of species densities. Then, permanence theory is concerned only with
the dynamics of the model near the boundary where densities are zeros and hence, species
go extinct. Our analysis is based upon the notion of an Average Lyapunov function and we
apply this theory to one linear and one non-linear model. Then, we extend the concepts to a
model with stage structure. Our differential equation models depend upon model parameters
that are estimated from ecological systems. Our results based on permanence theory place
restrictions on the parameters.

As estimates from natural systems, the model parameters are subject to natural intrinsic
variability. Since our models are deterministic, changes in the inputs cause change in the
output. We will use sensitivity analysis to determine how small changes in inputs, corre-
sponding to the natural variability, affect the population densities. This analysis in turn
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will allow us to determine which parameters must be estimated with as much accuracy as
possible to ensure reasonable population density estimates. Biological interpretations of the
parameter restrictions are also included, so that general criteria for permanent coexistence
can be achieved.

We will discuss the above topics in greater detail and explanation in the rest of this
introduction and in Chapter 2.

1.1 Outline of Thesis

In the remainder of this introduction, we present a brief discussion on omnivory, co-
existence of species, and sensitivity analysis. A cross-classification of omnivory as well as
intraguild predation will provide insight into the complex array of community interactions
under investigation. In the discussion of coexistence of species in deterministic models, we
give an intuitive idea of what it means for a system to be permanent. This intuitive notion
will set the stage for our thorough mathematical formulation. In the discussion on sensitivity
analysis, we determine why we will use one of the two most often used sensitivity methods.

In Chapter 2, we review some basic ecological models and variations of these models. This
will lead to a general discussion of omnivory models and their complexity. Since we need our
mathematical models to have unique solutions, we review existence and uniqueness theorems
for ordinary differential equations. We also discuss the general theory of permanence for
differential equation models with specific emphasis on Kolmogorov models. Finally, we
provide theorems to ensure differentiability with respect to parameters. From a biological
perspective, this theory will allow us to determine for which parameters to obtain precise
field estimates.

Chapter 3 will focus on nontrivial examples of omnivory in the wild. These examples
from fish, birds, and mammals will provide the motivation for our study and provide insight
into the complex array of ecological interactions that we are attempting to model. Parameter
values for our differential equation models are also provided. This will allow for numerical
studies as well as provide a basis for our sensitivity analysis.

Chapter 4 provides mathematical analysis for a linear response omnivory model. Exis-
tence and uniqueness of a solution to this system is proved. We then prove some results
based on permanence theory that provide a straight forward check to ensure coexistence (in
the mathematical sense) of three species involved in intraguild predation.

Chapter 5 provides mathematical analysis for a more complex three species omnivory
model. We extend the ideas of chapter 4 to include non-linear response models for which we
prove existence and uniqueness of a solution. Also, we provide a check for coexistence based
on results proved from permanence theory.

Chapter 6 is a combination of mathematical analysis and deduction on a non-linear
omnivory model with stage structure. We prove existence and uniqueness of a solution
to the system. We use some mathematical insight as well as numerical investigations to
determine under what parameter combinations coexistence of species is expected.
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In Chapter 7, we apply our theorems on continuous dependence and differentiability with
respect to parameters to each of our models. The resulting sensitivity equations are solved
for the sensitivities by an adaptive step numerical integration method. A weighted measure
is also provided to allow for a comparison of sensitivities.

In Chapter 8, we present our final results. These results include the conditions under
which our three omnivory models are permanent as well as prioritized list of sensitivities.
Also, we provide the biological meaning for the sensitivities and a summary of the biological
meanings for the permanence conditions.

In the conclusion, we give a summary of the mathematical conditions that are derived
for permanence and the biological restrictions that these conditions imply. A look at future
directions for research is also included.

1.2 Omnivory

Ecologists usually classify species interactions according to their effects on population
growth rates. Competition (-,-) is defined as a negative effect on both species. Mutualism
(+,+) is a positive effect on both species. Predation (+,-) is one species gaining, while the
other species loses. However, we cannot always classify species interactions in this simple
way. The natural history of many species dictates that they are both “predator” and “prey”.
Other species can be classified as “predators” and “competitors”. Competition and predation
will be discussed in further detail in Sections 2.1.1 and 2.1.2, respectively.

Omnivory is defined as the act of feeding on resources at different trophic levels [76].
A trophic level is a step in a nutritive series or food chain of an ecosystem. Examples
of trophic levels are producers, herbivores, carnivores, etc. Ecological interactions involving
omnivory can become very complicated (see [2],[78],[84]). A simple example of omnivory is
intraguild predation. Intraguild predation or IGP is the ecological interaction in which two
competing species also interact as predator and prey [28]. This constellation of three species
(see figure 2.2a): a predator (top), a consumer (middle), and a resource (bottom) is the
simplest form of omnivory. To better understand intraguild predation we give the following
definitions. A guild is a group of species that exploit the same class of environmental
resources in a similar way [83]. Intraguild means within the same guild. So, IGP involves
species that compete for resources in a similar way, but also engage in direct predator-prey
interactions [77], [78].

Omnivory differs from classical competition because of the immediate gain of the top
predator from feeding on the consumer. It differs from classical predation since the act
reduces potential competition. Clearly, the interplay of competition and predation can af-
fect population dynamics in a complex and interesting way. Communities where competing
species in one trophic level are preyed upon by a species or species at a higher trophic level
have been well studied (for example see [39], [62]). However, omnivory is a distinct combi-
nation of competition and predation and the search for robust mechanisms that can explain
persistence of tightly linked omnivory systems remains an important challenge [58],[34].
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Polis et al. [78] cross-classify intraguild predation in two ways. The first classification
is symmetry (symmetric vs. asymmetric). Symmetric IGP occurs when there is mutual
predation between two species. Asymmetric IGP occurs when one species is the predator of
another species but not vice versa. The second classification is stage structure (important
vs. relatively unimportant). Stage structure is important when IGP is influenced by changes
in size or vulnerability of an individual organism as it matures from embryo to adult. For
example, a species may be subject to a class of predators as a juvenile and subject to a
completely different class of predators as an adult. In IGP with relatively unimportant stage
structure, the stage of the organism only weakly influences the dynamics of IGP. We will use
the same classifications when referring to IGP as well as omnivory.

1.3 Coexistence of Species in Deterministic Models

One of the most important questions in mathematical biology concerns the long-term sur-
vival or coexistence of all the species in a multi-species community governed by deterministic
models. We consider dynamical systems in the form of differential equations that are ap-
proximations to ecological communities of interacting populations. Two of the most widely
used conditions to define the notion of long-term survival are asymptotic (local) stability and
global asymptotic stability. Another term in the ecological literature for asymptotic stability
is neighborhood stability (see [60] and references therein). The idea behind neighborhood
stability is to find equilibrium points and investigate the properties of orbits in a small region
of the phase space around the equilibrium in which a linear approximation is valid. This
requires that the Jacobian evaluated at equilibrium has all eigenvalues with negative real
parts [50]. For global asymptotic stability, the idea is to determine conditions guaranteeing
that all solutions to a system approach an equilibrium.

Although asymptotic stability is mathematically tractable, it is not a satisfactory con-
dition for the long-term survival of interacting species. For many natural systems we have
no reason to believe that the system starts near equilibrium. Also, the dynamics near an
equilibrium do not determine the coexistence of species, but rather the dynamics of the sys-
tem when one or more of the species is close to extinction. The concept of global stability
is insufficient in many cases because species may coexist indefinitely without approaching
equilibrium. Many systems have periodic or even chaotic attractors. Jansen et al. [49] take
a quote from Lewontin [64] that we feel is worth noting: “The presence or absence of species
is sometimes the point of interest regardless of some variation in their numbers”.

We therefore, want to allow any asymptotic behavior of orbits as long as they do not
remain too close to the boundary. We will consider the notion of permanent coexistence or
permanence in order to achieve this more satisfactory concept for long-term species survival.
We will use the terms permanent coexistence and permanence interchangeably throughout
this work. We feel that the term “permanent coexistence” better encompasses the ecological
importance of species coexistence as given by Hutson et al. [46]. However, the term “perma-
nent” or “permanence” has been more widely used throughout the literature (see the review
by [45]).
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The idea is for the boundary (where one or more species goes extinct) to be a repeller in
some sense. To visualize this idea, consider a “skin” of thickness δ > 0 around the boundary
such that orbits not initially in the boundary come to lie at a distance d > δ from the
boundary [46]. For biological realism, we will also require that no orbits should tend to
infinity [36]. This is a global criterion because it applies to orbits starting from every point
not on the boundary. We do not claim that permanent coexistence is the “best” concept
in some absolute sense or that mathematically permanent communities would exist forever
in the real world [60], [45]. However, we feel that (to date) permanence theory provides
the most ecologically sound and mathematically tractable criterion for long-term species
coexistence.

1.4 Sensitivity Analysis

Models are developed to approximate natural systems. This fact imposes a limitation on
the confidence we place on the model outcome or model response. Since we are approximating
natural systems with deterministic models there is a certain amount of natural intrinsic
variability that our model inputs should be subject to. Also, model parameters are limited by
measurement error. As stated by Andrea Saltelli [86], “Good modelling practice requires that
the modeller provide an evaluation of the confidence in the model”. We will use sensitivity
analysis to achieve this goal.

Sensitivity analysis involves the use of analytical and/or computational tools to eval-
uate how changes in inputs affect model response variables. The inputs may be initial
conditions or model parameters. The model response variables may be population densities,
state variables, population growth rates, etc. There are many variations and applications of
sensitivity analysis (see [3], [85], [93] for examples).

One of the most important questions from our perspective is, how do small changes in
model parameter values affect the population densities. This will help us determine which
parameter estimates are sufficiently precise for our models to give reliable predictions based
upon the dynamics of the models. Also, we will be able to prioritize the parameters to help
biologists determine which parameter values should be most closely estimated from empirical
data. This in turn should dictate an increase in precision and accuracy with which biologists
collect data for specific parameter estimates.

There are basically two approaches to sensitivity analysis. The first is known as “manual
perturbation” [3] or “conventional sensitivity” [9] and according to Mills et al. (Chapter 16
of [3]) is probably the most common approach in the ecological literature. This is a computa-
tional method in which one parameter at a time is altered by an amount deemed relevant to
the system. Typically, the population growth rate is computed for each proportional change
and is used to measure how sensitive the model is to the given parameter. This type of
analysis tells which parameters have the most impact on population growth and which pa-
rameters to measure with extreme accuracy in the field in order to avoid incorrect population
projections. However, there are issues with to this method. First, there is no standardized
metric or measure with which to compare across species or studies. Second, since in our



James A. Vance Chapter 1. Introduction 6

case we would like to determine the parameter values for which coexistence is ensured, the
whole range of variation on the determining set of parameters must be investigated. Manual
perturbation in this case is very time consuming and “as a rule, the use of this approach
appears to be inexpedient or impossible due to the huge amounts of required computation”
[85].

Instead, we use an analytical approach that depends on measures of how infinitesimal
changes in parameter values will affect the population densities. As the value of a parameter
changes, the solution to the system of ordinary differential equations changes. So our goal
is to mathematically describe how small changes in a parameter affect the solution.



Chapter 2

Basic Concepts

In order to acquaint the reader with the basic concepts and terminology, we discuss sev-
eral ecological and mathematical topics. We will give a general discussion of competition,
predation, and omnivory. Some general ecological interactions and models will also be dis-
cussed. The theorems we will use to show the existence and uniqueness of solutions to our
systems of differential equations will be presented as well as a general framework for perma-
nence theory. Lastly, we will give the general criteria for the use of sensitivity analysis as a
mathematical tool to provide insight on model sensitivities and parameters.

2.1 Modeling Omnivory

In order to model omnivory a basic understanding of competition and predation is neces-
sary. Also, an understanding of the array of community interactions that influence individual
population dynamics is imperative.

2.1.1 Competition

The general term “competition” encompasses a variety of competitive interactions. Ex-
ploitative competition occurs when populations depress one another through use of a
shared resource [28]. Examples include bears and birds competing for native fruits and nuts
as well as fish in your local pond competing for algae. Interference competition occurs
when an individual or population behaves in a way (typically aggressively) that reduces the
exploitative efficiency of another individual or population [28]. Feral burros and big horn
sheep aggressively competing for water holes in the deserts of the western United States is
an example of interference competition.

We need to consider the forms of competition that are typically included in population
models. We will use N to denote the size of a population, or group of animals of the same
species that live together and reproduce. Then, dN/dt is the population growth rate. We
define the intrinsic rate of increase of the population, denoted r, as the birth rate minus
the death rate of the population. Since resources for growth and reproduction of populations

7
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are limited, we can define K, the carrying capacity, as the maximum population size that
the environment can support. K encompasses the limitations on space, food, shelter, etc.
This form of competition for resources is known as intraspecific competition which is
defined as competition that occurs among members of the same species.
The logistic growth model,

dN

dt
= rN

(
1 − N

K

)
, (2.1)

is a model of intraspecific competition because the population growth rate decreases as the
population becomes more crowded. In this case, the density dependence is linear.

Another form of competition is interspecific competition defined as competition be-
tween individuals of two or more different species. In the 1920s and 1930s, Alfred J. Lotka
(1880-1949) and Vito Volterra (1860-1940) described a simple mathematical model of in-
terspecific competition [28]. The two competing species are denoted as N1 and N2. Each
population has its respective intrinsic rates of increase and carrying capacities. Each pop-
ulation’s growth is reduced by intraspecific competition as well as competition from the
opposing species. The simplest way to express the interspecific competition is in a linear
fashion.
The Lotka-Volterra competition model is given by

dN1

dt
= r1N1

(
1 − N1

K1

− α12N2

K1

)
(2.2)

dN2

dt
= r2N2

(
1 − N2

K2

− α21N1

K2

)
,

where α12 is a measure of the effect of species 2 on the growth of species 1. Similarly, α21

is a measure of the effect of species 1 on the growth of species 2. Competition models have
been studied widely in ecology [28].

2.1.2 Predation

Competitive interactions in nature are often indirect and subtle. In contrast, predation
is a direct and conspicuous ecological interaction [28]. We will use P to denote the predator
population and R to denote the prey population. For the simplest models, we assume that
prey populations grow exponentially at rate r in the absence of the predator population. This
increase in the prey population is diminished by losses due to the presence of the predator
population. For the Lotka-Volterra predation model, losses to predation are proportional to
the product of predator and prey numbers. We will denote this proportional constant called
the capture efficiency as α. The capture efficiency measures the effect of a predator on
the per capita growth rate

(
1
R

dR
dt

)
of a prey population.

The predator is assumed to only feed on one prey species and in the absence of prey the
predator population decreases exponentially. We denote the death rate of predators by q.
Only when the prey population is present can the predator population have positive growth.
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We use β to denote the conversion efficiency or the ability of predators to convert each
new prey into additional per capita growth rate

(
1
P

dP
dt

)
for the predator population.

The Lotka-Volterra predation model,

dP

dt
= (βR − q)P (2.3)

dR

dt
= (r − αP )R,

was derived independently by Alfred J. Lotka and Vito Volterra [28].
The product αR is called the functional response of the predator. Gotelli [28] gives the

definition of the functional response as the rate of prey capture by a predator as a function
of victim abundance as defined by Solomon [89]. In model (2.3), the functional response is
linear. The product βR is called the numerical response and is defined as the per capita
growth rate of the predator population as a function of the prey abundance [28]. Again, the
numerical response is linear in the above model. We will discuss non-linear functional and
numerical responses in Section 2.1.4.

2.1.3 Three Species Interactions

Consumer 

Predator

Resource

(a)

Consumer 

Predator

Resource

(b)

Figure 2.1: Two forms of ecological interactions discussed in this work. Arrows indicate that
one species (base of arrow) is eaten by another species (point). (a) A purely competitive
food web. The predator and consumer feed on the resource. (b) A linear food chain. The
predator feeds on the consumer and the consumer feeds on the resource.

Three species can interact in a variety of ways. The ecological interaction in which two
predators compete for a shared resource without any predation between the predators is
called a purely competitive food web (see figure 2.1a). If we assume the resource grows
logistically and the functional and numerical responses are linear, then we can model a purely



James A. Vance Chapter 2. Basic Concepts 10

competitive food web as follows:

dP

dt
= P [eRP αRP R − mP ]

dC

dt
= C[eRCαRCR − mC ] (2.4)

dR

dt
= R [r (1 − R/K) − αRCC − αRP P ] .

The parameters eRP and eRC are the efficiency rates at which resources are converted to
new offspring of the predator and consumer respectively. αRP and αRC are the capture rates
of the resource by the predator and consumer respectively. mP and mC are the respective
mortality rates of the predator and consumer species.

A linear food chain (see figure 2.1b and reference [31]) is a three species interaction in
which there is no competition between species, but predation from a higher trophic level ex-
ists. Again, we assume that the resource grows logistically and the functional and numerical
responses are linear.

dP

dt
= P [eCP αCP C − mP ]

dC

dt
= C[eRCαRCR − αCP P − mC ] (2.5)

dR

dt
= R [r (1 − R/K) − αRCC] .

The parameters eCP and eRC are the efficiency rates at which consumers and resources are
converted to new offspring of the predator and consumer respectively. αCP and αRC are the
capture rates of the consumer and resource by the predator and consumer respectively. mP

and mC are the respective mortality rates of the predator and consumer species.
Omnivory as a combination of predation and competition may be very complex and

intricate. Asymmetrical intraguild predation is the simplest form of omnivory (see 2.2a).
This form of community interaction involves a predator feeding on a consumer (intermediate
predator, [40]) and a basal resource. The consumer feeds solely on the basal resource. This
is an asymmetric interaction since the consumer does not feed on the top predator. Holt et
al. [40] developed a conceptual framework to analyze the population and community level
implications of asymmetric IGP under Lotka-Volterra dynamics. The model,

dP

dt
= P [eRP αRP R + eCP αCP C − mP ]

dC

dt
= C[eRCαRCR − αCP P − mC ] (2.6)

dR

dt
= R [r (1 − R/K) − αRCC − αRP P ] ,

is a standard Lotka-Volterra model for a food chain (2.5) with IGP added (see [40], [31]).
The parameters eRP and eRC are the efficiency rates at which resources are converted to
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Consumer 

Predator

Resource

(a)

Consumer 

Predator

Resource

(b)

Figure 2.2: Two forms of ecological interactions discussed in this work. Arrows indicate that
one species (base of arrow) is eaten by another species (point). (a) Asymmetrical intraguild
predation. IGP in which the consumer feeds on the resource only, not on the predator. (b)
Symmetrical intraguild predation. IGP in which the consumer feeds on the resource as well
as on the predator.

new offspring of the predator and consumer respectively. eCP is the efficiency rate at which
consumers are converted to new offspring of the predator. αRP and αRC are the capture
rates of the resource by the predator and consumer respectively. αCP is the capture rate of
the consumer by the predator. mP and mC are the respective mortality rates of the predator
and consumer species.

Holt et al. [40] suggested a general criterion for coexistence under model (2.6) as follows:
1) The consumer should be superior at exploitative competition for the shared resource.
2) The predator should gain significantly from its consumption of the consumer.
3) Along gradients in environmental productivity, coexistence is most likely at intermediate
levels of productivity.

Symmetrical intraguild predation involves a predator feeding on a consumer and
a basal resource. The consumer feeds not only on the resource but also on the predator
(see 2.2b). Symmetry does not imply equal strength of interaction between the predator and
consumer. This form of omnivory is “surprisingly common and often dynamically important”
[78] (see also [79]).

Another variation of omnivory is adaptive omnivory. Up to this point, we have only
discussed fixed omnivory. That is, the interactions were always in a fixed direction. Diehl et
al. [58] explore how adaptive behavior by the predator affects coexistence. They assume the
predator forages adaptively according to the diet rule, i.e. feeds on the less profitable of its
two prey species (the consumer and resource) only if the more profitable one is sufficiently
rare [58].

When the resource is more profitable for the predator and the consumer and resources
become rare, then the interaction switches from omnivory (figure 2.2a) to a purely compet-
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itive food web (figure 2.1a). When the consumer is more profitable for the predator and
the resource and the consumer becomes rare, then the interaction switches from omnivory
(figure 2.2a) to a linear food chain (figure 2.1b). They concluded that the positive effect of
adaptive omnivory on coexistence of the three species is small [58].

Important stage structure IGP models represent ecological interactions in which
adult and/or juvenile predators and consumers feed on the same resource, and also feed on
each other. Obviously, there are many combinations of interactions under this categorization.
Mylius et al. [71] looked at two forms of stage structures in IGP models. They incorporated
size structure into the predator population by dividing the population into two classes: an
initial class of small individuals that do not prey on the consumer population and a class of
larger predatory individuals (see figure 2.3a).

They incorporated structure into the consumer population by means of the introduction of
an invulnerable consumer life stage (see figure 2.3b). That is, only small consumer individuals
were subject to predation. This, in essence, formed a size refuge for larger consumers.
Looking at the attractors of the systems, they concluded that the addition of stage structure
did not change the tendency of the predator to drive the consumer species extinct over a
surprisingly large range of productivities [71].

Consumer 

  Adult 
Predator

Resource

(a)

  Juvenile
Consumer 

Predator

Resource

(b)

Juvenile
Predator

   Adult 
Consumer 

Figure 2.3: Two forms of stage structured ecological interactions discussed in this work. Solid
arrows indicate that one species (base of arrow) is eaten by another species (point). Dashed
arrows indicate growth transitions. (a) Stage structure in predator population. The juvenile
predator stage feeds only on the resource. (b) Stage structure in consumer population. An
adult consumer population that is invulnerable to predation.

2.1.4 Non-linear Functional and Numerical Responses

Up to this point, we have only considered differential equation models that involve lin-
ear functional and numerical responses. The Lotka-Volterra models assume that individual
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predators can always increase their consumption as the victim population increases. Lin-
ear functional responses are considered Type I functional responses. Type I functional
responses are unrealistic for two reasons. First, the predators are limited by the handling
time needed to catch and consume victims. Second, predators will eventually become sati-
ated and stop feeding.

A Type II functional response assumes that predator consumption increases to a
maximum and constant rate of victim consumption per predator. That is, the rate of con-
sumption becomes saturated as victim densities increase. The following non-linear functional
responses are known as Holling Type II functional responses. For a species, P, that
feeds on only one other species, R, we use

f(R) =
λRP R

1 + λRP hRP R
(2.7)

as our Holling Type II functional response. λRP is the attack rate of species P on species R.
hRP is the time spent by species P handling species R.

For a species, P, that feeds on two species, C and R, we use

f(C,R) =
λRP R

1 + λRP hRP R + λCP hCP C
(2.8)

as the species R functional response and we use

f(C,R) =
λCP C

1 + λRP hRP R + λCP hCP C
(2.9)

as the species C functional response. The parameters hRP and hCP are the handling times
corresponding to species R being eaten by species P and species C being eaten by species
P, respectively. Species P feeds on species R with attack rate λRP and species P feeds on
species C with attack rate λCP .

For our non-linear numerical responses involving species P and species R, we use

n(R) = eRP · f(R) (2.10)

for our species P numerical response. For species P that feeds on species R and species C,
we use

n(R,C) =
eRP λRP R + eCP λCP C

1 + λRP hRP R + λCP hCP C
(2.11)

as our species P non-linear numerical response. eRP is the conversion efficiency of species R
into species P and eCP is the conversion efficiency of species C into species P.

Type III functional responses are sometimes used in models where the feeding rate is
accelerated at low victim density but decreases at high victim density as an asymptote is
reached (see [28] and [69]). We will not consider models with Type III functional responses
in this work.

In order to better determine the parameter space in which there is species coexistence,
several authors have looked at a variety of modifications to models as well as alternate models.
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Revilla [82] looked at the effects of IGP on resource competition by applying nullcline analysis
to Lotka-Volterra models as well as saturating functional response models of three interacting
species. Křivan [57] explored the effects of adaptive IGP on species coexistence using Lotka-
Volterra models and stability analysis. In a 2003 paper, Diehl [11] explored the role of food
quality on the evolution and maintenance of omnivory. Diehl et al. [12] studied the effects
of enrichment (increasing growth rate or carrying capacity of basal resource) on omnivory
models with three species. A numerical bifurcation study of a three species food web with
omnivory under chemostat conditions was conducted by Kooi et al. [56] in 2002.

2.2 Existence and Uniqueness of Solutions

Consider a first order system of differential equations of the form

dx1

dt
= f1(t, x1, . . . , xn)

...
... (2.12)

dxn

dt
= fn(t, x1, . . . , xn).

The functions f1(t, x1, . . . , xn), . . . , fn(t, x1, . . . , xn) are defined on a (n + 1) − dimensional
set D of the (t, x1, . . . , xn) − space, IRn+1.

In order to show global existence and uniqueness of solutions we need some definitions.
The following definitions were taken from Walter’s book on Ordinary Differential Equations
[95].

Definition 1 A vector function (x1(t), . . . , xn(t)) is a solution of (2.12) in the interval J
if the functions xi(t), i = 1, . . . , n are differentiable in J and if (2.12) is satisfied identically
when they are substituted into the equation.
We require (t, x1(t), . . . , xn(t)) ∈ D for t ∈ J .

We denote n − dimensional column vectors with boldface letters as follows:

c =

⎛
⎜⎝

c1
...
cn

⎞
⎟⎠ , x(t) =

⎛
⎜⎝

x1(t)
...

xn(t)

⎞
⎟⎠ , f(t,x) =

⎛
⎜⎝

f1(t,x)
...

fn(t,x)

⎞
⎟⎠ .

Derivatives of a vector function x are also defined component-wise:

ẋ(t) =

⎛
⎜⎝

dx1

dt
(t)
...

dxn

dt
(t)

⎞
⎟⎠
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Using this notation, when we say “x is continuous” or “x is differentiable” we mean that each
component xi (i = 1, . . . , n) is continuous or differentiable, respectively. In vector notation,
system (2.12) is

ẋ = f(t,x) (2.13)

Definition 2 The initial value problem for (2.12) includes the initial conditions

xi(t0) = ci, (i = 1, . . . , n) or x(t0) = c (in vector form). (2.14)

That is, a solution for (2.12) passes through a given point (t0, c) ∈ D.

We will use the notation ||x|| for the norm of a vector x ∈ IRn, regardless of which norm
is used, since all norms in IRn are equivalent [95]. We use the notation (x1, x2, . . . , xn)T for
the transpose of a row vector into a column vector and vice versa.

Definition 3 A vector function f(t,x) satisfies a Lipschitz condition with respect to x in
D (with Lipschitz constant L) if

||f(t,x) − f(t, x̄)|| ≤ L||x − x̄|| for (t,x), (t, x̄) ∈ D. (2.15)

Definition 4 A function f satisfies in D a local Lipschitz condition with respect to x if
for every point (t,x) ∈ D, there exists a neighborhood U : ||t − t̄|| < δ, ||x − x̄|| < δ (δ > 0)
such that f satisfies a Lipschitz condition in D ∩ U.

We will use the following Lemma and Theorem from Walter [95] to show local existence
and uniqueness of solutions to our initial value problems.

Lemma 1 [95] If f and ∂f
∂x

are continuous in D, then f satisfies in D a local Lipschitz
condition with respect to x.

This allows us to achieve existence and uniqueness without delving into the cumbersome
Lipschitz conditions.

The following theorem gives the conditions under which we have local existence and
uniqueness of solutions to the initial value problem.

Theorem 1 (Existence and Uniqueness) [95] Let f(t,x) be continuous in a domain
D ⊂ IRn+1 and satisfy a local Lipschitz condition with respect to x in D (this hypothesis is
satisfied, if ∂f

∂x
is continuous in D). If (t0, c) ∈ D, then the initial value problem

ẋ = f(t,x), x(t0) = c (2.16)

has exactly one solution. The solution can be extended to the left and right up to the boundary
of D.
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Thus, we can find a solution to the initial value problem (2.16) in a neighborhood of the
initial point, but to extend a local solution to a larger interval of the independent variable
t, we use the following Lemma from Hsieh [41].

Lemma 2 [41] Assume that f(t,x) is continuous for J = {t ∈ IR : t0 < t < t1} and for all
x ∈ IRn. Assume also that a function x̂(t) satisfies the following conditions:
(a) x̂ and dx̂

dt
are continuous in a subinterval I of J,

(b) dx̂
dt

= f(t, x̂) in I.
Then, either
(i) x̂ can be extended to the entire interval J as a solution of the differential equation

dx

dt
= f(t,x),

or
(ii)

lim
t→τ

||x̂(t)|| = ∞
for some τ in J.

This lemma simply says that the solution to (2.16) either goes to infinity or the solution can
be extended to all of J. We will use this lemma to show global existence and uniqueness of
solutions to our initial value problems.

In order to show that solutions to our initial value problems do not go to infinity, we use
the following theorem and lemma from Hale [29].

Definition 5 Let Dr denote the right hand derivative of a function. If w(t, x) is a scalar
function of the scalars t and x in some open connected set D, we say a function y(t), a ≤
t ≤ b, is a solution of the differential inequality

Dry(t) ≤ w(t, y(t)) (2.17)

on [a, b), if y(t) is continuous on [a, b) and has a right hand derivative on [a, b) that satisfies
(2.17).

Theorem 2 Let w(t,u) be continuous on an open connected set D ⊂ IR2 and be such that
the initial value problem for the scalar equation

u̇ = w(t, u) (2.18)

has a unique solution. If u(t) is a solution of (2.18) on a ≤ t ≤ b and y(t) is a solution of
(2.17) on a ≤ t < b with y(a) ≤ u(a), then y(t) ≤ u(t) for a ≤ t ≤ b.
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Lemma 3 Suppose w(t, u) satisfies the conditions of Theorem 2 for a ≤ t < b, u ≥ 0, and
let u(t) ≥ 0 be a solution of (2.18) on a ≤ t < b. If f : [a, b) × IRn → IRn is continuous and

||f(t,x)|| ≤ w(t, ||x||), a ≤ t < b, x ∈ IRn,

then the solutions of
ẋ = f(t,x), ||x(a)|| ≤ u(a)

exist on [a, b) and ||x(t)|| ≤ u(t), t in [a, b).

We use the following Lemma on differential inequalities, similar to the one used by
Birkhoff [4], in several of our proofs.

Lemma 4 Let S be a differentiable function on [a, b].
Part A: If S satisfies the differential inequality

Ṡ(t) ≤ λS(t), a ≤ t ≤ b (2.19)

where λ > 0 is a constant, then

S(t) ≤ S(a)eλ(t−a) for a ≤ t ≤ b. (2.20)

Part B: If S satisfies the differential inequality

Ṡ(t) + λS(t) ≤ M1, a ≤ t ≤ b (2.21)

where M1 > 0 and λ > 0 are constants, then

S(t) ≤ M1

λ
+

(
S(a) − M1

λ

)
eλ(a−t) for a ≤ t ≤ b. (2.22)

Part C: If S satisfies the differential inequality

Ṡ(t) ≤ (M1 + M2e
λt)S(t), a ≤ t ≤ b (2.23)

where M1 > 0, M2 > 0, and λ > 0 are constants, then

S(t) ≤ S(a)eM1 (t−a)+
M2
λ

(eλt− eλa) for a ≤ t ≤ b. (2.24)

Proof. The first result is proved similar to the second result except by multiplying both
sides of (2.19) by e−λt. For the second result, multiply both sides of (2.21) by eλt to get

[Ṡ + λS]eλt ≤ eλtM1.

Rearranging, we get

0 ≥ eλt[Ṡ + λS − M1] =
d

dt
{S(t)eλt − M1

λ
eλt}.
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Thus, the function
(
S(t) − M1

λ

)
eλt has a non-positive derivative and so is non-increasing for

a ≤ t ≤ b. Therefore, (
S(t) − M1

λ

)
eλt ≤

(
S(a) − M1

λ

)
eλa

and rearranging yields

S(t) ≤ M1

λ
+

(
S(a) − M1

λ

)
eλ(a−t).

For Part C, multiply both sides of (2.23) by

e−(M1 t+
M2
λ

eλt)

to get

0 ≥ e−(M1 t+
M2
λ

eλt)[Ṡ − (
M1 + M2e

λt
)
S(t)]

=
d

dt
{e−(M1 t+

M2
λ

eλt)S(t)}.

Hence,

S(t) ≤ S(a)eM1 (t−a)+
M2
λ

(eλt− eλa),

completing the proof.

2.3 Permanence Theory

The idea behind permanent coexistence or permanence for dynamical systems, specifically
differential equations, is to allow arbitrary asymptotic behavior of orbits as long as the orbits
do not remain too close to the boundary. To meet this requirement, several mathematical
concepts have been introduced in the literature.

Consider an ensemble of n population densities at time t given by

x(t) = {xi(t)}n
i=1. (2.25)

Let D = {x : x1, . . . , xn ≥ 0}, and let int(D), ∂D denote the interior and boundary of D
respectively. The curve γ+ = {x(t) : t ≥ 0} is known as an orbit. We denote the distance
between two sets X and Y by d(X,Y ).

The Ω-limit set Ω(x) for x ∈ D is defined to be

Ω(x) = {y : ∃ a sequence {tn} with tn → ∞ such that x(tn) → y}. (2.26)

For a subset X ⊂ D
Ω(X) =

⋃
x∈X

Ω(x). (2.27)
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Freedman and Waltman [20] introduced the idea of (weak) persistence, that is

lim sup
t→∞

xi(t) > 0 (2.28)

for all i, whenever xi(t0) > 0 for some t0. Gard et al. [26] constructed a Lyapunov-like
function to obtain weak persistence criteria for food chain models of Lotka-Volterra type
(see also [24], [25]). However, although weakly persistent, May and Leonard’s system [66]
spirals out toward the boundary in a heteroclinic cycle [44]. Weak persistence “guarantees
only that extinction is not certain” [5].

Freedman and Waltman [21] formulated the notion that each orbit should be asymptot-
ically at a non-zero distance from the boundary in order for the system to be (strongly)
persistent (see also [22]):

lim inf
t→∞

xi(t) > 0 (2.29)

for all i, whenever xi(t0) > 0 for some t0. In this case, the distance depends on the particular
orbit and so is not a global criterion.

A stronger condition of permanence that avoids this difficulty is known as uniform per-
sistence. Uniform persistence of the model means that for sufficiently large t, all orbits
remain some fixed distance away from zero whenever all components are positive at some
previous time t0. This distance is not dependent upon the initial value x(t0) = x0. Math-
ematically, uniform persistence of the system means that for any positive initial condition
x(t0) = x0 there exists a positive constant m such that

lim inf
t→∞

xi(t) ≥ m (2.30)

for all i. A dynamical system describing the evolution of x(t) is said to be dissipative if
trajectories are uniformly bounded in positive t, that is, there exists a constant M such
that

lim sup
t→∞

|| x(t)|| ≤ M. (2.31)

If 2.30 and 2.31 hold, then there are numbers m,M with 0 < m ≤ M < ∞ such that
given any initial condition in D there is a T = T (x) such that

m ≤ xi(t) ≤ M (t > T, i = 1, . . . , n). (2.32)

If this condition holds, then the system is known as permanently coexistent or perma-
nent. Hutson et al. [44], [45], [46] use the term permanently coexistent, but Hofbauer and
Sigmund [36] and Kirlinger [52] use the term permanent (see also [37], [53], [54], [60], [61],
[49]). Butler et al. [5], [6] use the analogous term uniformly persistent when talking about
dissipative systems. The term cooperativity has been used to indicate uniform persistence
in the analysis of models of hypercycles (see [87], [35]).

An equivalent mathematical formulation for a permanently coexistent system is as follows:
a system is permanently coexistent or permanent if and only if there is a compact region
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D1 ⊂ D, and thus with δ = d(D1, ∂D) > 0, such that given any x(t0) = x0 ∈ D there is
a T = T (x) such that x(t) ∈ D1 for t > T . As noted earlier in this work, this definition
encompasses the idea that the boundary should repel orbits. The system is said to be
impermanent if and only if there is an x ∈ D such that

lim
t→∞

d(x(t), ∂D) = 0. (2.33)

For an investigation of the connections between the concepts presented above see the paper
by Freedman and Moson [19].

There are many advantages to using the concept of permanent coexistence over asymp-
totic (local) stability, global stability, weak persistence, and strong persistence. First, if such
a D1 exists, it is a global attractor under the dynamics of the system. Second, no solutions
can approach the boundary. Thirdly, only the behavior of the dynamics governing the system
near the boundary is relevant. Lastly, any asymptotic behavior consistent with the dynam-
ics of the system is allowed. One clear disadvantage to this concept is that nothing is said
about how close (how small δ) the compact set can be to the boundary. This could allow
for extinction of species since “environmental perturbations are often vigorous shake-ups,
rather than gentle stirrings” [49].

The notion of θ-persistence where the δ should be specified in advance was presented
by Levin [63]. However, it is extremely difficult to discover when θ-persistence holds [27].
The slightly weaker condition, that some such δ exists, is easier to treat mathematically [46].

Much of the development of permanence theory has revolved around increasing the range
of applicability to different models. Waltman [96] noted that “much of the interest has been
focused on three-population models”. Three species models of Kolmogorov type have been
studied by Hutson and Law [44], Hutson and Vickers [46] and Butler and Waltman [6]. The
book of Hofbauer and Sigmund [36] is a good reference for models of Lotka-Volterra type.
Kirlinger [52],[53], [54], and Mukherjee et al. [70] have had some success with models for four
or more species. Gard [23] developed an approximate method for multi-species Kolmogorov
models.

There are two distinct mathematical approaches in the literature for investigating per-
manent systems:
1) Analysis of the flow on the boundary
2) Use of a Lyapunov-like function.

The first approach was introduced by Freedman and Waltman [21] in 1984. Subsequent
work [5] showed that permanence (uniform persistence in the terminology of the authors)
held under an acyclicity condition. Most of the work on the analysis of the flow on the
boundary has been done in a dynamical systems setting rather then in the restricted setting
of differential equations (see [6], [96]). We will not be using this approach in this work.
Instead, we concentrate on the second method listed above.

The key article by Schuster, Sigmund, and Wolff in 1979 initiated the second approach.
A considerable body of literature has been devoted to this technique over the past 25 years.
Some of the works deal with differential equations and others deal with dynamical systems.
Hofbauer’s 1981 work [35] is one of the key references that made explicit use of the features
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of a Lyapunov-like function in a differential equations setting. An extension to dynamical
systems was put forward in 1984 by Hutson [43].

For a wide variety of ordinary differential equation models the two techniques produce
identical results [43]. Hutson and Schmitt [43] give examples where one approach works,
but the other approach does not work. Still further, some authors (see [54], [38]) use a
combination of both approaches.

In order to understand the Lyapunov function approach, we define what a Lyapunov
function and an Average Lyapunov function are. The latter is sometimes called a persistence
function (see [23]).

Definition 6 We say that a real-valued function P ∈ C1(D) is a Lyapunov function if it
satisfies the relations

P (x) = 0 for x ∈ ∂D, P (x) > 0 for x ∈ int(D), and Ṗ (x) > 0 for x ∈ D.

Here Ṗ (x) is defined as Ṗ (x) := P (x)Ψ(x) where Ψ is a continuous function on D. Ṗ (x) is
called the derivative of P along trajectories.

Note that the last inequality above is reversed, that is Ṗ (x) ≤ 0, when defining a Lya-
punov function in the context of stability of equilibria [95]. For our definition we can think
of P (x) as a surface with height zero when one or more species have zero density and with a
positive height when all species have positive densities. So solutions x(t) projected onto the
surface P are moving away from the boundary in the positive direction.

Since we want the boundary to repel orbits it is enough to require that Ṗ (x) > 0 close
to the boundary. Notice that for Ṗ (x) = P (x)Ψ(x) > 0 near the boundary, it is enough to
show that Ψ > 0 at all points on the boundary since Ψ is a continuous function. However,
it may be difficult to check all points in the boundary to see if they satisfy Ψ > 0. In fact,
it is unlikely that the inequality would hold throughout the boundary [60].

A weaker version in which the time average behaves as a Lyapunov function can be used
in some circumstance to overcome this drawback. In the long run, the boundary still repels
orbits that are not in the boundary. To put it the way Jansen et al. [49] said it, “if one waits
for a sufficiently long time, one can be sure to be further away from the boundary than one
was before”.

Definition 7 We say that a real-valued function P ∈ C1(D) is an Average Lyapunov
function [36] or Persistence function [23] if it satisfies the following properties:
1) We have

P (x) = 0 for x ∈ ∂D and P (x) > 0 for x ∈ int(D) (2.34)

and
2) there exists a continuous function Ψ on D such that the following two conditions hold:

i) We have

Ψ(x) =
Ṗ (x)

P (x)
for x ∈ int(D) (2.35)
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and
ii) for x ∈ ∂D, ∫ T

0

Ψ(x(t)) dt > 0 for some T > 0. (2.36)

2.3.1 Kolmogorov Type Models

We now turn our attention to a specific form of ordinary differential equation that is
typically used in modeling the population densities of interacting species. The general n-
species Kolmogorov type model has the form

dxi

dt
= xifi(x), 1 ≤ i ≤ n, (2.37)

where x = {xi}. We assume the per capita net growth rates fi, i = 1, . . . , n are such that
they guarantee a unique solution. We define the non-negative cone in IRn as

IRn
+ = {x ∈ IRn : xi ≥ 0, 1 ≤ i ≤ n}. (2.38)

We define each bounding hypersurface as

Hi = {x ∈ IRn
+ : xi = 0} 1 ≤ i ≤ n. (2.39)

Definition 8 A region R is invariant for (2.37) if x0 ∈ R and x(t) is the solution of
(2.37) with x(t0) = x0, then x(t) ∈ R for all t > t0.

Lemma 5 For n = 3, the bounding hypersurfaces Hi, 1 ≤ i ≤ 3 are invariant for (2.37).

Proof. First, we will show that H1 is invariant. By assumption, f2 and f3 are such that

dx2

dt
= x2f2(0, x2, x3)

dx3

dt
= x3f3(0, x2, x3)

x2(t0) = c2

x3(t0) = c3

has a unique solution {x2(t), x3(t)}. Also, x = {0, x2(t), x3(t)} is a solution of the system

dx1

dt
= x1f1(x1, x2, x3)

dx2

dt
= x2f2(x1, x2, x3)

dx3

dt
= x3f3(x1, x2, x3)

x1(t0) = 0

x2(t0) = c2

x3(t0) = c3.
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Since
dxi

dt
= xifi(x), xi(t0) = ci, i = 1, 2, 3 (2.40)

has a unique solution for all time, by uniqueness x = {0, x2(t), x3(t)} must be the unique
solution to (2.40). That is, a solution starting in the x2x3 plane, cannot leave that plane.
Therefore, H1 is invariant for (2.37). A similar argument holds for H2 and H3, completing
the proof.

2.3.2 Other Models

Consider a model of the form

dp1

dt
= a(x1, x2)p2 − bp1 (2.41a)

dp2

dt
= a′p1 − b′p2 (2.41b)

dx1

dt
= x1f1(x) (2.41c)

dx2

dt
= x2f2(x) (2.41d)

where x = {p1, p2, x1, x2}, a(x1, x2) > 0 if x1, x2 > 0, and a′, b and b′ are positive constants.

Lemma 6 Solutions to the system (2.41) are pointing into IR4
+ on the bounding hypersur-

faces Hi, 1 ≤ i ≤ 4.

Proof. H3 = {x ∈ IR4
+ : x1 = 0} and H4 = {x ∈ IR4

+ : x2 = 0} are invariant for (2.41c)
and (2.41d) since the last two equations are of Kolmogorov type. Thus, solutions are pointed
in the positive direction on these hypersurfaces.
If p1(t0) = 0, p2(t0) > 0, x1(t0) > 0, and x2(t0) > 0, then

dp1

dt
(t0) = a(x1, x2)p2(t0) > 0

since x1(t0) > 0, and x2(t0) > 0 implies that a(x1, x2) > 0 by invariance of H3 and H4. Since
the time derivative is strictly postive at t0, then p1 is increasing near zero. So, solutions are
pointed in the positive direction on the H1 hypersurface.
If p2(t0) = 0 p1(t0) > 0, x1(t0) > 0, and x2(t0) > 0, then

dp2

dt
(t0) = a′p1(t0) > 0

since a′ > 0. Since the time derivative is strictly positive at t0, then p2 is increasing near
zero. So, solutions are pointing into IR4

+ on the H2 hypersurface, completing the proof.
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2.4 Sensitivity Analysis

Consider a first order system of differential equations of the form

dx1

dt
= f1(t, x1, . . . , xn)

...
... (2.42)

dxn

dt
= fn(t, x1, . . . , xn).

Written as a vector equation, the system takes the form

ẋ = f(t,x). (2.43)

Assume that with a given initial condition a unique solution exists for all t ≥ t0.
Since our differential equations come from modeling ecological systems, numerical values

known as parameters appear in the equations. These parameters are obtained by measure-
ments in the field and are thus only approximations. So a very important question is whether
the solutions are “insensitive” to small changes in these parameter values. We will denote
these parameters by αi, i = 1 . . . m. We can write the parametric model in expanded form:

dx1

dt
= f1(t, x1, . . . , xn, α1, . . . , αm)

...
... (2.44)

dxn

dt
= fn(t, x1, . . . , xn, α1, . . . , αm).

For a parameter vector α ∈ IRm, the vector equation is

ẋ = f(t,x,α). (2.45)

One of the main tasks of sensitivity analysis is the investigation of properties of a solution
to 2.45 under small changes in α.

2.4.1 Continuous Dependence and Differentiability

We use the following theorems by Rosenwasser et al. [85] to show that the solution x(t)
to the system 2.45 depends continuously upon the parameter vector α, and the solution can
be differentiated with respect to α. Let Dα be a region in IRm of possible variations of the
vector α.

Theorem 3 Assume that for any α ∈ Dα, equation 2.45 satisfies conditions of existence
and uniqueness of solutions and this solution can be continued for t ≥ t0. This yields the
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existence of an open set D in the (t,x,α)-space in which f(t,x,α) is continuous with respect
to t and x for all α ∈ Dα. Also, assume that the partial derivatives

∂fi

∂xj

(t,x,α), for i, j = 1, . . . , n (2.46)

are continuous with respect to t and x for all α ∈ Dα. Then the solution x(t,α) satisfying

x(t,α0) = x0 (2.47)

is continuous with respect to α for all α ∈ Dα and t ≥ t0.

Theorem 4 Let the conditions of the previous theorem hold. If in addition, the right hand
sides of 2.44 have continuous partial derivatives in D with respect to x1, . . . , xn, α1, . . . , αm,
then the solution x(t,α) satisfying

x(t,α0) = x0 (2.48)

has continuous partial derivatives with respect to α1, . . . , αm.

2.4.2 Sensitivities

For our study, we define sensitivities as the partial derivatives of population densities
with respect to model parameters.

Definition 9 The partial derivative
∂x(t,α)

∂αi

(2.49)

is a vector and is called the sensitivity of the solution with respect to αi. In expanded
form we define

Sj,i :=
∂xj(t,α)

∂αi

. (2.50)

We now obtain a system of differential equations that determines the derivative of the so-
lution with respect to parameters. The result is formulated as a theorem also by Rosenwasser
et al. [85].

Theorem 5 Let the conditions of Theorem 4 hold. Then, derivatives of solutions with re-
spect to parameters are defined by differential equations

d

dt

∂xj

∂αi

=
n∑

k=1

(
∂fj

∂xk

∂xk

∂αi

)
+

∂fj

∂αi

(2.51)

j = 1, . . . , n, i = 1, . . . ,m,
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with initial conditions

∂xj

∂αi

(t = t0) = 0, j = 1, . . . , n, i = 1, . . . ,m. (2.52)

or written according to the definition given in equation 2.50,

d

dt
Sj,i =

n∑
k=1

(
∂fj

∂xk

Sk,i

)
+

∂fj

∂αi

(2.53)

j = 1, . . . , n, i = 1, . . . ,m,

with initial conditions

Sj,i(t = t0) = 0, j = 1, . . . , n, i = 1, . . . ,m. (2.54)

Equation 2.51 is obtained from 2.44 by means of formal differentiation with respect to αi

and is called the sensitivity equations. The sensitivity equations are linear with respect
to the corresponding sensitivities.



Chapter 3

Examples

The purpose of this chapter is to show the ubiquity of omnivory in natural systems and
to give parameter values for use in our differential equation models. Polis et al. [78] state
that “as a taxonomically widespread interaction, intraguild predation significantly affects
the distribution, abundance, and evolution of many species”. However, after some general
observations from a plethora of taxa, we will restrict ourselves to examples mainly involving
fish, birds, and mammals.

A vast majority of predators eat food types in a particular size range regardless of the
prey’s trophic level. Typically, larger predators attack general prey species of smaller size.
This is common in insects, arthropods, and plankton [78]. In fact, omnivory is “so frequent
among spiders, scorpions, and ants that each are often considered their own worst enemy”
[78]. Larger consumers that eat carrion, fruit, seeds, etc. where many microorganisms and
small metazoa live are involved is what is called “coincidental omnivory” [78].

Age/stage structure can also be important. Many predators take relatively small prey
as juveniles and larger prey as adults. This leads to stage dependent omnivory. This type
of omnivory is frequent among terrestrial insects, lizards, copepods, mysids, rotifers, fresh-
water insects, amphibians, and fish (see [78] and references therein). Symmetric omnivory
is widespread among granivores, arthropods, parasitoids, hyperparasitoids, and benthic ma-
rine communities (see [78] and references therein). For example, adult killifish eat adult
and juvenile grass shrimp and adult shrimp eat young killifish [78], [55]. Now, we will go
through specific examples of fish, birds, and mammals to show that omnivory is a widespread
ecological interaction.

3.1 Fish

Hall et al. state that “aquatic predators apparently select prey primarily on the basis of
size and...thus do not recognize their food as taxonomic entities nor members of a trophic
level” [30]. Polis et al. state that “IGP by larger fish on smaller fish is widespread” and
when referring to stage dependent IGP among freshwater fish they state, “these complex
interactions often include competition and IGP” [78].

27
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Paul Lake in British Columbia was fishless until it was stocked with rainbow trout (Salmo
gairdneri) in 1909. There, trout feed on a mixture of plankton, benthos, and terrestrial
insects. In 1949, a smaller species, the redside shiner (Richardsonius balteatus), entered the
lake from upstream. The shiner also fed on plankton and benthos. The growth of large trout
increased in response to the availability of shiners as food. In contrast, it took small trout
a full year longer to reach a given size due to competition with the shiners. This is a classic
example of IGP in fish (see figure 3.1a) given by Werner et al. [98].

Werner [97] sampled five small lakes in southwest Michigan where bluegill sunfish (Lep-
omis macrochirus) had a considerable depressive effect on the growth and survivorship of
young largemouth bass (Micropterus salmoides) due to competition for plankton and insects.
He concluded that the bluegill form an important part of the adult largemouth bass diet.
Thus, we see size dependent omnivory (see figure 3.1b). This form of omnivory determined
the habitat shifts in this community [99].

Shiner

Adult
Trout

Plankton,
Benthos

(a)

Juvenile
 Trout 

Bluegill
Sunfish

Adult
 Bass 

Plankton,
  Insects 

(b)

Juvenile
  Bass 

Figure 3.1: Two examples of omnivory in fish. Arrows indicate that one species (base of
arrow) is eaten by another species (point). (a) Adult rainbow trout feed on redside shiner.
Both trout and shiner compete for plankton and benthos. (b) Adult largemouth bass feed
on bluegill sunfish. Both bass and bluegill compete for plankton and insects.

Clady [8] documented the food habits of yellow perch (Perca flavescens) and largemouth
bass (Micropterus salmoides) in two unproductive lakes in northern Michigan. He observed
that juvenile perch and juvenile bass ate mostly small crustaceans and insects. As adults,
perch fed on bass and juvenile perch (cannibalism). Adult bass fed mostly (70%-80%) on
juvenile perch. Here, we see asymmetric IGP as well as competition within adult stages
and within juvenile stages (see figure 3.2). Again, nature has provided us with a complex
interaction which we can only hope to one day model.

Other examples of omnivory in fish are walleye and sauger [91], anchovies and sardines
[1], and yellow perch and walleye [18].
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Figure 3.2: An example of asymmetric omnivory in fish. Solid arrows indicate that one
species (base of arrow) is eaten by another species (point). Dashed arrows indicate growth
transitions. Adult bass eat juvenile perch. Adult perch eat juvenile bass and juvenile perch.
Both juvenile bass and juvenile perch compete for crustaceans and insects.

3.2 Birds

Sergio et al. [88] state that “studies on vertebrate predators have focused mainly on
aquatic communities or on mammals. Few studies have been made on avian predators”.
However, we do find IGP involving birds in the literature. The lack of studies could be due
to the fact that predatory birds are often elusive and many species are under some form of
conservation status.

Wright [100] analyzed stomach content for nine insectivorous bird species and six anole
(lizard) species from the West Indian island Puerto Rico. He showed that the birds and
anoles compete for their arthropod prey. He also suggested that anoles experience ecological
release upon the extinction of an avian predator. As much as 79% of the stomach content of
some of the avian species consisted of anoles. This suggests a strong IGP connection between
the birds, anoles, and arthropods of Puerto Rico (see figure 3.3a).

Sergio et al. [88] studied the impact of IGP by large eagle owls (Bubo bubo) on diurnal
black kites (Milvus migrans) in eight populations in the Italian Alps. “Similar preference
of eagle owls and black kites for low-elevation areas in the proximity of wetlands generates
potential for conflict between the two species in the Alps” [88]. The eagle owl preyed mostly
on mammals and the black kite preyed mostly on fish. However, they had a dietary overlap
of 23.3% by mass. Eagle owls preyed on both nestling and adult black kites (see figure 3.3b).
The mean black kite productivity (number of young fledged per pair) was negatively related
to eagle owl density. This shows a negative effect on the black kite population due to the
predation risk of eagle owls. In this example the IGP is weak, yet present. Sergio et al.
[88] state that “detection of IGP systems is complicated by the fact that observed predation
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Figure 3.3: Two examples of omnivory in birds. Arrows indicate that one species (base
of arrow) is eaten by another species (point). (a) Birds of the West Indies feed on anoles
(lizards) as well as arthropods. Anoles feed on arthropods. (b) Eagle owls feed mostly on
mammals and black kites feed mostly on fish, but they have a dietary overlap of 23.3% by
mass. Eagle owl prey on black kites.

rates are often low. However, predation pressure on a prey may be intense even when actual
mortality by predation is low”.

Polis [79] studied the trophic relations of biota in the sand community of the Coachella
Valley desert in California. In this study he documents asymmetrical IGP between gopher
snakes (Pituophis) and burrowing owls (Athene cunicularia) (see figure 3.4a). The gopher
snake is a nest predator. Gopher snakes eat eggs and nestlings of burrowing owls. However,
the burrowing owls are predators upon the gopher snakes. Gopher snakes and burrowing owls
are both resource generalists preying on many vertebrates including arthropods, rodents, and
lizards. The subwebs in the Coachella Valley are “complex because of the large number of
interactive species, age structure, and high omnivory” [79].

Jaksic [47] studied diurnal (Falconiform) and nocturnal (Strigiform) raptors to determine
if the difference in activity time reduced competition for food. Jaksic [47] states that diurnal
and nocturnal raptors share prey of the transition time between day and night. Many prey
species also become prey for both diurnal and nocturnal raptors by extending their feeding
times. Jaksic [47] indicates that there are “records of interspecific territoriality, predation,
and interference competition” between diurnal and nocturnal raptors. Although IGP in this
system may be weak, it is none the less present (see figure 3.4b).

Other examples of omnivory in birds are great horned owl and red-tailed hawk [67] and
screech owl and golden eagle [79].
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Figure 3.4: Two examples of omnivory in birds. Solid arrows indicate that one species (base
of arrow) is eaten by another species (point). Dashed arrows indicate growth transitions. (a)
Gopher snakes prey on burrowing owl eggs and nestlings. Burrowing owls prey on gopher
snakes. Both species are resource generalists feeding on rodents, lizards, etc. (b) Both
diurnal and nocturnal raptors prey on species that feed during transition periods between
day and night. Records also show that there is some predation between diurnal and nocturnal
raptors.

3.3 Mammals

Palomares et al. [73] state that “the importance of interspecific interactions among
large vertebrate predators has been long recognized. However, estimation of the strength of
such interactions ... has been rarely tackled, in spite of its known importance for a better
knowledge of community structure”. Palomares et al. [72] also state that “interspecific killing
among mammalian carnivores is common in nature and accounts for up to 68% of known
mortalities in some species”. Generally, larger solitary killer species prey on smaller victim
species. However, grouping species kill larger victims than solitary species. Palomares et al.
[72] uncovered 97 different interspecific killings among mammalian carnivores involving 54
different victims and 27 killer species. The dietary overlap of the species was not considered
in their paper. We will restrict ourselves to species with significant dietary overlap since we
are modeling omnivory.

The three-species system (see figure 3.5a) involving the Iberian lynx (Felis pardina),
Egyptian mongoose (Herpestes ichneumon), and European rabbit (Oryctolagus cuniculus)
was studied by Palomares et al. [74]. The study was conducted along the Doñana National
Park border in the Iberian Peninsula of southwestern Spain. The Iberian lynx is the top
terrestrial predator in this ecosystem and is the most endangered carnivore in Europe. The
lynx mainly feeds on adult rabbits which consists of 75% to 95% of the biomass they consume
throughout the year. The study showed that rabbits represent between 33% and 87% of
the biomass consumed by mongooses throughout the year. Juvenile rabbits were the most
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commonly consumed. Lynx kill mongoose and mongoose avoid use of otherwise suitable
areas where lynx are at high density due to the high predation risk [73]. However, the
predatory link is not a strong link since lynx do not significantly gain energetically from
feeding on mongoose.

(b)

Lynx

Mongoose

Juvenile
Rabbits

(a)

 Adult 
Rabbits

Invertebrates 
   Alternate 
Invertebrates 

Badger

Hedgehog

Figure 3.5: Two examples of omnivory in mammals. Solid arrows indicate that one species
(base of arrow) is eaten by another species (point). Dashed arrows indicate growth transi-
tions. (a) Iberian lynx feed on adult rabbits and Mongoose feed on juvenile rabbits. Lynx
kill mongoose. (b) Badgers feed on common invertebrates with hedgehog. Badgers also feed
on alternate invertebrates. Badgers have a negative effect on hedgehog survival through
intraguild predation.

Doncaster [13] studied hedgehog (Erinaceus europeaus) and badger (Meles meles) pop-
ulations on two sites in England (see figure 3.5b). The hedgehog consumes a variety of
invertebrates which also make up a large proportion of the badger diet. Badgers may also
consume alternate invertebrate prey [13]. “The study was designed to test whether hedgehogs
were excluded from apparently suitable habitats through intraguild predation with badgers”
[32]. Doncaster found that the density of badgers negatively affected hedgehog survival and
positively affected hedgehog dispersal to microhabitats that were not accessible to badgers.
The presence of alternative resources seems to be important in determining the abundance
of both the badger and hedgehog [32].

Coyotes (Canis latrans), bobcats (Felis rufus), gray foxes (Urocyon cinereoargenteus),
and red foxes (Vulpes vulpes) are sympatric over a large portion of their ranges in North
America [10], [17] (see figure 3.6). All four of these species have been photographed (via
remote cameras) going under the same fence within weeks and often days of each other [92].
Fedriani et al. [17] studied the effect of competition and IGP on local abundances of coyotes,
bobcats, and gray foxes at three sites in the Santa Monica Mountains of Los Angeles County,
California. They recorded that 7 of 12 gray fox deaths and 2 of 5 bobcat deaths were due to
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coyote predation and 2 of 12 gray fox deaths were due to bobcats. In addition, remains of
gray foxes and bobcats were found in coyote feces. They suggested that gray foxes avoided
habitats of high coyote predation risk. However, they did not find a correlation between
the number and distribution of bobcats and coyotes. Average seasonal food overlap for the
coyote, bobcat, and gray fox were “high due to the importance of small mammals in all
carnivore diets” [17]. Coyotes and gray foxes did consume a significant amount of fruit,
whereas bobcats were solely carnivorous. Cypher [10] studied the food use of coyotes, gray
foxes, and red foxes in Southern Illinois and found that “the high dietary overlap among
[these] species results in the potential for resource competition” [10]. Red foxes were also
noted to consume significant amounts of fruit. He also noted that reports of coyotes killing
red foxes are common and reports of coyotes killing gray foxes are less common. Also noted
was that gray foxes are reportedly more aggressive than red foxes. The energetic gain of the
top predator on the intermediate prey was not addressed in either paper.

   Small 
Mammals Fruit

Red
Fox

Bobcat
 Coyote 

Gray
 Fox 

Figure 3.6: An example of omnivory in mammals. Solid arrows indicate that one species
(base of arrow) is eaten by another species (point). Coyotes kill (eat) bobcats, gray foxes,
and red foxes as well as feeding on small mammals and fruit. Bobcats are strictly carnivorous
feeding on gray foxes, red foxes, and small mammals. Gray foxes are omnivorous, feeding on
fruit and small mammals. Red foxes are omnivorous, feeding on fruit and small mammals.

Another complex example of omnivory comes from Africa. In this system, lions (Panthera
leo) are the largest species of predator, but do not hold the status of “top predator”. Groups
of hyenas (Crocuta crocuta) prey on single lions [78]. Also, packs of wild dogs (Lycaon
pictus) will kill and eat solitary lions [78]. However, lions are common predators of wild
dogs and account for about 39% of wild dog pup deaths and at least 43% of adult deaths
[32], [68]. Individual lions prey on individual hyenas and groups of lions prey on groups of
hyenas [78]. Lions also prey on cheetah cubs (Acinonyx jubatus). Kelly et al. [51] state
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that “reproductive rates of cheetahs were negatively correlated with the presence of lions
while cheetahs had cubs”. Durant et al. [14] state that the “negative association between
recruitment and numbers of lions, demonstrate that the high rates of predation observed in
previous studies have implications for the dynamics of cheetah populations”. In fact, the
chief source of mortality on cheetah cubs is predation by lions, which accounts for nearly 75%
of known cub mortality [59]. Cheetah densities also show an inverse relationship to hyena
densities [7]. The food overlap of the above predators varies. The primary prey species of
lions are wildebeest (Connochaetes taurinus), buffalo (Syncerus caffer), and zebra (Equus
burchelli) [68]. Lions will also feed on other ungulates such as impala (Aepyceros melampus)
and kudu (Tragelaphus strepsiceros), which are the main prey species of wild dogs [68]. Lions
and hyenas do kleptoparasitize (steal food from) wild dogs [33], [68]. Although hyenas will
scavenge for almost half of their food, they will hunt for such prey as buffalo, warthogs
(Phacochoerus aethiopicus), kudu, and impala [33]. Thomson’s gazelle (Gazella thomsoni),
is the main prey species for cheetahs [7]. This conglomeration of predation and competition
defines a system where species have little to moderate dietary overlap and are subject to
a varying degree of predation from rare to extreme. Therefore, the degree and ubiquity of
omnivory have an effect on the dynamics of this ecosystem.

Cheetah

Hyena
 Lion 

Wild  
Dog

  Diverse 
    Basal 
Resources

Figure 3.7: An example of omnivory in mammals. Solid arrows indicate that one species
(base of arrow) is eaten by another species (point). Lions prey on cheetahs, wild dogs, and
hyenas. Hyenas prey on lions, wild dogs and cheetahs. Packs of wild dogs prey on solitary
lions. Lions, hyenas, wild dogs, and cheetahs feed on a variety of ungulates. The amount of
dietary overlap between the predatory species varies from low to high.

Other examples of omnivory in mammals are Iberian lynx and red fox [74],[16] and coyotes
and kit fox [65], [80], [79].
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3.4 Model Parameter Values

In order to provide parameter values for our differential equation models we obtain data
from three omnivorous systems. Since collecting data from mammalian carnivores is “low
because they are scarce, difficult to see and to catch, move over large areas, and may be
threatened” [72], we will use data from ciliates (protozoans) instead for our linear response
model. Also, since the same holds true for birds [88], we will use data from a previous study
by Křivan et al. [58] for our non-linear response model and our stage structure model. In
additions we use a maturation rate from Persson et al. [75].

Tetrahymena

Blepharisma

Bacteria

Figure 3.8: An omnivorous system used to determine parameter values. Solid arrows indicate
that one species (base of arrow) is eaten by another species (point). Dashed arrows indi-
cate growth transitions. Two ciliates Blepharisma and Tetrahymena compete for bacteria.
Blepharisma feed on Tetrahymena.

For our linear response omnivory model we obtain model parameter values from a labo-
ratory system of mixed bacteria and ciliates. Our data is taken from Diehl et al. [12]. The
system consists of two ciliates Tetrahymena pyriformis and Blepharisma which coexist with
heterotrophic bacteria. Tetrahymena pyriformis feed on bacteria and Blepharisma feed on
bacteria and Tetrahymena. Diehl et al. [12] selected the Blepharisma-Tetrahymena-bacteria
system (see figure 3.8a) to investigate the effects of enrichment on a simple three-trophic
level community with omnivory. The parameter values are given in Table 3.1. The resource
carrying capacity was determined from the stable coexistence regions given by Diehl et al..

For our non-linear response omnivory model we obtain model parameter values from
Křivan et al. [58]. Křivan et al. made minor modifications to parameter values given by
Kooi et al. [56]. Kooi et al. studied the dynamic behavior of a three species microbial food
web under chemostat conditions. The parameter values taken from Křivan et al. are given
in Table 3.2. In our case, we chose the resource carrying capacity according to the regions
where 3-species coexistence occurs as given by Křivan et al..

For our stage structure omnivory model we parameterize the model with the same data
from Křivan et al. [58]. However, Křivan et al. do not compute a maturation rate. The
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Table 3.1: Parameter values for our linear response omnivory model taken from Diehl et al.
[12].

Parameter Value
r 0.4
K 2

αRC 0.1
αRP 0.1
αCP 0.05
eRC 0.8
eRP 0.2
eCP 0.5
mC 0.06
mP 0.04

Table 3.2: Parameter values for our non-linear response omnivory model taken from Křivan
et al. [58].

Parameter Value
r 0.3
K 3

λRC 0.037
λRP 0.025
λCP 0.025
hRC 3
hRP 4
hCP 4
eRC 0.6
eRP 0.36
eCP 0.6
mC 0.03
mP 0.0275
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Table 3.3: Parameter values for our stage structure omnivory model taken with slight mod-
ifications from Mylius et al. [71] and Persson et al. [75].

Parameter Value
r 0.3
K 4

λRC 0.037
λRP 0.025
λCP 0.025
hRC 3
hRP 4
hCP 4
eRC 0.6
eRP 0.36
eCP 0.6
mC 0.03
mP 0.0275
µP 0.1

parameter values that we will use are given in Table 3.3. We chose the resource carrying
capacity according to the regions where 3-species coexistence occurs as given by Křivan et
al..



Chapter 4

Linear Response Omnivory Model

Our first model for investigation is a three species omnivory model in which the functional
and numerical responses are all linear functions of the resource or consumer densities and
are thus governed by Lotka-Volterra dynamics. The model involves the resource density (R),
the consumer density (C), and the predator density (P). The predator feeds on the consumer
and the resource. The consumer only feeds on the resource. The population dynamics are
described by the following system of differential equations

dP

dt
= P [eRP αRP R + eCP αCP C − mP ] (4.1a)

dC

dt
= C[eRCαRCR − αCP P − mC ] (4.1b)

dR

dt
= R [r (1 − R/K) − αRCC − αRP P ] . (4.1c)

You will notice that this model is an asymmetrical intraguild predation (see Section 2.1.3)
model of Kolmogorov type.

According to this model, the resource population grows according to logistic growth in
the absence of consumers and predators. Parameter r represents the intrinsic rate of increase
of the resource, and K is the resource carrying capacity in the absence of consumers and
predators. The resource declines due to predation by the consumer as well as the predator.
The parameters αRC and αRP are the consumption rates of the resource by the consumer
and predator respectively. Both the predator and the consumer decline by natural mortality,
mP and mC respectively, and the consumer experiences additional mortality (in the form of
a consumption rate αCP ) due to the predator. The efficiencies with which the predator and
consumer convert resources into new offspring are given by eRP (for the predator) and eRC

(for the consumer). In addition, the predator converts consumers into new offspring with
efficiency eCP . All of the above parameters are assumed to be positive. A summary of the
variables and parameters is given in Table 4.1.

This is a somewhat simplistic model involving Type I functional and numerical responses.
The limitations of such a model are discussed in Section 2.1.4. However, some very interesting
results from permanence theory can be applied to Lotka-Volterra systems and thus will be

38
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Table 4.1: Definitions of variables and parameters in the linear response omnivory model.

Parameter Definition
R Resource density
C Consumer density
P Predator density
r Resource intrinsic rate of increase
K Environmental carrying capacity of the resource
αRC Consumption rate of resources by consumers
αRP Consumption rate of resources by predators
αCP Consumption rate of consumers by predators
eRC Conversion efficiency of resources into consumers
eRP Conversion efficiency of resources into predators
eCP Conversion efficiency of consumers into predators
mC Natural mortality rate of consumers
mP Natural mortality rate of predators

the basis of our study. Also, some general criteria with biological significance can be derived
from this model.

4.1 Solution to System

In order to investigate the long-term survival of the resource, consumer, and predator
species we need to ensure that in fact a unique solution to our differential equation model
exists for all non-negative time. We will first show that solutions which start positive will
remain positive for all time. Next, we will show that a unique solution exists on a finite time
interval. Lastly, we will prove that this solution can be extended uniquely for all t ≥ 0.

Since 4.1 is of Kolmogorov type, we know that the bounding hypersurfaces are invariant
by Lemma 5. Invariance indicates that solutions cannot cross the hypersurfaces, and thus
solutions that start positive must remain positive for all time.

Now assume that the initial population densities of the resource, consumer, and predator
are such that

P (0) = c1 > 0, C(0) = c2 > 0, and R(0) = c3 > 0. (4.2)
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Then the initial value problem is:

dP

dt
= f1(P,C,R)

dC

dt
= f2(P,C,R)

dR

dt
= f3(P,C,R) (4.3)

P (0) = c1

C(0) = c2

R(0) = c3

defined on D = IR+ × IR3
+ where

f1(P,C,R) = P [eRP αRP R + eCP αCP C − mP ]

f2(P,C,R) = C[eRCαRCR − αCP P − mC ]

f3(P,C,R) = R [r (1 − R/K) − αRCC − αRP P ] .

The partial derivative of

f =

⎛
⎝f1

f2

f3

⎞
⎠ (4.4)

with respect to the predator, consumer, and resource densities are

∂f

∂P
=

⎛
⎝eRP αRP R + eCP αCP C − mP

−αCP C
−αRP R

⎞
⎠

∂f

∂C
=

⎛
⎝ eCP αCP P

eRCαRCR − αCP P − mC

−αRCR

⎞
⎠

∂f

∂R
=

⎛
⎝ eRP αRP P

eRCαRCC
r (1 − 2R/K) − αRCC − αRP P

⎞
⎠ .

Notice that f and its partial derivatives are all continuous with respect to P, C, and R for
all positive t, P, C, and R. So by Lemma 1, f satisfies in D a local Lipschitz condition with
respect to

x =

⎛
⎝P

C
R

⎞
⎠ . (4.5)

Then using the Existence and Uniqueness Theorem 1, our initial value problem 4.3 has
exactly one solution and that solution can be extended to the left and right up to the
boundary of D.

We will now show that we have a unique solution for all t ≥ 0.
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Theorem 6 The initial value problem 4.3 has a unique solution in IR3
+ for all t ≥ 0.

Proof. Recall from above that P (t), C(t), R(t) ≥ 0 for all t ≥ 0. Then

dR(t)

dt
= R(t) [r (1 − R(t)/K) − αRCC(t) − αRP P (t)] ≤ R(t)r (1 − R(t)/K) .

So we have the differential inequality

dR(t)

dt
≤ R(t)r (1 − R(t)/K) . (4.6)

However, the initial value problem

du(t)

dt
= u(t)r (1 − u(t)/K) , u(0) = u0 (4.7)

has the unique solution

u(t) =
K

1 +
(

K
u0

− 1
)

e−rt
. (4.8)

Then applying Theorem 2 and Lemma 3, we have that R(t) ≤ u(t) for 0 ≤ t ≤ ∞. If in
addition, we let Kmax = max(u0, K), then u(t) ≤ Kmax and we have

R(t) ≤ Kmax for 0 ≤ t ≤ ∞. (4.9)

Also,
dC(t)

dt
= C(t)[eRCαRCR(t) − αCP P (t) − mC ] ≤ eRCαRCC(t)R(t).

Since R(t) ≤ Kmax, we have that

dC(t)

dt
≤ eRCαRCKmaxC(t) for 0 ≤ t ≤ ∞.

If we define
Γ = eRCαRCKmax

then by Lemma 4 Part A

C(t) ≤ C(0)eΓ(t−0)

= c2e
Γt. (4.10)

This exponential function does not reach infinity in finite time.
Finally,

dP (t)

dt
= P (t)[eRP αRP R(t) + eCP αCP C(t) − mP ] ≤ P (t)[eRP αRP R(t) + eCP αCP C(t)].
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Since R(t) ≤ Kmax and C(t) ≤ c2e
Γt, we have that

dP (t)

dt
≤ (Γ + eCP αCP c2e

Γt)P (t) for 0 ≤ t ≤ ∞.

If we define
Φ = eCP αCP c2

and

Λ =
Φ

Γ

then by Lemma 4 Part C
P (t) ≤ c1e

Γ t +Λ(eΓt− 1). (4.11)

This exponential function does not reach infinity in finite time. So by Lemma 2 and inequal-
ities (4.9), (4.10), and (4.11) a unique solution for the initial value problem (4.3) exists for
all t ≥ 0. This completes the proof.

4.2 Permanent Coexistence

In this section we will show that our linear response omnivory model is permanently
coexistent under certain parameter restrictions. To make the analysis simpler, we redefine
the third vector component, R(t), in the following way:

R(t) =
R(t)

K
. (4.12)

Then, we take (x1(t), x2(t), x3(t))
T = (P (t), C(t), R(t))T to form the classical Lotka-Volterra

equations for three populations,

ẋi(t) = xi(t)fi(x(t)) = xi(t)

(
ri +

3∑
j=1

aijxj(t)

)
i = 1, 2, 3 (4.13)

where r1 = −mP , r2 = −mC , and r3 = r. We define the interaction matrix to be

A = (aij) =

⎛
⎝ 0 eCP αCP eRP αRP

−αCP 0 eRCαRC

−αRP −αRC −1

⎞
⎠ . (4.14)

In order to use available theory from Hofbauer et al. [37], we need the following defini-
tions. We define the replicator equation as

ẋi = xi((Ax)i − x·Ax)
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defined on the simplex

Sn = {x = (x1, . . . , xn)T ∈ IRn : xi ≥ 0 and
n∑

i=1

xi = 1}

where

(Ax)i =
n∑

j=1

aijxj. (4.15)

We say that an equilibrium point x̄ is saturated if

fi(x̄) ≤ 0 for all i with x̄i = 0. (4.16)

Note that every equilibrium point in the interior of the state space is saturated. For an
equilibrium point on the boundary, saturated means that the dynamics do not “call for” the
missing species [37].

We use the following theorem from Hofbauer et al. [37] to show that the replicator
equation in n variables is equivalent to the Lotka-Volterra equation in n − 1 variables.

Theorem 7 There exists a differentiable, invertible map from Ŝn = {x ∈ Sn : xn > 0} onto
IRn−1

+ mapping the orbits of the replicator equation

ẋi = xi((Ax)i − x·Ax) (4.17)

onto the orbits of the Lotka-Volterra equation

ẏi(t) = yi(t)

(
ri +

3∑
j=1

a′
ijyj(t)

)
i = 1, . . . , n − 1 (4.18)

where ri = ain − ann and a′
ij = aij − anj.

Then, we use the following two theorems on Average Lyapunov functions also from Hof-
bauer et al. [37] to show that a dynamical system on Sn is permanent.

Theorem 8 Consider a dynamical system on Sn that leaves the boundary invariant. Let
P : Sn → IR be a differentiable function vanishing on ∂Sn and strictly positive in int(Sn). If
there exists a continuous function Ψ on Sn such that the following two conditions hold:

for x ∈ int(Sn),
Ṗ (x)

P (x)
= Ψ(x) (4.19)

for x ∈ ∂(Sn),

∫ T

0

Ψ(x(t)) dt > 0 for some T > 0, (4.20)

then the dynamical system is permanent.
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Note that this is the definition of an Average Lyapunov function given in Chapter 2.

Theorem 9 It is sufficient to verify (4.20) for all x ∈ Ω(∂Sn), the Ω-limit set of orbits on
the boundary of Sn.

From the proceeding three theorems, we can now state a theorem on Average Lyapunov
functions for a Lotka-Volterra equation on IRn

+. An extended version for autonomous differ-
ential equations is given by Hutson [43].

Theorem 10 Consider a Lotka-Volterra equation with uniformly bounded orbits on IRn
+ that

leaves the boundary invariant. Let P : IRn
+ → IR be a differentiable function vanishing on

∂IRn
+ and strictly positive in int(IRn

+). If there exists a continuous function Ψ on IRn
+ such

that the following two conditions hold:

for x ∈ int(IRn
+),

Ṗ(x)

P(x)
= Ψ(x) (4.21)

for x ∈ Ω(∂IRn
+),

∫ T

0

Ψ(x(t)) dt > 0 for some T > 0, (4.22)

then the Lotka-Volterra equation is permanent.

We now present a theorem that provides a sufficient condition for permanence for Lotka-
Volterra systems that is a very useful strengthening of Theorem 10 on Average Lyapunov
functions. A similar result for a replicator equation is given by Hofbauer et al. [37] and also
by Jansen [48].

Theorem 11 If there exists a p ∈ int(IRn
+) such that

p · (r + Ax) > 0 (4.23)

for all equilibrium points x ∈ ∂IRn
+, then the Lotka-Volterra equation with uniformly bounded

orbits on IRn
+ that leaves the boundary invariant is permanent.

Notice that only equilibrium points on the boundary of IRn
+ are involved. Since the

Ω-limit set on the boundary may be considerably more complicated, this is a very helpful
result.

Proof. We will use Theorem 10 on Average Lyapunov functions with the function

P (x) =
n∏

i=1

xpi

i (4.24)
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to show permanence. Clearly, P (x) = 0 for x ∈ ∂IRn
+ and P (x) > 0 for x ∈ int(IRn

+). Also,

Ṗ (x) = p1x
p1−1
1 ẋ1

(
n∏

i=2

xpi

i

)
+ xp1

1

(
p2x

p2−1
2 ẋ2

(
n∏

i=3

xpi

i

)
+ . . .

)

=

(
n∏

i=1

xpi

i

)
p1

(
ẋ1

x1

)
+

(
n∏

i=1

xpi

i

)
p2

(
ẋ2

x2

)
+ . . .

= P (x) · (p · (r + Ax)) = P (x)Ψ(x)

where
Ψ(x) = p · (r + Ax). (4.25)

Next, we must show that for every y ∈ Ω(∂IRn
+) there is a T > 0 such that∫ T

0

Ψ(y(t)) dt > 0. (4.26)

We use proof by math induction on the number k of positive components of y. For k = 1,
y has only one positive component and thus lies on one of the positive axes of IRn

+. Since
each axis is invariant, the form of the equations requires that the Ω-limit set of orbits on
each axis contains only the equilibrium points on that axis. Then, (4.26) is an immediate
consequence of our assumption (4.23).

We proceed with math induction by assuming that (4.26) is valid for k = 2, . . . ,m − 1.
Define the index set

I = {i : 1 ≤ i ≤ n and yi > 0} (4.27)

with cardinality m. Notice that I is a proper subset of {1, . . . , n}. Also, define

H(I) = {x ∈ IRn
+ : xi = 0 for all i /∈ I} (4.28)

a subset of IRn
+.

Now we must distinguish two cases:
1) y(t) converges to the boundary of the hypersurface H(I) or
2) y(t) does not converge to the boundary of the hypersurface H(I).

For case 1), since y(t) converges to the boundary of the hypersurface H(I), the Ω(y) is
contained in a union of hypersurfaces of dimension m−1. Thus by the inductive assumption,
(4.26) holds for all z ∈ Ω(y).

For case 2), since y(t) does not converge to the boundary of the hypersurface H(I), there
exists an ε > 0 and a sequence Ts → +∞ such that

yi(Ts) > ε for all i ∈ I and s = 1, 2, . . . . (4.29)

Now, we define a sequence of T,

ȳi(T ) =
1

T

∫ T

0

yi(t) dt.
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Since the orbits of our states are uniformly bounded, the sequence ȳi(Ts) is bounded. So we
may obtain a subsequence, which we will again denote by Ts, such that ȳi(Ts) converges. We
will denote the limit by x̄i.

For i ∈ I, using (4.29), we have

d

dt
(log yi(t)) =

ẏi(t)

yi(t)
= ri + (Ay)i.

Integrating from 0 to Ts and dividing by Ts, we obtain

1

Ts

∫ Ts

0

d

dt
(log yi(t)) dt =

1

Ts

∫ Ts

0

ri + (Ay(t))i dt

=
1

Ts

(riTs − 0) +
1

Ts

∫ Ts

0

n∑
j=1

aijyj(t) dt

= ri +
n∑

j=1

aij
1

Ts

∫ Ts

0

yj(t) dt

= ri +
n∑

j=1

aij ȳj(Ts)

= ri + (Aȳ(Ts))i.

So we get,
1

Ts

((log yi(Ts) − log yi(0)) = ri + (Aȳ(Ts))i . (4.30)

Since log yi(Ts) is bounded, the left hand side converges to zero. Hence,

ri + (Ax̄(Ts))i = 0 for all i ∈ I. (4.31)

Note that x̄i ≥ 0 for all i and x̄i = 0 for i /∈ I, because the boundary is invariant. Hence,
ri + (Ax̄(Ts))i = 0 for i ∈ I and x̄i = 0 for i /∈ I. Thus, x̄ is an equilibrium point in S(I).
Now,

1

Ts

∫ Ts

0

Ψ(y(t)) dt =
n∑

i=1

pi
1

Ts

∫ Ts

0

[ri + (Ay)i] dt

converges to

n∑
i=1

pi[ri + (Ax̄)i] = p · (r + Ax)

which is positive by our assumption (4.23). Thus, we have proved (4.26) holds for all y ∈
Ω(∂IRn

+) with m components strictly positive. So by math induction, (4.26) holds for all
y ∈ Ω(∂IRn

+). Hence our system is permanent, completing the proof.
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To apply the above theorems, our system must have uniformly bounded orbits. Note that
if the original system (4.1) has uniformly bounded orbits, then the Lotka-Volterra system
(4.13) with K = 1, has uniformly bounded orbits. The condition for the system (4.1) to
have uniformly bounded orbits is given in the following theorem.

Theorem 12 Provided that eRP < eCP eRC, all solutions of the system (4.3) that initiate in
IR3

+ are uniformly bounded and enter a certain region B defined by

B = {(P,C,R) ∈ IR3
+ : 0 ≤ P + C + R ≤ M} (4.32)

where

M = max

{
M1

λ
,

M1

eCP λ
,

M1

eCP eRCλ

}
,

M1 =
KeCP eRC(r + λ)2

4r
,

and
0 < λ < min(mC ,mP ).

That is, the system (4.1) is dissipative with the asymptotic bound M .

Proof. Recall that we have already shown that the components of all solutions of the
system that initiate in IR3

+ are bounded below by zero. Now, define

S(t) = eCP eRCR + eCP C + P.

The time derivative along a solution of the system is

Ṡ(t) = eCP eRCR [r (1 − R/K) − αRCC − αRP P ] + eCP C[eRCαRCR − αCP P − mC ]

+ P [eRP αRP R + eCP αCP C − mP ]

= eCP eRCrR − (eCP eRCr/K)R2 + (eRP αRP − eCP eRCαRP )RP − eCP mCC

− mP P.

For each λ > 0 the following inequality is fulfilled:

Ṡ(t) + λS(t) = (eCP eRCr + eCP eRCλ)R − (eCP eRCr/K)R2

+ (eRP αRP − eCP eRCαRP )RP + (λeCP − eCP mc)C + (λ − mp)P

≤ (eCP eRCr + eCP eRCλ)R − (eCP eRCr/K)R2

since eRP < eCP eRC and we choose λ < min(mC ,mP ). Because the right hand side is a
parabola that opens downward, it is bounded for all (P,C,R) ∈ IR3

+. Specifically, the right

hand side is bounded by M1 = KeCP eRC(r+λ)2

4r
. Thus, we find an M1 > 0 with

Ṡ + λS ≤ M1.
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Applying Lemma 4, we obtain

0 ≤ S(P,C,R) ≤ M1

λ
+

(
S(P (0), C(0), R(0)) − M1

λ

)
e−λt

and as t → ∞, 0 ≤ eCP eRCR + eCP C + P ≤ M1/λ.

Now let M = max
{

M1

λ
, M1

eCP λ
, M1

eCP eRCλ

}
, then

0 ≤ P + C + R ≤ M.

Hence, system (4.1) is dissipative with the asymptotic bound M .
Thus, there is a compact neighborhood B ⊆ IR3

+ such that for sufficiently large T =
T (c1, c2, c3), (P (t), C(t), R(t)) ∈ B for all t ≥ T , where (P (t), C(t), R(t)) is a solution to
(4.1) that initiates in IR3

+. This completes the proof.
Now, we use Theorem 11 to determine conditions that guarantee permanence of the

system (4.1).

Theorem 13 If the system (4.1) has uniformly bounded orbits (eRP < eCP eRC) and no
boundary equilibrium is saturated, then the system is permanent. The conditions for no
saturated boundary equilibria are:

1) a, b, b′, c, and d hold or (4.33)

2) a, b, and d hold, but not b′ or (4.34)

3) a, b′, and c hold, but not b (4.35)

where

a) r > 0 (4.36)

b) eRP αRP K − mP > 0, (4.37)

b′) eRCαRCK − mC > 0, (4.38)

c) mC

(
eRP αRP

eRCαRC

)
+ r

(
eCP αCP

αRC

)(
1 − mC

eRCαRCK

)
− mP > 0, (4.39)

d) mP

(
eRCαRC

eRP αRP

)
− r

(
αCP

αRP

)(
1 − mP

eRP αRP K

)
− mC > 0. (4.40)

Proof. We break the proof up into three parts. In Part I, we find the equilibria of the
system (4.1). In this part of the proof, our results do not change for any K > 0. For Part II,
we use Theorem 11 to show permanence for the Lotka-Volterra system (4.13) with K = 1.
In Part III, we extend these results to include the case for any K > 0.

Part I: From the form of the equations in (4.1), we see that F0 = (0, 0, 0)T is a boundary
equilibrium point in IR3

+. The only possible one species equilibrium is FR = (0, 0, K)T .
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The two species equilibria involve the resource and consumer, FRC , and the resource and
predator, FRP :

FRC =

(
0,

r

αRC

(
1 − mC

eRCαRCK

)
,

mC

eRCαRC

)T

(4.41)

FRP =

(
r

αRP

(
1 − mP

eRP αRP K

)
, 0,

mP

eRP αRP

)T

. (4.42)

The equilibrium with the resource absent is never positive and thus does not exist. For the
interior equilibrium, (x̄1, x̄2, x̄3)

T , of the system, we must solve the system⎛
⎝ 0 eCP αCP eRP αRP

−αCP 0 eRCαRC

−αRP −αRC − r
K

⎞
⎠

⎛
⎝x̄1

x̄2

x̄3

⎞
⎠ =

⎛
⎝mP

mC

−r

⎞
⎠ (4.43)

to get
FRCP = (P̄1, C̄1, R̄1)

T (4.44)

where

P̄1 =
KeRP αRCαRP mC + rKeRCαRCeCP αCP − KeRC(αRC)2mP − reCP αCP mC

αCP β

C̄1 =
KeRP αRCαRP mC + rαCP mP − KeRP (αRP )2mC − rKeRP αRP αCP

αCP β

R̄1 =
K(reCP αCP + eCP αRCmC − αRCmP )

β

and
β = KαRCαRP (eRCeCP − eRP ) + reCP αCP . (4.45)

Notice that boundary equilibrium FRC exists in IR3
+ if and only if b’ holds, and boundary

equilibrium FRP exists in IR3
+ if and only if b holds.

Part II: Note that the equilibria for the Lotka-Volterra system are the same as for the
system in Part I with K = 1. Now we apply Theorem 11 to the Lotka-Volterra system 4.13.
We have to find p1, p2, p3 > 0 such that

∑
i:x̄i=0

pi

(
ri +

3∑
j=1

aijxj

)
> 0 (4.46)

at each boundary equilibria x̄.
For FRC , (4.46) becomes,

p1(r1 + a12x̄2 + a13x̄3) > 0. (4.47)



James A. Vance Chapter 4. Linear Functional Response Omnivory Model 50

But, we assumed that FRC is not saturated. That is,

f1 (FRC) = mC

(
eRP αRP

eRCαRC

)
+ r

(
eCP αCP

αRC

)(
1 − mC

eRCαRC

)
− mP > 0 (4.48)

since x̄1 = 0. However, (4.48) is the condition r1 + a12x̄2 + a13x̄3 > 0. Thus, we have that
(4.47) holds for any p1 > 0.

Similarly, for FRP we need that

p2(r2 + a11x̄1 + a13x̄3) > 0. (4.49)

FRC not saturated means that

f2 (FRP ) = mP

(
eRCαRC

eRP αRP

)
− r

(
αCP

αRP

) (
1 − mP

eRP αRP

)
− mC > 0. (4.50)

Thus, we have that (4.49) holds for any p2 > 0.
At F0 and FR, (4.46) yields:

p1r1 + p2r2 + p3r3 > 0 (4.51)

p1(r1 + a13x̄3) + p2(r2 + a23x̄3) > 0. (4.52)

Since r > 0 we have that F0 is not saturated. In order for FR not to be saturated, we
need either

f1(0, 0, 1) = eRP αRP − mP > 0 (4.53)

or
f2(0, 0, 1) = eRCαRC − mC > 0 (4.54)

or both, since x̄1 = x̄2 = 0. But,

r1 + a13x̄3 = eRP αRP − mP (4.55)

and
r2 + a23x̄3 = eRCαRC − mC . (4.56)

So in either case, we can first choose p1 and p2 such that (4.52) holds. Then for large p3,
(4.51) holds too. Thus, we have found a positive solution of (4.46). Hence by Theorem 11
the system 4.13 is permanent.

Part III: In all of the above calculations, the presence of a K > 0 with K 
= 1, does not
change the existence of a positive solution of (4.46) under the conditions set forth in the
theorem. Hence, the system 4.1 is permanent. This completes the proof.



Chapter 5

Non-linear Response Omnivory Model

As noted in Section 2.1.4, Type I functional responses are unrealistic in most cases. To
make our model more realistic, we use the non-linear Holling Type II functional responses
defined in Section 2.1.4. This adds to the complexity of the model in a meaningful way, but
we can no longer use the theory dealing with Lotka-Volterra models. However, the model is
still of Kolmogorov type. Again, we assume that all parameters are positive.

Our non-linear response omnivory model is given by the system of differential equations

dP

dt
= P

[
eRP λRP R + eCP λCP C

1 + λRP hRP R + λCP hCP C
− mP

]
(5.1a)

dC

dt
= C

[
eRCλRCR

1 + λRChRCR
− λCP P

1 + λRP hRP R + λCP hCP C
− mC

]
(5.1b)

dR

dt
= R

[
r

(
1 − R

K

)
− λRCC

1 + λRChRCR
− λRP P

1 + λRP hRP R + λCP hCP C

]
(5.1c)

with initial conditions

P (0) = c1 > 0, C(0) = c2 > 0, and R(0) = c3 > 0. (5.2)

This forms an initial value problem

df

dt
= f(x), f(0) = c (5.3)

on D = IR+ × IR3
+ with the understood definitions for f , x, and c.

Parameter λij is the search rate of species j for species i, eij is the efficiency with which
species i is converted to new offspring of species j, and hij is the time spent by species j
handling species i. K is the resource carrying capacity and r is the intrinsic rate of increase
of the resource. The natural mortality rates of the predator and consumer are mP and mC ,
respectively. A summary of the variables and parameters is given in Table 5.1.

With this more complicated model we hope to better approximate the natural omnivory
system and obtain less stringent criteria for permanent coexistence that have some biological
meaning. The fact that this system is of Kolmogorov type ensures that the boundary is
invariant. This allows for more mathematically tractable analysis and satisfactory results.

51
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Table 5.1: Definitions of variables and parameters in the non-linear response omnivory model.

Parameter Definition
R Resource density
C Consumer density
P Predator density
r Resource intrinsic rate of increase
K Environmental carrying capacity of the resource
λRC Search rate of consumers for resources
λRP Search rate of predators for resources
λCP Search rate of predators for consumers
hRC Time spent by consumers handling resources
hRP Time spent by predators handling resources
hCP Time spent by predators handling consumers
eRC Conversion efficiency of resources into consumers
eRP Conversion efficiency of resources into predators
eCP Conversion efficiency of consumers into predators
mC Natural mortality rate of consumers
mP Natural mortality rate of predators

5.1 Solution to System

Again, we need to show that a unique solution exists for all t ≥ 0 in order to investigate
long-term species survival. We will use an approach similar to the approach in the previous
chapter.

Notice that f and its partial derivatives

∂f

∂P
=

⎛
⎜⎝

eRP λRP R+eCP λCP C
1+λRP hRP R+λCP hCP C

− mP

− λCP C
1+λRP hRP R+λCP hCP C

− λRP R
1+λRP hRP R+λCP hCP C

⎞
⎟⎠

∂f

∂C
=

⎛
⎜⎝

eCP λCP P (1+λRP hRP R)−eRP λRP λCP hCP RP
(1+λRP hRP R+λCP hCP C)2

eRCλRCR
1+λRChRCR

− λCP P (1+λRP hRP R)
(1+λRP hRP R+λCP hCP C)2

− mC

− λRCR
1+λRChRCR

+ λRP λCP hCP RP
(1+λRP hRP R+λCP hCP C)2

⎞
⎟⎠

∂f

∂R
=

⎛
⎜⎝

eRP λRP P (1+λCP hCP C)−eCP λRP λCP hRP CP
(1+λRP hRP R+λCP hCP C)2

eRCλRCC
(1+λRChRCR)2

+ λCP λRP hRP CP
(1+λRP hRP R+λCP hCP C)2

r
(
1 − 2R

K

) − λRCC
(1+λRChRCR)2

− λRP P (1+λCP hCP C)
(1+λRP hRP R+λCP hCP C)2

⎞
⎟⎠

are all continuous with respect to P, C, and R for all positive t, P, C, and R. So by the
Existence and Uniqueness Theorem 1 our initial value problem 5.3 has exactly one solution
in D.
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We will now show by means of a theorem that a unique solution exists for all t ≥ 0.

Theorem 14 The initial value problem 5.3 has a unique solution in IR3
+ for all t ≥ 0.

Proof. Since the initial value problem is of Kolmogorov type, P (t), C(t), R(t) ≥ 0 for all
t ≥ 0. Then

R(t) ≤ Kmax for 0 ≤ t ≤ ∞ (5.4)

by the exact argument in the proof of Theorem 6.
Also,

dC(t)

dt
≤ eRCλRCR(t)

1 + hRCλRCR(t)
C(t) ≤ eRCλRCR(t)C(t).

Since R(t) ≤ Kmax, we have that

dC(t)

dt
≤ eRCλRCKmaxC(t) for 0 ≤ t ≤ ∞.

If we define
Γ = eRCλRCKmax

then by Lemma 4 Part A
C(t) ≤ c2e

Γt. (5.5)

This exponential function does not reach infinity in finite time.
Finally,

dP (t)

dt
≤ eRP λRP R(t) + eCP λCP C(t)

1 + λRP hRP R(t) + λCP hCP C(t)
P (t) ≤ (eRP λRP R(t) + eCP λCP C(t)) P (t).

Since R(t) ≤ Kmax and C(t) ≤ c2e
Γt, we have that

dP (t)

dt
≤ (Γ + eCP λCP c2e

Γt)P (t) for 0 ≤ t ≤ ∞.

If we define
Φ = eCP αCP c2

and

Λ =
Φ

Γ

then by Lemma 4 Part C
P (t) ≤ c1e

Γ t +Λ(eΓt− 1). (5.6)

This exponential function does not reach infinity in finite time. So by Lemma 2 and inequal-
ities (5.4), (5.5), and (5.6) a unique solution for the initial value problem 5.3 exists for all
t ≥ 0. This completes the proof.
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5.2 Permanent Coexistence

In this section we will show that our non-linear response omnivory model is permanently
coexistent under certain parameter restrictions. We cannot expect criteria as precise as in
the linear response omnivory model. In order to use available theory from Hutson et al. [43],
we need the following definitions. Consider a system of three equations of Kolmogorov type:

dxi

dt
= xifi(x), 1 ≤ i ≤ 3, (5.7)

where the fi : IR3
+ → IR are C1. We say that an orbit of (5.7) is ultimately in M ⊂ IR3

+ if
and only if there exists T (x) < ∞ such that x(t) ∈ M for t ≥ T (x). We use the notation
A−B to denote set difference for two sets A and B. Recall from Chapter 2, that the system
(5.7) is permanently coexistent if and only if there exists a compact set M ⊂ IR3

+ such
that orbits are ultimately in M for all x ∈ IR3

+.
Our proof on permanent coexistence will be based on the following theorem from Hutson

et al. [43] which is an extension of a result by Hofbauer [35].

Theorem 15 Let B ⊆ IR3
+ be compact and S a compact subset of B. Assume that S and

B − S are invariant. Suppose that there is a C1 function P : B → IR+ which is such that
P (x) = 0 if and only if x ∈ S. Take Ψ(x) = Ṗ (x)/P (x) and assume that Ψ is bounded below
on B − S. Define its (lower semicontinuous) extension to S, still denoted by Ψ, by setting

Ψ(x) = lim inf
y→x, y∈B−S

Ψ(y) (x ∈ S) (5.8)

and assume that for

x ∈ Ω(S), sup
t≥0

∫ t

0

Ψ(x(t)) dt > 0. (5.9)

Then there is a compact invariant set M with d(M,S) > 0 which is such that every orbit
generated by (5.7) with x ∈ IR3

+ is ultimately in M. That is the system (5.7) is permanently
coexistent.

The function P is an extension of our Average Lyapunov function given in Definition 7
and is also known as an Average Lyapunov function [43]. Note that (5.9) holds if Ψ > 0 on
Ω(S).

We begin our analysis by showing that our non-linear system (5.1) has uniformly bounded
orbits and enters a compact region of IR3

+.

Theorem 16 Provided that eRP < eCP eRC, all solutions of the system (5.1) that initiate in
IR3

+ are uniformly bounded and enter a certain region B defined by

B = {(P,C,R) ∈ IR3
+ : 0 ≤ P + C + R ≤ M} (5.10)

where

M = max

{
M1

λ
,

M1

eCP λ
,

M1

eCP eRCλ

}
,
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M1 =
KeCP eRC(r + λ)2

4r
,

and
0 < λ < min(mC ,mP ).

That is, the system (5.1) is dissipative with the asymptotic bound M .

Proof. This proof is similar to the one given in Chapter 4, so we will not present the
details. Define

S(t) = eCP eRCR + eCP C + P.

The time derivative along a solution of the system is

Ṡ(t) = eCP eRCrR − (eCP eRCr/K)R2 + (eRP − eCP eRC)

(
λRP

1 + λRP hRP R + λCP hCP C

)
RP

− eCP mcC − mpP.

For each λ > 0 the following inequality is fulfilled:

Ṡ(t) + λS(t) = (eCP eRCr + eCP eRCλ)R − (eCP eRCr/K)R2

+ (eRP − eCP eRC)

(
λRP

1 + λRP hRP R + λCP hCP C

)
RP

+ (λeCP − eCP mC)C + (λ − mP )P

≤ (eCP eRCr + eCP eRCλ)R − (eCP eRCr/K)R2.

Again, this is a parabola that opens downward. Following the agrument in Chapter 4,
we have that there is a compact neighborhood B ⊆ IR3

+ such that for sufficiently large
T = T (c1, c2, c3), (P (t), C(t), R(t)) ∈ B for all t ≥ T , where (P (t), C(t), R(t)) is a solution
to (5.1) that initiates in IR3

+. This completes the proof.
Since we have global existence and uniqueness of a solution, IR3

+ and the compact set B
from Theorem 16 are invariant. Now define the set S = B ∩ ∂IR3

+.

Lemma 7 The sets S and B − S are invariant.

Proof. Assume that x0 ∈ S and x(t) is a solution of the system (5.1) with x(t0) = x0.
Since B and ∂IR3

+ are invariant, then x(t) ∈ B and x(t) ∈ IR3
+ for all t > t0. Thus,

S = B∩∂IR3
+ is invariant. Now assume that x0 ∈ B−S and x(t) is a solution of the system

(5.1) with x(t0) = x0. Since S and B are invariant we have global existence and uniqueness
of solutions, then x(t) ∈ B and x(t) /∈ S for all t > t0. Hence, B − S is invariant. This
completes the proof.

Now, we use Theorem 15 to determine conditions that guarantee permanence of the
system (5.1).
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Theorem 17 Assume that the following conditions hold:
(H1) The solutions of (5.1) in IR3

+ are uniformly bounded.
(H2) The Ω-limit of every orbit on ∂IR3

+ consists of equilibrium points.
(H3) No boundary equilibrium is saturated.

Then the system (5.1) is permanent. The conditions for no saturated boundary equilibria
are:

1) a, b, b′, c, and d hold or (5.11)

2) a, b, and d hold, but not b′ or (5.12)

3) a, b′, and c hold, but not b (5.13)

where

a) r > 0 (5.14)

b)
eRP λRP K

1 + λRP hRP K
− mP > 0, (5.15)

b′)
eRCλRCK

1 + λRChRCK
− mC > 0, (5.16)

c)
λRCKξ1(λRP eRP mC + λCP eCP eRCr) − λCP eCP eRCmCr

K(λRC)2ξ2
1 − λCP eRChCP mCr + λRCKξ1ν

− mP > 0, (5.17)

d)
λRCeRCmP

λRP eRP + λRChRCmP − λRP hRP mP

(5.18)

+
rλCP (λRP hRP KmP + mp − λRP eRP K)

K(λRP )2ξ2

− mC > 0 (5.19)

and

ξ1 = eRC − mChRC

ξ2 = eRP − mP hRP

ξ3 = eCP − mP hCP

ν = λRP hRP mC + rλCP hCP eRC .

Proof. We break the proof up into two parts. In Part I, we find the equilibria of the
system (5.1). For Part II, we use Theorem 15 to show permanence.

Part I: From the form of the equations in (5.1), we see that F0 = (0, 0, 0)T is a boundary
equilibrium point in IR3

+. The only possible one species equilibrium is FR = (0, 0, K)T .
The two species equilibria involve the resource and consumer, FRC , and the resource and
predator, FRP :

FRC =

(
0,

reRC [KλRC(eRC − mChRC) − mC ]

K(λRC)2(eRC − mChRC)2
,

mC

λRC(eRC − mChRC)

)T

(5.20)

FRP =

(
reRP [KλRP (eRP − mP hRP ) − mP ]

K(λRP )2(eRP − mP hRP )2
, 0,

mP

λRP (eRP − mP hRP )

)T

. (5.21)
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The equilibrium with the resource absent is never positive and thus does not exist. Notice
that boundary equilibrium FRC exists in IR3

+ if and only if b’ holds. This is due to the fact
that

eRCλRCK

1 + λRChRCK
− mC > 0 ⇒ eRC > mC

(
hRC +

1

KλRC

)
> mChRC . (5.22)

Similarly, boundary equilibrium FRP exists in IR3
+ if and only if b holds.

Part II: Let x(t) = (P (t), C(t), R(t))T and

P (x) = xp1

1 xp2

2 xp3

3 (x1 + x2)
ε. (5.23)

Clearly, P (x) = 0 for x ∈ ∂IR3
+ and P (x) > 0 for x ∈ int(IR3

+). Also,

Ṗ (x) = p1x
p1−1
1 ẋ1(x

p2

2 xp3

3 (x1 + x2)
ε) + xp1

1 (p2x
p2−1
2 ẋ2x

p3

3 (x1 + x2)
ε

+xp2

2 (p3x
p3−1
3 ẋ3(x1 + x2)

ε + xp3

3 ε(x1 + x2)
ε−1(ẋ1 + ẋ2)))

= xp1

1 xp1

2 xp1

2 (x1 + x2)
ε

(
p1f1(x) + p2f2(x) + p3f3(x) + ε

(
x1f1(x) + x2f2(x)

x1 + x2

))
= P (x)Ψ(x)

where

Ψ(x) =
3∑

i=1

pifi(x) + ε(x1f1(x) + x2f2(x))/(x1 + x2) (5.24)

in int(IR3
+). However, the last term in Ψ does not admit a continuous extension to the

x3-axis. To correct this, we take the lower semicontinuous extension and the last term in
(5.24) becomes

Ψ(0, 0, x3) = ε min(f1(0, 0, x3), f2(0, 0, x3)). (5.25)

By (H2), condition (5.9) reduces to

Ψ(x) > 0 (5.26)

for all equilibrium points in ∂IR3
+, for a suitable choice of ε ≥ 0, p1, p2, p3 > 0. For FRC and

FRP , (5.26) becomes,

p1f1(0, C̄, R̄) > 0 (5.27)

p2f2(P̄ , 0, R̄) > 0 (5.28)

respectively. But, we assumed that no boundary equilibria are saturated. That is,

f1 (FRC) =
λRCKξ1(λRP eRP mC + λCP eCP eRCr) − λCP eCP eRCmCr

K(λRC)2ξ2
1 − λCP eRChCP mCr + λRCKξ1ν

− mP > 0(5.29)

f2 (FRP ) =
λRCeRCmP

λRP eRP + λRChRCmP − λRP hRP mP

(5.30)

+
rλCP (λRP hRP KmP + mp − λRP eRP K)

K(λRP )2ξ2

− mC > 0. (5.31)
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Thus, we have that (5.27) and (5.28) hold for any p1, p2 > 0.
At F0 and FR, (5.26) yields:

p1f1(0) + p2f2(0) + p3f3(0) + ε min(f1(0), f2(0)) > 0 (5.32)

p1f1(0, 0, K) + p2f2(0, 0, K) + ε min(f1(0, 0, K), f2(0, 0, K)) > 0. (5.33)

Since r > 0 we have that F0 is not saturated. In order for FR not to be saturated, we need
either

f1(0, 0, K) =
eRP λRP K

1 + λRP hRP K
− mP > 0 (5.34)

or

f2(0, 0, K) =
eRCλRCK

1 + λRChRCK
− mC > 0 (5.35)

or both, since P̄ = C̄ = 0. So in either case, we can first choose p1 > 0, p2 > 0, and ε = 0 such
that (5.33) holds. Since f3(0) > 0, then for large p3, (5.32) holds too. Hence, by Theorem
15 the system 5.1 is permanent.

Finally, we show that the Ω-limit set of every orbit in ∂IR3
+ is an equilibrium point. The

zero equilibrium is unstable due to the fact that r and K are positive. Also, it is well known
that solutions to the logistic equation quickly reach the fixed carrying capacity K [28]. For
the predator-prey subsystems, there may be periodic orbits.

We use a Lemma from Hsu [42] which is based on an application of the Poincaré-
Bendixson Theorem and the Dulac Criterion [50] to show that a positive stable equilibrium
of a predator-prey system is globally stable. Consider the predator-prey model

dx

dt
= xg(x) − yp(x) (5.36)

dy

dt
= y[exyp(x) − my] (5.37)

where x represents the prey density and y represents the predator density and

g(x) = r
(
1 − x

K

)
(5.38)

p(x) =
λxyx

1 + x
(5.39)

To investigate global stability, we compute the variational matrix evaluated at the positive
equilibrium (x∗, y∗),

H(x∗) = x∗g′(x∗) + g(x∗) − x∗g(x∗)p′(x∗)
p(x∗)

. (5.40)

Then the equilibrium is (locally) asymptotically stable if H(x∗) ≤ 0 [42]. Graphically, this

means that if the prey isocline y = xg(x)
p(x)

is decreasing at x∗, then (x∗, y∗) is asymptotically

stable. To give conditions under which local stability of (x∗, y∗) implies global stability of
(x∗, y∗) we give the following Lemma without proof from Hsu [42].
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Lemma 8 Assume the equilibrium (x∗, y∗) of (5.36) is stable and

d2

dx2

(
xg(x)

p(x)

)
< 0 for 0 ≤ x ≤ K. (5.41)

Then (x∗, y∗) is globally stable.

Thus, we can prove the following theorem on the Ω-limit set of every orbit in ∂IR3
+.

Theorem 18 Let the conditions of Lemma 8 hold for the two equilibria (C̄, R̄) and (P̄ , R̄)
of the appropriate subsystems of (5.1), that is

H(R̄) =
rmC(λRC(K − 1)ξ1 − 2mC)

λRCKξ1(mC + λRCξ1)
≤ 0 (5.42)

d2

dx2

(
xg(x)

p(x)

)
= − 2r

λRCK
< 0 (5.43)

and

H(R̄) =
rmP (λRP (K − 1)ξ2 − 2mP )

λRP Kξ2(mP + λRP ξ2)
≤ 0 (5.44)

d2

dx2

(
xg(x)

p(x)

)
= − 2r

λRP K
< 0 (5.45)

respectively, where

ξ1 = eRC − mChRC (5.46)

ξ2 = eRP − mP hRP (5.47)

Then for the system (5.1), the Ω-limit set of every orbit in ∂IR3
+ is an equilibrium point.

Proof. From the above comments, we see that the Ω-limit set of every orbit on each axis
is an equilibrium point. Since the conditions of Theorem 8 hold, then each stable equilibrium
in the bounding hyperplanes is globally stable. That is, the Ω-limit set of every orbit in each
bounding hyperplane is an equilibrium point, completing the proof.

Notice that conditions on the curvature are trivially satisfied for our system because we
assume r,K, λRC , λRP > 0.



Chapter 6

Stage Structured Omnivory Model

In an attempt to better model the real world, we expand our non-linear response omnivory
model to take into account a form of stage structure. As noted by Gotelli [28], “for most
plants and animals, birth and death rates depend on the age [stage] of an individual...
[and] age [stage] structure of an individual has the potential to affect population growth”.
Ebenman et al. [15] state that size is “no doubt, one of the most important characteristics
of any organism”. Mylius et al. [71] add that “intraguild predation is especially likely to
occur in systems with stage- or size- structured populations”. Therefore, we feel that adding
stage structure to our existing omnivory model is a natural and important extension. The
stage structure of the predator species will be investigated in this chapter.

We consider a non-linear response omnivory model with top predator stage structure.
We model the natural system with a system of ordinary differential equations

dP2

dt
= µP P1 − mP P2 (6.1a)

dP1

dt
=

eRP λRP R + eCP λCP C

1 + λRP hRP R + λCP hCP C
P2 − (µP + mP )P1 (6.1b)

dC

dt
= C

[
eRCλRCR

1 + λRChRCR
− λCP P2

1 + λRP hRP R + λCP hCP C
− mC

]
(6.1c)

dR

dt
= R

[
r

(
1 − R

K

)
− λRCC

1 + λRChRCR
− λRP P1

1 + λRP hRP R
− λRP P2

1 + λRP hRP R + λCP hCP C

]
(6.1d)

and initial conditions

P2(0) = c1 > 0, P1(0) = c2 > 0, C(0) = c3 > 0, and R(0) = c4 > 0. (6.2)

In this model the predator population is divided into two stage classes. The initial
class consists of small individuals (with density P1) and the second class consists of larger
individuals (with density P2). The initial class matures at rate µP and does not prey upon
the consumer population. However, both classes prey upon the resource population at the

60
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Table 6.1: Definitions of variables and parameters in the stage structure omnivory model.

Parameter Definition
R Resource density
C Consumer density
P1 Young/Small Predator density
P2 Mature/Large Predator density
r Resource intrinsic rate of increase
K Environmental carrying capacity of the resource
λRC Search rate of consumers for resources
λRP Search rate of predators for resources
λCP Search rate of predators for consumers
hRC Time spent by consumers handling resources
hRP Time spent by predators handling resources
hCP Time spent by predators handling consumers
eRC Conversion efficiency of resources into consumers
eRP Conversion efficiency of resources into predators
eCP Conversion efficiency of consumers into predators
mC Natural mortality rate of consumers
mP Natural mortality rate for both predator classes
µP Predator maturation rate

same rate. The second class preys on both the resource and consumer populations. Notice
that our model assumes no reproduction by the individuals of the initial class. Both classes
of predators decline by means of a natural mortality rate mP . The density of the second class
only increases due to maturation from the initial class. All other parameters are identical to
those used in the non-linear response omnivory model. The additional parameters used in
this model are also positive. A summary of the variables and parameters is given in Table
6.1.

The initial value problem
df

dt
= f(x), f(0) = c (6.3)

is defined on D = IR+ × IR4
+ with the understood definitions for f , x, and c.

This more complicated initial value problem will better model some omnivory systems,
but this model is no longer of Kolmogorov type and in fact, the boundary is not invariant.
However, we have shown in Section 2.3.2, that solutions of this system are all pointing into
IR4

+ on the bounding hypersurfaces. This fact will become useful in our analysis.
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6.1 Solution to System

Again, an investigation of the long-term survival of species requires that a unique solution
exists for all t ≥ 0. We use an approach similar to the approaches used in the previous two
chapters.

Since f and its partial derivatives

∂f

∂P2

=

⎛
⎜⎜⎜⎝

−mP
eRP λRP R+eCP λCP C

1+λRP hRP R+λCP hCP C

− λCP C
1+λRP hRP R+λCP hCP C

− λRP R
1+λRP hRP R+λCP hCP C

⎞
⎟⎟⎟⎠

∂f

∂P1

=

⎛
⎜⎜⎝

µP

−(µP + mP )
0

− λRP R
1+λRP hRP R

⎞
⎟⎟⎠

∂f

∂C
=

⎛
⎜⎜⎜⎝

0
eCP λCP P2(1+λRP hRP R)−eRP λRP λCP hCP RP2

(1+λRP hRP R+λCP hCP C)2

eRCλRCR
1+λRChRCR

− λCP P2(1+λRP hRP R)
(1+λRP hRP R+λCP hCP C)2

− mC

− λRCR
1+λRChRCR

+ λRP λCP hCP RP2

(1+λRP hRP R+λCP hCP C)2

⎞
⎟⎟⎟⎠

∂f

∂R
=

⎛
⎜⎜⎜⎝

0
eRP λRP P2(1+λCP hCP C)−eCP λRP λCP hRP CP2

(1+λRP hRP R+λCP hCP C)2
eRCλRCC

(1+λRP hRP R)2
+ λCP λRP hRP CP2

(1+λRP hRP R+λCP hCP C)2

r
(
1 − 2R

K

) − λRCC
(1+λRChRCR)2

− λRP P1

(1+λRP hRP R)2
− λRP P2(1+λCP hCP C)

(1+λRP hRP R+λCP hCP C)2

⎞
⎟⎟⎟⎠

are all continuous with respect to P, C, and R for all positive t, P, C, and R, our initial value
problem 6.3 has exactly one solution in D.

We will now show by means of a theorem that a unique solution exists for all t ≥ 0.

Theorem 19 The initial value problem 6.3 has a unique solution in IR4
+ for all t ≥ 0.

Proof. As noted earlier, P2(t), P1(t), C(t), R(t) ≥ 0 for all t ≥ 0. Then

R(t) ≤ Kmax for 0 ≤ t ≤ ∞ (6.4)

by the exact argument in the proof of Theorem 14.
Similar to the argument in the proof of Theorem 14, if we let

Γ = eRCλRCKmax

then
C(t) ≤ c3e

Γt (6.5)
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and this exponential function does not reach infinity in finite time.
Further,

dP1(t)

dt
≤ (eRP λRP R(t) + eCP λCP C(t))P2(t)

dP2(t)

dt
≤ µP P1(t).

Since R(t) ≤ Kmax and C(t) ≤ c3e
Γt, we have that

dP1(t)

dt
≤ (Γ + eCP λCP c3e

Γt)P2(t)

dP2(t)

dt
≤ µP P1(t)

for 0 ≤ t ≤ ∞. Define
Φ = eCP λCP c3

and rewrite these inequalities in matrix form

d

dt

(
P1(t)
P2(t)

)
≤

[
0 Γ + ΦeΓt

µP 0

](
P1(t)
P2(t)

)
. (6.6)

Since

2
(
P1(t) P2(t)

) d

dt

(
P1(t)
P2(t)

)
=

d

dt

∣∣∣∣
∣∣∣∣P1(t)
P2(t)

∣∣∣∣
∣∣∣∣
2

, (6.7)

we can multiply both sides of (6.6) by 2 and the row vector (P1(t)P2(t)) to get

d

dt

∣∣∣∣
∣∣∣∣P1(t)
P2(t)

∣∣∣∣
∣∣∣∣
2

≤ 2(Γ + ΦeΓt)P1(t)P2(t)

≤ (Γ + ΦeΓt)((P1(t))
2 + (P2(t))

2).

So we have
d

dt

∣∣∣∣
∣∣∣∣P1(t)
P2(t)

∣∣∣∣
∣∣∣∣
2

≤ (Γ + ΦeΓt)

∣∣∣∣
∣∣∣∣P1(t)
P2(t)

∣∣∣∣
∣∣∣∣
2

. (6.8)

If we define

Λ =
Φ

Γ

and apply Lemma 4 Part C to the scalar equation (6.8) we have

d

dt

∣∣∣∣
∣∣∣∣P1(t)
P2(t)

∣∣∣∣
∣∣∣∣
2

≤ ((c2)
2 + (c1)

2)eΓ t +Λ(eΓt− 1) (6.9)

and this exponential function does not reach infinity in finite time. The above inequality
ensures the P1(t) and P2(t) do not reach infinity in finite time.

Hence, by Lemma 2 and inequalities (6.4), (6.5), and (6.9) a unique solution for the initial
value problem 6.3 exists for all t ≥ 0. This completes the proof.
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6.2 Permanent Coexistence

In this section we will investigate the permanence of our stage structure omnivory model.
Model (6.1) does not leave the boundary invariant, so we cannot use the available theory on
Average Lyapunov functions. However, we have already shown that solutions are nonnegative
for all positive time (see Lemma 6). Again, we must require that solutions are uniformly
bounded.

Theorem 20 Provided that
eRP < eCP eRC (6.10)

and

µP ≤ eRCeCP

(
eRP λRP Kmax

1 + λRP hRP Kmax

)
− λeRP , (6.11)

all solutions of the system (6.1) that initiate in IR4
+ are uniformly bounded and enter a certain

region B defined by

B = {(P2, P1, C,R) ∈ IR4
+ : 0 ≤ P2 + P1 + C + R ≤ M} (6.12)

where

M = max

{
M1

λ
,

M1

eRP λ
,

M1

eRP eCP eRCλ
,

M1

eRP eCP λ

}
,

M1 =
KeRP eCP eRC(r + λ)2

4r
,

and
0 < λ < min(mC , µP + 2mP ).

That is, the system (6.1) is dissipative with the asymptotic bound M .

Proof. From a similar argument in the other proofs on uniformly bounded orbits, we
have

R(t) ≤ Kmax for all t ≥ 0.

Now, define
S(t) = eRP eCP eRCR + eRP eCP C + eRP P1 + P2.

The time derivative along a solution of the system is

Ṡ(t) = eRP eCP eRCr

(
R − R2

K

)
+ (eRP − eCP eRC)

(
eRP λRP

1 + λRP hRP R + λCP hCP C

)
RP2

+

(
µP − eRCeCP

(
eRP λRP R

1 + λRP hRP R

))
P1 − eRP eCP mCC − (µP + 2mP )P2.
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For each λ > 0 the following inequality is fulfilled:

Ṡ(t) + λS(t) = (eRP eCP eRCr + eRP eCP eRCλ)R − (eRP eCP eRCr/K)R2

+

(
λeRP + µP − eRCeCP

(
eRP λRP R

1 + λRP hRP R

))
P1

+ (λeRP eCP − eRP eCP mC)C + (λ − (µP + 2mP ))P2

≤ (eRP eCP eRCr + eRP eCP eRCλ)R − (eRP eCP eRCr/K)R2

since

µP ≤ eRCeCP

(
eRP λRP Kmax

1 + λRP hRP Kmax

)
− λeRP ,

eRP < eCP eRC ,

and R(t) ≤ Kmax, and we choose λ < min(mC , µP + 2mP ). Because the right hand side is
a parabola that opens downward, it is bounded for all (P2, P1, C,R) ∈ IR4

+. Specifically, the

right hand side is bounded by M1 = KeRP eCP eRC(r+λ)2

4r
. Thus, we find an M1 > 0 with

Ṡ + λS ≤ M1.

Applying Lemma 4, we obtain

0 ≤ S(P2, P1, C,R) ≤ M1

λ
+

(
S(P2(0), P1(0), C(0), R(0)) − M1

λ

)
e−λt

and as t → ∞, 0 ≤ eRP eCP eRCR + eRP eCP C + eRP P1 + P2 ≤ M1/λ.

Now let M = max
{

M1

λ
, M1

eRP λ
, M1

eRP eCP λ
, M1

eRP eCP eRCλ

}
, then

0 ≤ P2 + P1 + C + R ≤ M.

Hence, system (6.1) is dissipative with the asymptotic bound M .
Thus, there is a compact neighborhood B ⊆ IR4

+ such that for sufficiently large T =
T (c1, c2, c3, c4), (P2(t), P1(t), C(t), R(t)) ∈ B for all t ≥ T , where (P2(t), P1(t), C(t), R(t)) is
a solution to (6.1) that initiates in IR4

+. This completes the proof.
We must alter our definition of permanent coexistence since the predator is not extinct

if the stage 1 (juveniles) or stage 2 (adults) go extinct, but only if both stages go extinct.
We therefore require that

m ≤ P1(t) + P2(t) (6.13)

for t ≥ T and some m > 0. For a graphical depiction see Figure 6.1
System (6.1) has four boundary equilibia: one with no species present, one with the

resource only present, one with the resource and consumer present, and one with the resource
and both stages of the predator present:

F0 = (0, 0, 0, 0)T (6.14)
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2P

3m

4M

1P
3m

3M

Figure 6.1: A graphical depiction of permanence for the stage predator population where
P1(t) ≤ M3, P2(t) ≤ M4, and m3 ≤ P1(t) + P2(t) for t ≥ T .

FK = (0, 0, 0, K)T (6.15)

FRC =

(
0, 0,

reRC [KλRC(eRC − mChRC) − mC ]

K(λRC)2(eRC − mChRC)2
,

mC

λRC(eRC − mChRC)

)T

(6.16)

FRP =

(
eRP (µP )2rη, eRP µP mP rη, 0,− mP (µP + mP )

λRP (hRP mP (µP + mP ) − eRP µP )

)
(6.17)

where

η =
λRP eRP KµP − (mP )2(1 + λRP hRP K) − µP mP (1 + λRP hRP K)

K(λRP )2(µP + mP )(eRP − hRP mP (µP + mP ))2
. (6.18)

The equilibrium with the resource missing is never positive.
The idea behind the following discussion is as follows. We first give conditions on the

entire system that we see as necessary for permanence. Next, we assume that under these
conditions we have that there exists m1,m2 > 0, M1,M2 < ∞, and T1 ≥ 0 such that

m1 ≤ R(t) ≤ M1 for t ≥ T1 (6.19)

m2 ≤ C(t) ≤ M2 for t ≥ T1. (6.20)

Finally, we show that under these conditions, there exists m3 > 0, M3,M4 < ∞, and T2 ≥ 0
such that

P1(t) ≤ M3 (6.21)

P2(t) ≤ M4 (6.22)

m3 ≤ P1(t) + P2(t) (6.23)
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for t ≥ T2. That is, the system (6.1) is permanent.
One condition that we feel is necessary is that none of the boundary equilibria should

be saturated. However, we must change our definition of saturated because of the predator
stage structure. Consider the auxiliary equation

ds(t)

dt
=

eRP λRP R + eCP λCP C

1 + λRP hRP R + λCP hCP C
s(t) − mP s(t) = s(t)f1(C,R). (6.24)

From equations (6.1a) and (6.1b), we see that

d

dt
(P1 + P2) ≤ (P1 + P2)f1(C,R). (6.25)

Also, we write equations (6.1c) and (6.1d) as

dC

dt
= Cf2(P2, C,R) (6.26)

dR

dt
= Rf3(P2, P1, C,R). (6.27)

Then, we say that an equilibrium x̄ is saturated if fi(x̄) ≤ 0 for all i with x̄i = 0
Equilibrium F0 is not saturated since r is positive. Equilibrium FK is not saturated if

either
eRCλRCK

1 + λRChRCK
− mC > 0 (6.28)

or
eRP λRP K

1 + λRP hRP K
− mP > 0 (6.29)

or both inequalities hold.
Notice that boundary equilibrium FRC exists in IR4

+ if and only if (6.28) holds. In order
for FRP to exist in IR4

+ we need,

λRP eRP KµP − (mP )2(1 + λRP hRP K) − µP mP (1 + λRP hRP K) > 0 (6.30)

which implies that

1 + λRP hRP K

λRP KµP

mP (µP + mP ) < eRP (6.31)

and thus

eRP >

(
1

λRP K
+ hRP

)
mP (µP + mP )

µP

>
hRP mP (µP + mP )

µP

(6.32)

That is, if equilibrium FRP exists, then FK is not saturated. Also, (6.32) holds if the product
of the growth rates plus the product of the death rates of the predator stages is positive.
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This may be reasonable alternative requirement for not being saturated. Equilibrium FRC

is not saturated if

f1(FRC) =
λRCKξ1(λRP eRP mC + λCP eCP eRCr) − λCP eCP eRCmCr

K(λRC)2ξ2
1 − λCP eRChCP mCr + λRCKξ1ν

− mP > 0 (6.33)

and equilibrium FRP is not saturated if

f2(FRP ) =
rλCP µP (ξ4(mP )2 + µP mP ξ4 − eRP λRP KµP )

(λRP )2K(µP + mP )ξ5

(6.34)

+
λRCeRCmP (µP + mP )

λRChRCmP (µP + mP ) − λRP ξ5

− mC > 0 (6.35)

where

ξ1 = eRC − mChRC (6.36)

ξ2 = eRP − mP hRP (6.37)

ξ3 = eCP − mP hCP (6.38)

ξ4 = 1 + λRP hRP K (6.39)

ξ5 = hRP mP (µP + mP ) − eRP µP (6.40)

ν = λRP hRP mC + rλCP hCP eRC . (6.41)

Finally, we assume that the Ω-limit set of every orbit in ∂IR4
+ is an equilibrium point.

Notice that our stage structure omnivory model attempts to counter the consumer in-
feriority by decreasing predation upon the consumer. Also, the alternative stable states of
omnivory models always involve the resource (see [40], [12], [71]). Therefore, the extinction
of the resource is of little concern. Thus, we would expect that the consumer and resource
densities of the stage structured model are uniformly bounded away from zero under condi-
tions similar to those for the non-linear response model. We assume this is true. That is,
there exists m1,m2 > 0, and T1 ≥ 0 such that

m1 ≤ R(t) (6.42)

m2 ≤ C(t) (6.43)

for t ≥ T1. Our numerical simulations confirm this assumption (see also [71]).

Lemma 9 Suppose that m1 ≤ R(t) and m2 ≤ C(t) for t ≥ T1 and

µP >
(mP )2

b − mP

(6.44)

where b > 0 is such that
eRP λRP R + eCP λCP C

1 + λRP hRP R + λCP hCP C
≥ b. (6.45)

Then, there exists m3 > 0 and T2 ≥ 0 such that

m3 ≤ P1(t) + P2(t) (6.46)

for t ≥ T2.
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We will use the following Lemma from [95] in the proof of Lemma 9.

Lemma 10 Let f(t,x) : D ⊂ IR2 → IR2 satisfy a local Lipschitz condition in x. Let v :
J = [ε, ε + a] → IR2 be differentiable. If f1(t, x1, x2) is increasing in x2 and f2(t, x1, x2) is
increasing in y1 and the following conditions hold:

dv1

dt
≤ f1(t, v1, v2) (6.47)

dv2

dt
≤ f2(t, v1, v2) (6.48)

v1(ε) ≤ η1 (6.49)

v2(ε) ≤ η2 (6.50)

then
v1 ≤ x1 (6.51)

and
v2 ≤ x2 (6.52)

in J.

We now prove Lemma 9.
Proof. Since

m1 ≤ R(t) (6.53)

m2 ≤ C(t), (6.54)

then
eRP λRP R + eCP λCP C

1 + λRP hRP R + λCP hCP C
≥ b (6.55)

for some b > 0. Consider the auxiliary equations

dx

dt
= µP y − mP x (6.56)

dy

dt
= bx − (µP + mP )y (6.57)

written in vector form

d

dt

(
x(t)
y(t)

)
=

[−mP µP

b −(µP + mP )

] (
x(t)
y(t)

)
. (6.58)

This linear system has equilibrium point (0, 0). We will show that (0, 0) is unstable along
all paths in the positive xy quadrant. First, we compute the eigenvalues λ+ and λ− of the
system. The equation

det

[−mP − λ µP

b −(µP + mP ) − λ

]
= 0 (6.59)
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yields
λ2 + (µP + 2mP )λ + mP (µP + mP ) − µP b = 0. (6.60)

Solving for λ yields

λ+ =
−(µP + 2mP ) +

√
µP (4b + µP )

2
(6.61)

λ− =
−(µP + 2mP ) − √

µP (4b + µP )

2
. (6.62)

λ− is always negative and λ+ is positive if

µP >
(mP )2

b − mP

. (6.63)

Next, we compute the eigenvectors corresponding to the eigenvalues by solving the sys-
tems

−(mP + λ+)x+ + µP y+ = 0 (6.64)

bx+ − (µP + mP + λ+)y+ = 0 (6.65)

and

−(mP + λ−)x− + µP y− = 0 (6.66)

bx− − (µP + mP + λ−)y− = 0 (6.67)

for (x+, y+) and (x−, y−), respectively. These computations yield

x+ =
µP +

√
µP (4b + µP )

2b
y+ (6.68)

and

x− =
µP − √

µP (4b + µP )

2b
y−. (6.69)

So if y+ > 0, then x+ > 0 and if y+ < 0, then x+ < 0. Also, since µP > 0 by assumption, if
y− > 0, then x− < 0 and if y− < 0, then x+ > 0. That is, (0, 0) is an unstable saddle with
solutions moving away from (0, 0) along all paths in the positive xy quadrant. Thus, there
exists m+ > 0 and T+ ≥ 0 such that

m+ ≤ x(t) + y(t) (6.70)

for t ≥ T+.
Now, we must show that the original system in P2 and P1 also has this property. We

apply Lemma 10 to the original system. Clearly,

g1(t, P2, P1) = µP P1 − mP P2 (6.71)
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is increasing in P1, and

g2(t, P2, P1) =
eRP λRP R + eCP λCP C

1 + λRP hRP R + λCP hCP C
P2− (µP +mP )P1 = h(t)P2− (µP +mP )P1 (6.72)

is increasing in P2, since we have shown that R,C > 0. Since

dx

dt
= µP y − mP x = g1(t, x, y) (6.73)

and
dy

dt
= bx − (µP + mP )y ≤ h(t)x − (µP + mP )y = f2(t, x, y) (6.74)

then by Lemma 10
x ≤ P2 (6.75)

and
y ≤ P1 (6.76)

for all t ≥ 0. That is, there exists m3 > 0 and T2 ≥ 0 such that

m3 ≤ P1(t) + P2(t) (6.77)

for t ≥ T2. This completes the proof.
Hence, by (6.21) and (6.19), our stage structure omnivory model (6.1) is permanent.



Chapter 7

Sensitivity Analysis

The first step in our sensitivity analysis method is to differentiate each right hand side
of our three models with respect to each of the model parameters. The partial derivatives
of the right hand sides of the linear response omnivory model with respect to each model
parameter are given in Table 7.1. Also, Table 7.2 and Table 7.3 list the associated partials
for the non-linear response model and stage structure model, respectively. Notice that each
partial derivative is continuous with respect to t, P, C, and R for all positive parameter
values. Hence, by Theorems 3 and 4, we can differentiate the solution to each model with
respect to each model parameter.

7.1 Sensitivity Equations

The second step is a derivation of the sensitivity equations. The idea is to differentiate
each differential equation with respect to each parameter. We then interchange the order of
differentiation, and derive a linear system of equations for the sensitivities that solves

d

dt
Sxj ,αi

=
n∑

k=1

(
∂fj

∂xk

Sxj ,αi

)
+

∂fj

∂αi

. (7.1)

with the notation

Sxj , αi
(t) =

∂xj(t)

∂αi

(7.2)

where xj is the jth component of the state, j = 1, 2, 3 or j = 1, 2, 3, 4 (stage model), and αi

is the model parameter, i = 1, 2, . . . , 10 (linear model) or i = 1, 2, . . . , 13 (non-linear model)
or i = 1, 2, . . . , 14 (stage model). Notice that we must also differentiate the initial conditions
with respect to each parameter. Hence, we have the initial conditions

Sxj , αi
(0) = 0, for each xj, αi. (7.3)

Theorem 5 gives the justification for these formal mathematical manipulations.

72
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Table 7.1: Partial derivatives of the right hand side of the linear response omnivory model
with respect to the model parameters. The dependence upon time is suppressed for these
calculations.

Parameter Partial of f1 Partial of f2 Partial of f3

eRP αRP RP 0 0
eCP αCP CP 0 0
eRC 0 αRCRC 0
αRP eRP RP 0 -RP
αCP eCP CP -CP 0
αRC 0 eRCRC -RC
mP -P 0 0
mC 0 -C 0
r 0 0 R(1 − R/K)
K 0 0 rR2/K2

We use the term general sensitivity equations of the model for the system of linear
ordinary differential equations

d

dt
Sxj ,αi

=
n∑

k=1

(
∂fj

∂xk

Sxj ,αi

)
(7.4)

since the terms
∂fj

∂xk
remain the same for each parameter. However, the terms

∂fj

∂αi
differ

between our three models. We use the term particular part of the equations of the
model for the terms

∂fj

∂αi

(7.5)

since they change for each parameter and each model.
Due to the fact that there are ten systems of three variables for the linear response model,

thirteen systems of three variables for the non-linear response model, and fourteen systems
of four variables for the stage structure model that must be solved, we do not list all of these
systems. However, we will list the general sensitivity equations for each of our models. Then
the sensitivity equations are formed by adding the particular part of the equations. The
particular part of the equations can be found on each row in Tables 7.1, 7.2, and 7.3.

We will suppress the dependence upon time for the following models. The general sensi-
tivity equations for the linear response omnivory model are given by

d

dt
(SP ) = (eRP αRP R + eCP αCP C − mP )SP + (eCP αCP P )SC + (eRP αRP P )SR

d

dt
(SC) = (−αCP C)SP + (eRCαRCR − αCP P − mC)SC + (eRCαRCC)SR

d

dt
(SR) = (−αRP R)SP + (−αRCR)SC + (r(1 − 2R/K) − αRCC − αRP P )SR
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Table 7.2: Partial derivatives of the right hand side of the non-linear response omnivory
model with respect to the model parameters. The dependence upon time is suppressed for
these calculations.

Parameter Partial of f1 Partial of f2

eRP
λRP RP

1+λRP hRP R+λCP hCP C
0

eCP
λCP CP

1+λRP hRP R+λCP hCP C
0

eRC 0 λRCRC
1+λRP hRP R

λRP
eRP RP (1+λCP hCP C)−eCP λCP hRP RCP

(1+λRP hRP R+λCP hCP C)2
λCP hRP RCP

(1+λRP hRP R+λCP hCP C)2

λCP
eCP CP (1+λRP hRP R)−eRP λRP hCP RCP

(1+λRP hRP R+λCP hCP C)2
− CP (1+λRP hRP R)

(1+λRP hRP R+λCP hCP C)2

λRC 0 eRCRC
(1+λRP hRP R)2

hRP −λRP RP (eRP λRP R+eCP λCP C)
(1+λRP hRP R+λCP hCP C)2

λRP λCP RCP
(1+λRP hRP R+λCP hCP C)2

hCP −λCP CP (eRP λRP R+eCP λCP C)
(1+λRP hRP R+λCP hCP C)2

(λCP )2C2P
(1+λRP hRP R+λCP hCP C)2

hRC 0 − eRC(λRC)2R2C
(1+λRP hRP R)2

mP -P 0
mC 0 -C
r 0 0
K 0 0
Parameter Partial of f3

eRP 0
eCP 0
eRC 0

λRP − RP (1+λCP hCP C)
(1+λRP hRP R+λCP hCP C)2

λCP
λRP hCP RCP

(1+λRP hRP R+λCP hCP C)2

λRC − RC
(1+λRP hRP R)2

hRP
(λRP )2R2P

(1+λRP hRP R+λCP hCP C)2

hCP
λRP λCP RCP

(1+λRP hRP R+λCP hCP C)2

hRC
(λRC)2R2C

(1+λRP hRP R)2

mP 0
mC 0
r R(1 − R/K)
K rR2/K2
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Table 7.3: Partial derivatives of the right hand side of the stage structure omnivory model
with respect to the model parameters. The dependence upon time is suppressed for these
calculations.

Parameter Partial of f1 Partial of f2

eRP 0 λRP RP2

1+λRP hRP R+λCP hCP C

eCP 0 λCP CP2

1+λRP hRP R+λCP hCP C

eRC 0 0

λRP 0 eRP RP2(1+λCP hCP C)−eCP λCP hRP RCP2

(1+λRP hRP R+λCP hCP C)2

λCP 0 eCP CP2(1+λRP hRP R)−eRP λRP hCP RCP2

(1+λRP hRP R+λCP hCP C)2

λRC 0 0

hRP 0 −λRP RP2(eRP λRP R+eCP λCP C)
(1+λRP hRP R+λCP hCP C)2

hCP 0 −λCP CP2(eRP λRP R+eCP λCP C)
(1+λRP hRP R+λCP hCP C)2

hRC 0 0
mP −P2 −P1

mC 0 0
µP P1 −P1

r 0 0
K 0 0
Parameter Partial of f3 Partial of f4

eRP 0 0
eCP 0 0
eRC

λRCRC
1+λRP hRP R

0

λRP
λCP hRP RCP2

(1+λRP hRP R+λCP hCP C)2
− RP1

1+λRP hRP R
− RP2(1+λCP hCP C)

(1+λRP hRP R+λCP hCP C)2

λCP − CP2(1+λRP hRP R)
(1+λRP hRP R+λCP hCP C)2

λRP hCP RCP2

(1+λRP hRP R+λCP hCP C)2

λRC
eRCRC

(1+λRP hRP R)2
− RC

(1+λRP hRP R)2

hRP
λRP λCP RCP2

(1+λRP hRP R+λCP hCP C)2
(λRP )2R2P1

(1+λRP hRP R)2
+ (λRP )2R2P2

(1+λRP hRP R+λCP hCP C)2

hCP
(λCP )2C2P2

(1+λRP hRP R+λCP hCP C)2
λRP λCP RCP2

(1+λRP hRP R+λCP hCP C)2

hRC − eRC(λRC)2R2C
(1+λRP hRP R)2

(λRC)2R2C
(1+λRP hRP R)2

mP 0 0
mC -C 0
µP 0 0
r 0 R(1 − R/K)
K 0 rR2/K2
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with initial conditions

SP (0) = 0, SC(0) = 0, and SR(0) = 0

where we define

SP (t) =
∂

∂αi

P (t), (7.6)

SC(t) =
∂

∂αi

C(t), (7.7)

SR(t) =
∂

∂αi

R(t). (7.8)

Using this same definition, the general sensitivity equations for the non-linear response om-
nivory model are

d

dt
(SP ) =

(
eRP λRP R + eCP λCP C

1 + λRP hRP R + λCP hCP C
− mP

)
SP

+

(
eCP λCP P (1 + λRP hRP R) − eRP λRP λCP hCP RP

(1 + λRP hRP R + λCP hCP C)2

)
SC

+

(
eRP λRP P (1 + λCP hCP C) − eCP λRP λCP hRP CP

(1 + λRP hRP R + λCP hCP C)2

)
SR

d

dt
(SC) =

(
− λCP C

1 + λRP hRP R + λCP hCP C

)
SP

+

(
eRCλRCR

1 + λRChRCR
− λCP P (1 + λRP hRP R)

(1 + λRP hRP R + λCP hCP C)2
− mC

)
SC

+

(
eRCλRCC

(1 + λRChRCR)2
+

λCP λRP hRP CP

(1 + λRP hRP R + λCP hCP C)2

)
SR

d

dt
(SR) =

(
− λRP R

1 + λRP hRP R + λCP hCP C

)
SP

+

(
− λRCR

1 + λRChRCR
+

λRP λCP hCP RP

(1 + λRP hRP R + λCP hCP C)2

)
SC

+

(
r

(
1 − 2R

K

)
− λRCC

(1 + λRChRCR)2
− λRP P (1 + λCP hCP C)

(1 + λRP hRP R + λCP hCP C)2

)
SR

with initial conditions

SP (0) = 0, SC(0) = 0, and SR(0) = 0.

Now with

SP1(t) =
∂

∂αi

P1(t), (7.9)

SP2(t) =
∂

∂αi

P2(t), (7.10)
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the general sensitivity equations for the stage structure omnivory model are

d

dt
(SP2) = (−mP )SP2 + (µP )SP1

d

dt
(SP1) =

(
eRP λRP R + eCP λCP C

1 + λRP hRP R + λCP hCP C

)
SP2 + (−(µP + mP )) SP1

+

(
eCP λCP P2(1 + λRP hRP R) − eRP λRP λCP hCP RP2

(1 + λRP hRP R + λCP hCP C)2

)
SC

+

(
eRP λRP P2(1 + λCP hCP C) − eCP λRP λCP hRP CP2

(1 + λRP hRP R + λCP hCP C)2

)
SR

d

dt
(SC) =

(
− λCP C

1 + λRP hRP R + λCP hCP C

)
SP2

+

(
eRCλRCR

1 + λRChRCR
− λCP P2(1 + λRP hRP R)

(1 + λRP hRP R + λCP hCP C)2
− mC

)
SC

+

(
eRCλRCC

(1 + λRP hRP R)2
+

λCP λRP hRP CP2

(1 + λRP hRP R + λCP hCP C)2

)
SR

d

dt
(SR) =

(
− λRP R

1 + λRP hRP R + λCP hCP C

)
SP2

+

(
− λRP R

1 + λRP hRP R

)
SP1

+

(
− λRCR

1 + λRChRCR
+

λRP λCP hCP RP2

(1 + λRP hRP R + λCP hCP C)2

)
SC

+

(
r

(
1 − 2R

K

)
− λRCC

(1 + λRChRCR)2
− λRP P1

(1 + λRP hRP R)2

)
SR

−
(

λRP P2(1 + λCP hCP C)

(1 + λRP hRP R + λCP hCP C)2

)
SR

with initial conditions

SP2(0) = 0, SP1(0) = 0, SC(0) = 0, and SR(0) = 0.

We feel it is necessary to point out some of the difficulties that arise when using sensitivity
equation methods.

First, for each parameter that the original systems has, we must solve a system of linear
differential equations. The number of differential equations in the state system dictates how
many differential equations there will be in the linear sensitivity system. For example, the
linear response omnivory model has ten parameters and three variables. Thus, for each
parameter we must solve a first order linear system of three variables.

Second, although the sensitivity equations are linear, they are “forced” by the solution
to the state equations. Therefore, as stated by Stanley [90] “the state equations must be
solved as a first step in any algorithm used to compute the sensitivity”. However, the state
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equations are not dependent upon the sensitivities. Thus, we can form the coupled system
of states and sensitivities for the stage structure model

dy

dt
(t) = g(t) (7.11)

with initial condition
y(0) = k (7.12)

where

dy

dt
(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dt
(t)
...

dx4

dt
(t)

dSx1

dt
...

dSx4

dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

c4

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and g(t) is the vector of right hand sides. Similarly, we can form the coupled system for the
linear and non-linear response models.

Finally, a set of parameter values that seem appropriate for the natural system must be
used in solving the sensitivity equations. The sets of parameters that we will use for each of
our systems are listed in Section 3.4.

7.2 Sensitivities

We numerically integrate the coupled systems using Matlab’s fourth- and fifth-order adap-
tive step size algorithm known as ode45 to solve for the states and sensitivities. This is a
Runga-Kutta-Fehlberg method that simultaneously obtains two solutions per step in order to
monitor the accuracy of the solution and adjust the step size according to a user-prescribed
tolerance on the error [81]. We use 1 × 10−3 for relative error tolerance and 1 × 10−6 for
absolute error tolerance.

For our calculations we use the initial conditions c = (1, 1, 1)T for our linear system,
c = (1, 1, 2)T for our non-linear system, and c = (1, 1, 2, 3)T for our stage structure system.

Now, we must consider how to measure our sensitivities. We will use a weighted norm
as a performance measure of how small changes in the parameters affect the state. We use
a weighted euclidean norm in three dimensions:

||Sαi
||(t) = ||(SP, αi

, SC, αi
, SR, αi

)T ||(t) =
√

w1(SP, αi
)2 + w2(SC, αi

)2 + w3(SR, αi
)2. (7.13)

In four dimensions, there is another weight, w4, to go with the fourth sensitivity. The
weights may be used to gauge that one species is more important in your measure. For our
computations, we weight each species equally with a value of one. Notice, that we now have
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a performance measure that is a function of the parameter and time only. The following
plots are graphs of the norms of the sensitivities over time. We have defined three classes
for the sensitivities based upon the numerical values over time: smaller, medium, larger. In
the linear response omnivory model there are only two classes: smaller and larger. Figures
7.1 and 7.2 are the sensitivities for the linear response omnivory model. The sensitivities
for the non-linear response omnivory model are in Figures 7.3, 7.4, 7.5. Figures 7.6, 7.7,
and 7.8 provide the graphs of the sensitivities for the stage structure omnivory model. The
parameter values for each plot are listed in the figure captions.
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Figure 7.1: Plot of the norm of (smaller) sensitivities over time for the linear response
omnivory model. r = 0.4, K = 2, αRC = 0.1, αRP = 0.1, αCP = 0.05, eRC = 0.8, eRP = 0.2,
eCP = 0.5, mC = 0.06, mP = 0.04, c = (1, 1, 1)T , w1 = 1, w2 = 1, w3 = 1.
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Figure 7.2: Plot of the norm of (larger) sensitivities over time for the linear response omnivory
model. r = 0.4, K = 2, αRC = 0.1, αRP = 0.1, αCP = 0.05, eRC = 0.8, eRP = 0.2, eCP =
0.5, mC = 0.06, mP = 0.04, c = (1, 1, 1)T , w1 = 1, w2 = 1, w3 = 1.
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Figure 7.3: Plot of the norm of (smaller) sensitivities over time for the non-linear response
omnivory model. r = 0.3, K = 3, λRC = 0.037, λRP = 0.025, λCP = 0.025, hRC = 3, hRP

= 4, hCP = 4, eRC = 0.6, eRP = 0.36, eCP = 0.6, mC = 0.03, mP = 0.0275, c = (1, 1, 2)T ,
w1 = 1, w2 = 1, w3 = 1.
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Figure 7.4: Plot of the norm of (medium) sensitivities over time for the non-linear response
omnivory model. r = 0.3, K = 3, λRC = 0.037, λRP = 0.025, λCP = 0.025, hRC = 3, hRP

= 4, hCP = 4, eRC = 0.6, eRP = 0.36, eCP = 0.6, mC = 0.03, mP = 0.0275, c = (1, 1, 2)T ,
w1 = 1, w2 = 1, w3 = 1.
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Figure 7.5: Plot of the norm of (larger) sensitivities over time for the non-linear response
omnivory model. r = 0.3, K = 3, λRC = 0.037, λRP = 0.025, λCP = 0.025, hRC = 3, hRP

= 4, hCP = 4, eRC = 0.6, eRP = 0.36, eCP = 0.6, mC = 0.03, mP = 0.0275, c = (1, 1, 2)T ,
w1 = 1, w2 = 1, w3 = 1.
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Figure 7.6: Plot of the norm of (smaller) sensitivities over time for the stage structure
omnivory model. r = 0.3, K = 3, λRC = 0.037, λRP = 0.025, λCP = 0.025, hRC = 3, hRP

= 4, hCP = 4, eRC = 0.6, eRP = 0.36, eCP = 0.6, mC = 0.03, mP = 0.0275, µP = 0.1,
c = (1, 1, 2, 3)T , w1 = 1, w2 = 1, w3 = 1, w4 = 1.
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Figure 7.7: Plot of the norm of (medium) sensitivities over time for the stage structure
omnivory model. r = 0.3, K = 3, λRC = 0.037, λRP = 0.025, λCP = 0.025, hRC = 3, hRP

= 4, hCP = 4, eRC = 0.6, eRP = 0.36, eCP = 0.6, mC = 0.03, mP = 0.0275, µP = 0.1,
c = (1, 1, 2, 3)T , w1 = 1, w2 = 1, w3 = 1, w4 = 1.
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Figure 7.8: Plot of the norm of (larger) sensitivities over time for the stage structure omnivory
model. r = 0.3, K = 3, λRC = 0.037, λRP = 0.025, λCP = 0.025, hRC = 3, hRP = 4, hCP =
4, eRC = 0.6, eRP = 0.36, eCP = 0.6, mC = 0.03, mP = 0.0275, µP = 0.1, c = (1, 1, 2, 3)T ,
w1 = 1, w2 = 1, w3 = 1, w4 = 1.



Chapter 8

Results

8.1 Check for Coexistence and Biological Meaning

In this section we will summarize the restrictions that must be placed upon the model
parameters to ensure permanent coexistence for our systems. This will provide an easy
way to check for coexistence. Also, we will provide interpretations on what the parameter
restrictions mean biologically.

The parameter conditions that guarantee our linear response omnivory model (4.1) is
permanent are given by the following:

0 < eCP eRC − eRP (8.1)

0 < eRP αRP K − mP (8.2)

0 < eRCαRCK − mC (8.3)

0 < mC

(
eRP αRP

eRCαRC

)
+ r

(
eCP αCP

αRC

)(
1 − mC

eRCαRCK

)
− mP (8.4)

0 < mP

(
eRCαRC

eRP αRP

)
− r

(
αCP

αRP

)(
1 − mP

eRP αRP K

)
− mC (8.5)

Condition (8.1) can be rewritten as eRP < eCP eRC . That is, the consumer provides a
high benefit to the predator, relative to the basal resource and thus, the predator gains
significantly from its consumption of the consumer.

Condition (8.2) represents a positive per capita rate of increase for the predator when
the resource is at carrying capacity. That is, the predator can invade when the resource is at
carrying capacity. Similarly, condition (8.3) states that the consumer can invade when the
resource is at carrying capacity. Recall that only one of these two conditions must hold to
ensure permanence. We can rewrite conditions (8.2) and (8.3) as

K >
mP

eRP αRP

(8.6)

and
K >

mC

eRCαRC

, (8.7)
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respectively. So, in either case, the resource productivity (measured as K) cannot be too
low.

(8.4) is the condition for the predator to invade when the consumer and resource are
present and at equilibrium and (8.5) is the condition for the consumer to invade when the
predator and resource are present and at equilibrium. We rewrite condition (8.4) as

eRP >
(αRC)2eRCKmP − αRCαCP eRCeCP Kr + αCP eCP mCr

αRCαRP KmC

:= MRC (8.8)

and (8.5) as

eRP <
mP (αRP αRCeRCK + αCP r)

αRP K(αRP mC + αCP r)
:= MRP . (8.9)

So,
MRC < eRP < MRP . (8.10)

However,

MRC = MRP =
αRCeRCmP

αRP mC

(8.11)

if
K =

mC

eRCαRC

. (8.12)

Define,

R̄RC =
mC

eRCαRC

(8.13)

which is the resource density at equilibrium in the resource-consumer system with the preda-
tor missing. Similarly, define

R̄RP =
mP

eRP αRP

(8.14)

which is the resource density at equilibrium in the resource-predator system with the con-
sumer missing. Then the consumer is said to be the superior competitor [40] for the
shared resource if

R̄RC < R̄RP . (8.15)

Since
∂MRC

∂K
= − αCP mP r

αRP K2(αRP mC + αCP r)
< 0, (8.16)

MRC is a decreasing function of the resource carrying capacity. Then by (8.10)

eRP <
αRCeRCmP

αRP mC

, (8.17)

which is equivalent to
R̄RC < R̄RP . (8.18)

Thus, we see that the consumer must be the superior competitor for the shared resource.
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Finally, from (8.5) we get the positive term

r

(
αCP

αRP

)(
mP

eRP αRP K

)
. (8.19)

Thus, increasing the productivity of the resource via K, decreases (8.19) and thereby making
invasion by the consumer more difficult.

In conclusion, we have the following:
1) The predator should gain significantly from its consumption of the consumer.
2) The consumer should be superior at exploitative competition for the shared resource.
3) Along gradients in resource productivity, coexistence is most likely at intermediate levels
of productivity.
Our results affirm the conclusions drawn by Holt et al. [40].

For the non-linear response omnivory model (5.1), the conditions that guarantee perma-
nence are given by the following:

0 < eCP eRC − eRP (8.20)

0 <
eRP λRP K

1 + λRP hRP K
− mP (8.21)

0 <
eRCλRCK

1 + λRChRCK
− mC (8.22)

0 <
λRCKξ1(λRP eRP mC + λCP eCP eRCr) − λCP eCP eRCmCr

K(λRC)2ξ2
1 − λCP eRChCP mCr + λRCKξ1ν

− mP (8.23)

0 <
λRCeRCmP

λRP eRP + λRChRCmP − λRP hRP mP

+
rλCP (λRP hRP KmP + mp − λRP eRP K)

K(λRP )2(eRP − mP hRP )
− mC (8.24)

0 ≥ rmC(λRC(K − 1)ξ1 − 2mC)

λRCKξ1(mC + λRCξ1)
(8.25)

0 ≥ rmP (λRP (K − 1)ξ2 − 2mP )

λRP Kξ2(mP + λRP ξ2)
(8.26)

where

ξ1 = eRC − mChRC (8.27)

ξ2 = eRP − mP hRP (8.28)

ξ3 = eCP − mP hCP (8.29)

ν = λRP hRP mC + rλCP hCP eRC . (8.30)

Similar to above,

eRP < eCP eRC . (8.31)

(8.32)



James A. Vance Chapter 8. Results 90

Thus, the predator should gain significantly from its consumption of the consumer.
Conditions (8.21) and (8.22) can be rewritten as

eRP

hRP

> mP

(
1 +

hRP

λRP K

)
> mP (8.33)

and
eRC

hRC

> mC

(
1 +

hRC

λRCK

)
> mC (8.34)

respectively. Condition (8.33) states that the profitability of resources for predators (the en-
ergy return per handling time, eRC/hRC) must exceed predator mortality (mP ) by a sufficient
amount. Similarly, condition (8.34) states that the profitability of resources for consumers
must exceed consumer mortality by a sufficient amount. Also, we see that ξ1 > 0 and ξ2 > 0.
Conditions (8.25) and (8.26) can be rewritten as

eRC

hRC

< mC

(
1 +

2hRC

λRC(K − 1)

)
(8.35)

and
eRP

hRP

< mP

(
1 +

2hRP

λRP (K − 1)

)
(8.36)

respectively. That is, the profitability of resources for consumer must not be too high.
Otherwise, the predator is driven to extinction. Similarly, the profitability of resources for
predators must not be too high, so that the consumer is not driven to extinction.

Solving for K in equations (8.25) and (8.26) yield

K ≤ 2mC

λRCξ1

(8.37)

K ≤ 2mP

λRP ξ2

. (8.38)

Since, ξ1, ξ2 > 0, these conditions state that there must be an upper bound on K for coexis-
tence of species.

In order to simplify expressions, we set hRC = 0. The general case with hRC > 0 can be
analyzed in the same way, but with more complex formulas. Then, manipulations similar
to the linear case show that the consumer must be the superior competitor for the shared
resource (see also [58]). Thus, our conclusions for the non-linear response omnivory model
are the same as for the linear model.

For the stage structure model (6.1), the conditions that we feel are necessary for perma-
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nence are given by the following:

0 < eCP eRC − eRP (8.39)

0 ≤ eRCeCP

(
eRP λRP Kmax

1 + λRP hRP Kmax

)
− eRP min(mC , µP + 2mP ) − µP (8.40)

0 >
(mP )2

b − mP

− µP (8.41)

0 <
eRP λRP K

1 + λRP hRP K
− mP (8.42)

0 <
eRCλRCK

1 + λRChRCK
− mC (8.43)

0 <
λRCKξ1(λRP eRP mC + λCP eCP eRCr) − λCP eCP eRCmCr

K(λRC)2ξ2
1 − λCP eRChCP mCr + λRCKξ1ν

− mP (8.44)

0 <
rλCP µP (ξ4(mP )2 + µP mP ξ4 − eRP λRP KµP )

(λRP )2K(µP + mP )ξ5

+
λRCeRCmP (µP + mP )

λRChRCmP (µP + mP ) − λRP ξ5

− mC (8.45)

where

ξ1 = eRC − mChRC (8.46)

ξ2 = eRP − mP hRP (8.47)

ξ3 = eCP − mP hCP (8.48)

ξ4 = 1 + λRP hRP K (8.49)

ξ5 = hRP mP (µP + mP ) − eRP µP (8.50)

ν = λRP hRP mC + rλCP hCP eRC . (8.51)

Conditions (8.40) and (8.41) yield,

(mP )2

b − mP

< µP ≤ eRCeCP

(
eRP λRP Kmax

1 + λRP hRP Kmax

)
− eRP min(mC , µP + 2mP ). (8.52)

Thus, we have restrictions on how large and how small µP can be. Note that the other
inequalities are similar to those for the non-linear model. In fact, Mylius et al. [71] state
that “for higher values of the maturation rate (i.e., shorter initial stage), the situation is
qualitatively identical to the basic [non-linear] model”. Thus, our conclusions are the same
as for the linear model. See [71] for numerical confirmation.

8.2 Sensitivities

As seen in the figures of Chapter 7, the largest value for the norm of the sensitivities
for any parameter and any model is less than 410. In fact, the most sensitive parameter in
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all three models is the predator mortality rate, mP . This means that small changes in the
predator mortality rate cause the largest change in the solution. Thus, biologist should take
extra care in the field to accurately collect data for the predator mortality rate.

The next most sensitive parameters are the consumption, search and consumer mortality
rates. For the linear model, the most sensitive of these rates is the consumption rate, αCP .
The other consumption rates and the consumer mortality rate have essentially the same
sensitivities over time. For the non-linear model, the search rates and predator mortality
rate have comparable sensitivities over time. All three of the search rates are more sensitive
than the consumer mortality rate for the stage structure model.

In the stage structure model, the maturation rate, µP , is more sensitive than the con-
version efficiencies. For all three models the next group of comparable sensitivities are the
conversion efficiencies and resource enrichment parameters, r and K. In the linear case, the
least sensitive parameter is the resource carrying capacity, K. Similarly, the least sensitive
parameter in the above group of sensitivities is K for the non-linear and stage structure
models.

Finally, the least sensitive parameters for the non-linear and stage structure models are
the handling times. Thus, biologist need not be as accurate in collecting data for these
parameters since they affect the solution the least. Of the handling times, the most sensitive
parameter is hRP and the least sensitive is hCP for both models.



Chapter 9

Conclusions

There were three main ideas studied in this dissertation. One was the formulation of
omnivory models of increasing complexity. Incorporated in this formulation is showing the
ubiquity of omnivory in natural systems of fish, birds, and mammals. The second was
the analysis of the parameter conditions under which our models are permanent, or in a
realistic biological sense, the coexistence of species is ensured. We used a linear response
omnivory model, a non-linear response omnivory model, and a stage structure omnivory
model as approximations to natural systems. We also showed that these systems have
unique solutions for all non-negative time. Lastly, we used sensitivity analysis to analyze
our models and provide information on meaningful parameter data collection.

Our analysis was based on a technique of developing an Average Lyapunov function
for the linear and non-linear models and extending the results to gain insight on the stage
structure model. In considering these models, we were led to the following conclusions for
permanence:
1) The systems of equations should have uniformly bounded orbits.
2) The Ω limit set of the boundary of the state space should consist of equilibrium points
only.
3) The missing species should be able to invade the system when the other species are present
and at equilibrium.

The sensitivity analysis provided us with a prioritization of the model parameters based
upon the parameter sensitivities. We concluded that the most sensitive parameter is the
predator mortality rate and the least sensitive parameter is the time spent by the predator
handling the consumer.

From a biological point of view, we concluded the following general criteria for species
coexistence in our omnivory models:
1) The predator should gain significantly from its consumption of the consumer.
2) The consumer should be superior at exploitative competition for the shared resource.
3) Along gradients in resource productivity, coexistence is most likely at intermediate levels
of productivity.

The permanence of models with migration dynamics, symmetrical interactions, and ad-
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ditional species is still an open question. One limiting factor is that most available theory
assumes that the boundary of the state space is invariant. It would be useful to investigate
these more complicated models and provide the theory to analyze the permanence of these
models.
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