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Abstract: We use the growing body of mathematical theory known as permanence theory in order to study the
long-term survival of species in an ecological community. The ecological community of interest involves a unique
mixture of competition and predation known as omnivory–feeding on more than one trophic level. We approximate
the natural system with a differential equation model in which the functional and numerical responses are nonlinear.
The nonlineararity adds complexity to the model that is handled with the use of an Average Lyapunov function.
Our analysis shows that three restrictions must be placed on the model parameters in order to ensure permanent
coexistence. The restrictions are that the solutions of our model must be uniformly bounded, the Ω-limit of every
orbit on the boundary consists of equilibrium points only, and no boundary equilibrium can be saturated.
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1 Introduction

Since human survival depends upon biodiversity and
the understanding of natural systems, the long-term
survival of species in an omnivory system is of great
importance. The ubiquity of omnivory in natural sys-
tems is evident [6], [14], [13]. An omnivory model
with linear functional and numerical responses was
analyzed by Vance [15] using permanence theory.
Permanence theory is based on the idea that species
densities should be allowed to vary in any way (i.e.
equilibria, chaos, etc.), as long as the densities do not
remain too close to the boundary of the state space.
The boundary is where species densities are zero and
extinction occurs. We show the existence of an Av-
erage Lyapunov function which acts as a positive in-
creasing (from the boundary) surface upon which state
variables are projected. Most of the available theory
on permanence requires that the boundary of the state
space is invariant. We include a lemma and a theorem
that show the invariance of the state space and global
existence of solutions for our model.

2 Omnivory Model

The complexity of ecological interactions involving
omnivory is well known (see [14], [12]). The search
for robust mechanisms that can explain permanence of
tightly linked omnivory systems remains an important
challenge [11]. Intraguild predation (IGP), the sim-
plest example, involves two species–a predator and

a consumer–that compete for a resource in a similar
way, but also engage in direct predator-prey interac-
tions [14], [13] (also see Figure 1a).

We focus our attention on the asymmetric classi-
fication of IGP as given by Polis et al. [14] as opposed
to the symmetric classification (see Figure 1b) of IGP.
Asymmetric omnivory involves a predator feeding on
a consumer and a basal resource. The consumer feeds
solely on the basal resource. We use nonlinear Type II
functional and numerical responses in our model sim-
ilar to Křivan and Diehl [11]. Tpye II responses as-
sume that predator consumption increases to a maxi-
mum rate of victim consumption per predator. That is,
the rate of consumption becomes saturated as victim
densities increase. Our non-linear response omnivory
model is given by the system of differential equations

dP

dt
= P

[
eRP λRP R + eCP λCP C

1 + λRP hRP R + λCP hCP C
− mP

]

dC

dt
= C

[
eRCλRCR

1 + λRChRCR
− mC

]

−C

[
λCP P

1 + λRP hRP R + λCP hCP C

]
(1)

dR

dt
= R

[
r

(
1 − R

K

)
− λRCC

1 + λRChRCR

]

−R

[
λRP P

1 + λRP hRP R + λCP hCP C

]

with initial conditions

P (0) = c1 > 0, C(0) = c2 > 0, R(0) = c3 > 0.
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Figure 1: Two forms of ecological interactions. Ar-
rows indicate that one species (base of arrow) is eaten
by another species (point). (a) Asymmetrical in-
traguild predation. (b) Symmetrical intraguild preda-
tion

This forms an initial value problem

df
dt

= f(x), f(0) = c (2)

on D = IR+×IR3
+ with the understood definitions for

f , x, and c.
Parameter λij is the search rate of species j for

species i, eij is the efficiency with which species i is
converted to new offspring of species j, and hij is the
time spent by species j handling species i. K is the
resource carrying capacity and r is the intrinsic rate of
increase of the resource. The natural mortality rates of
the predator and consumer are mP and mC , respec-
tively.

Since this system is of Kolmogorov type, the
boundary is invariant [15]. Hence, P (t), C(t), R(t) ≥
0 for all t ≥ 0. This allows for more mathematically
tractable analysis and satisfactory results.

3 Solution to System
First, we must show that a unique solution exists for
all t ≥ 0 in order to investigate long-term species sur-
vival. Since f and its partial derivatives are all con-
tinuous with respect to P, C, and R for all positive t, P,
C, and R by an existence and uniqueness theorem [16]
our initial value problem 2 has exactly one solution in
D.

In order to show that a unique solution exists for
all nonnegative time, we need a lemma on differential
inequalities similar to the one used by Birkhoff [1].

Lemma 1 Let S be a differentiable function on [a, b].
Part A: If S satisfies the differential inequality

Ṡ(t) ≤ λS(t), a ≤ t ≤ b (3)

where λ > 0 is a constant, then

S(t) ≤ S(a)eλ(t−a) for a ≤ t ≤ b.

Part B: If S satisfies the differential inequality

Ṡ(t) + λS(t) ≤ M1, a ≤ t ≤ b (4)

where M1 > 0 and λ > 0 are constants, then

S(t) ≤ M1

λ
+

(
S(a) − M1

λ

)
eλ(a−t) for a ≤ t ≤ b.

Part C: If S satisfies the differential inequality

Ṡ(t) ≤ (M1 + M2e
λt)S(t), a ≤ t ≤ b (5)

where M1 > 0, M2 > 0, and λ > 0 are constants,
then

S(t) ≤ S(a)eM1 (t−a)+
M2
λ

(eλt− eλa) for a ≤ t ≤ b.

Proof. The first and second results are proved
similar to the third result except for multiplying both
sides of (3) by e−λt and (4) by eλt, respectively. For
Part C, multiply both sides of (5) by

e
−
�
M1 t+

M2
λ

eλt
�

to get

0 ≥ e
−
�
M1 t+

M2
λ

eλt
�
[Ṡ −

(
M1 + M2e

λt
)

S(t)]

=
d

dt
{e−

�
M1 t+

M2
λ

eλt
�
S(t)}.

Thus, the function e
−
�
M1 t+

M2
λ

eλt
�
S(t) has a non-

positive derivative and so is non-increasing for a ≤
t ≤ b. Therefore,

e
−
�
M1 t+

M2
λ

eλt
�
S(t) ≤ e

−
�
M1 a+

M2
λ

eλa
�
S(a)

and rearranging yields

S(t) ≤ S(a)eM1 (t−a)+
M2
λ

(eλt− eλa).

��

Theorem 1 The initial value problem 2 has a unique
solution in IR3

+ for all t ≥ 0.

Proof: We have the differential inequality

dR(t)
dt

≤ R(t)r (1 − R(t)/K) . (6)

However, the initial value problem

du(t)
dt

= u(t)r (1 − u(t)/K) , u(0) = u0 (7)
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has the unique solution

u(t) =
K

1 +
(

K
u0

− 1
)

e−rt
. (8)

Then applying a theorem on differential inequalities
[3], we have that R(t) ≤ u(t) for 0 ≤ t ≤ ∞. If in
addition, we let Kmax = max(u0, K), then u(t) ≤
Kmax and we have

R(t) ≤ Kmax for 0 ≤ t ≤ ∞. (9)

Also,

dC(t)
dt

≤ eRCλRCR(t)
1 + hRCλRCR(t)

C(t)

≤ eRCλRCR(t)C(t).

Since R(t) ≤ Kmax, we have that

dC(t)
dt

≤ eRCλRCKmaxC(t) for 0 ≤ t ≤ ∞.

If we define

Γ = eRCλRCKmax

then by Lemma 1 Part A

C(t) ≤ c2e
Γt. (10)

This exponential function does not reach infinity in
finite time.

Finally,

dP (t)
dt

≤ eRP λRP R(t) + eCP λCP C(t)
1 + λRP hRP R(t) + λCP hCP C(t)

P (t)

≤ (eRP λRP R(t) + eCP λCP C(t)) P (t).

Since R(t) ≤ Kmax and C(t) ≤ c2e
Γt, we have that

dP (t)
dt

≤ (Γ + eCP λCP c2e
Γt)P (t) for 0 ≤ t ≤ ∞.

If we define
Φ = eCP αCP c2

and

Λ =
Φ
Γ

then by Lemma 1 Part C

P (t) ≤ c1e
Γ t +Λ(eΓt− 1). (11)

This exponential function does not reach infinity in
finite time. So, by a global existence and uniqueness
lemma [7] and inequalities (6), (10), and (11) a unique
solution for the initial value problem 2 exists for all
t ≥ 0. ��

4 Permanent Coexistence
In this section we show that our nonlinear response
omnivory model is permanently coexistent under cer-
tain parameter restrictions. Consider a system of three
equations of Kolmogorov type:

dxi

dt
= xifi(x), 1 ≤ i ≤ 3, (12)

where the fi : IR3
+ → IR are C1.

Definition 1 We say that an orbit of (12) is ultimately
in M ⊂ IR3

+ if and only if there exists T (x) < ∞
such that x(t) ∈ M for t ≥ T (x). Also, we use the
notation A−B to denote set difference for two sets A
and B.

Definition 2 An equilibrium point x̄ is saturated if

fi(x̄) ≤ 0 for all i with x̄i = 0. (13)

Note that every equilibrium point in the interior of
the state space is saturated. For an equilibrium point
on the boundary, saturated means that the dynamics
do not “call for” the missing species [5].

Definition 3 The system (12) is permanently coexis-
tent if and only if there exists a compact set M ⊂ IR3

+

such that orbits are ultimately in M for all x ∈ IR3
+.

Our proof on permanent coexistence will be based
on the following theorem from Hutson et al. [9] which
is an extension of a result by Hofbauer [4].

Theorem 2 Let B ⊆ IR3
+ be compact and S a com-

pact subset of B. Assume that S and B −S are invari-
ant. Suppose that there is a C1 function P : B → IR+

which is such that P (x) = 0 if and only if x ∈ S. Take
Ψ(x) = Ṗ (x)/P (x) and assume that Ψ is bounded
below on B − S. Define its (lower semicontinuous)
extension to S, still denoted by Ψ, by setting

Ψ(x) = lim inf
y→x, y∈B−S

Ψ(y) (x ∈ S) (14)

and assume that for

x ∈ Ω(S), sup
t≥0

∫ t

0
Ψ(x(t)) dt > 0. (15)

Then there is a compact invariant set M with
d(M, S) > 0 which is such that every orbit gener-
ated by (12) with x ∈ IR3

+ is ultimately in M. That is
the system (12) is permanently coexistent.

4th WSEAS Int. Conf. on  MATHEMATICAL BIOLOGY and  ECOLOGY (MABE'08)  Acapulco, Mexico, January 25-27, 2008        Page 118

ISSN: 1790-2769                                                                                        ISBN: 978-960-6766-32-9



The function P is known as an Average Lyapunov
function [9]. Note that (15) holds if Ψ > 0 on Ω(S).
Also, the function P (x) should not be confused with
the state variable P (t).

We begin our analysis by showing that our non-
linear system (1) has uniformly bounded orbits and
enters a compact region of IR3

+.

Theorem 3 Provided that eRP < eCP eRC , all so-
lutions of the system (1) that initiate in IR3

+ are uni-
formly bounded and enter a certain region B defined
by

B = {(P, C, R) ∈ IR3
+ : 0 ≤ P+C+R ≤ M} (16)

where

M = max
{

M1

λ
,

M1

eCP λ
,

M1

eCP eRCλ

}
,

M1 =
KeCP eRC(r + λ)2

4r
,

and
0 < λ < min(mC , mP ).

Proof: Recall that we have already stated that the
components of all solutions of the system that initiate
in IR3

+ are bounded below by zero. Now, define

S(t) = eCP eRCR + eCP C + P.

Taking the time derivative along a solution of the
system we have the following inequality fulfilled for
each λ > 0:

Ṡ(t) + λS(t)

≤ (eCP eRCr + eCP eRCλ)R − (eCP eRCr/K)R2.

since eRP < eCP eRC and we choose λ <
min(mC , mP ). Because the right hand side is a
parabola that opens downward, it is bounded for all
(P, C, R) ∈ IR3

+. Specifically, the right hand side is

bounded by M1 = KeCP eRC(r+λ)2

4r . Thus, we find an
M1 > 0 with

Ṡ + λS ≤ M1.

Applying Lemma 1 Part B, we obtain

0 ≤ S(P, C, R)

≤ M1

λ
+

(
S(P (0), C(0), R(0)) − M1

λ

)
e−λt

and as t → ∞, 0 ≤ eCP eRCR+eCP C +P ≤ M1/λ.

Now let M = max
{

M1
λ , M1

eCP λ , M1
eCP eRCλ

}
, then

0 ≤ P + C + R ≤ M.

Thus, there is a compact neighborhood
B ⊆ IR3

+ such that for sufficiently large
T = T (c1, c2, c3), (P (t), C(t), R(t)) ∈ B for
all t ≥ T , where (P (t), C(t), R(t)) is a solution to
(1) that initiates in IR3

+. ��
Since we have global existence and uniqueness of

a solution, IR3
+ and the compact set B from Theorem

3 are invariant. Now define the set S = B ∩ ∂IR3
+.

Lemma 2 The sets S and B − S are invariant.

Proof: Assume that x0 ∈ S and x(t) is a solution of
the system (1) with x(t0) = x0. Since B and ∂IR3

+

are invariant, then x(t) ∈ B and x(t) ∈ IR3
+ for all

t > t0. Thus, S = B∩∂IR3
+ is invariant. Now assume

that x0 ∈ B − S and x(t) is a solution of the system
(1) with x(t0) = x0. Since S and B are invariant
we have global existence and uniqueness of solutions,
then x(t) ∈ B and x(t) /∈ S for all t > t0. Hence,
B − S is invariant. ��

Now, we show that the Ω-limit set of every orbit
in ∂IR3

+ is an equilibrium point. The zero equilibrium
is unstable due to the fact that r and K are positive.
Also, it is well known that solutions to the logistic
equation quickly reach the fixed carrying capacity K
[2]. However, for the predator-prey subsystems, there
may be periodic orbits.

We use a lemma from Hsu [8] which is based
on an application of the Poincaré-Bendixson Theorem
and the Dulac Criterion [10] to show that a positive
stable equilibrium of a predator-prey system is glob-
ally stable. Consider the predator-prey model

dy

dt
= y[exyp(x) − my]

dx

dt
= xg(x) − yp(x)

where y represents the predator density and x repre-
sents the prey density and

g(x) = r
(
1 − x

K

)

p(x) =
λxyx

1 + x
.

To investigate global stability, we compute the
variational matrix evaluated at the positive equilib-
rium (y∗, x∗),

H(x∗) = x∗g′(x∗) + g(x∗) − x∗g(x∗)p′(x∗)
p(x∗)

.

Then the equilibrium is (locally) asymptotically stable
if H(x∗) ≤ 0 [8].

We prove the following lemma on the Ω-limit set
of every orbit in ∂IR3

+ using a lemma from Hsu [8]
that gives conditions under which local stability of
(y∗, x∗) implies global stability of (y∗, x∗).
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Lemma 3 Assume that (C̄, R̄) and (P̄ , R̄) of the ap-
propriate subsystems of (1) are stable and

H(R̄) =
rmC(λRC(K − 1)ξ1 − 2mC)

λRCKξ1(mC + λRCξ1)
≤ 0 (17)

d2

dx2

(
xg(x)
p(x)

)
= − 2r

λRCK
< 0 (18)

and

H(R̄) =
rmP (λRP (K − 1)ξ2 − 2mP )

λRP Kξ2(mP + λRP ξ2)
≤ 0 (19)

d2

dx2

(
xg(x)
p(x)

)
= − 2r

λRP K
< 0 (20)

where

ξ1 = eRC − mChRC (21)

ξ2 = eRP − mP hRP . (22)

Then for the system (1), the Ω-limit set of every orbit
in ∂IR3

+ is an equilibrium point.

Proof: From the above comments, we see that the Ω-
limit set of every orbit on each axis is an equilibrium
point. Since the above conditions hold, each stable
equilibrium in the bounding hyperplanes is globally
stable. That is, the Ω-limit set of every orbit in each
bounding hyperplane is an equilibrium point. ��

Notice that conditions on the curvature are triv-
ially satisfied for our system because we assume
r, K, λRC , λRP > 0.

Finally, we use Theorem 2 to determine condi-
tions that guarantee permanence of the system (1).

Theorem 4 Assume that the following conditions
hold:
(H1) The solutions of (1) in IR3

+ are uniformly
bounded.
(H2) The Ω-limit set of every orbit on ∂IR3

+ consists
of equilibrium points.
(H3) No boundary equilibrium is saturated.
Then the system (1) is permanent.

We use the following conditions and assignments
for the proof:

eRP λRP K
1+λRP hRP K − mP > 0, (23)

eRCλRCK
1+λRChRCK − mC > 0, (24)

and

C̄ =
reRC [KλRC(eRC − mChRC) − mC ]

K(λRC)2(eRC − mChRC)2

P̄ =
reRP [KλRP (eRP − mP hRP ) − mP ]

K(λRP )2(eRP − mP hRP )2

R̄1 =
mC

λRC(eRC − mChRC)

R̄2 =
mP

λRP (eRP − mP hRP )
.

Proof: We break the proof up into two parts. In Part
I, we find the equilibria of the system (1). For Part II,
we use Theorem 2 to show permanence.
Part I: From the form of the equations in (1), we see
that F0 = (0, 0, 0)T is a boundary equilibrium point
in IR3

+. The only possible one species equilibrium is
FR = (0, 0, K)T . The two species equilibria involve
the resource and consumer, FRC , and the resource and
predator, FRP :

FRC =
(
0, C̄, R̄1

)T
, FRP =

(
P̄ , 0, R̄2

)T
. (25)

The equilibrium with the resource absent is never pos-
itive and thus does not exist. Notice that boundary
equilibrium FRC exists in IR3

+ if and only if (24)
holds. This is due to the fact that

eRCλRCK

1 + λRChRCK
− mC > 0

⇒ eRC > mC

(
hRC +

1
KλRC

)
> mChRC .

Similarly, boundary equilibrium FRP exists in IR3
+ if

and only if (23) holds.
Part II: Let x(t) = (P (t), C(t), R(t))T and

P (x) = xp1
1 xp2

2 xp3
3 (x1 + x2)ε. (26)

Clearly, P (x) = 0 for x ∈ ∂IR3
+ and P (x) > 0 for

x ∈ int(IR3
+). Also,

Ṗ (x) = p1x
p1−1
1 ẋ1(x

p2
2 xp3

3 (x1 + x2)ε)

+xp1
1 (p2x

p2−1
2 ẋ2x

p3
3 (x1 + x2)ε

+xp2
2 (p3x

p3−1
3 ẋ3(x1 + x2)ε

+xp3
3 ε(x1 + x2)ε−1(ẋ1 + ẋ2)))

= P (x)Ψ(x)

where

Ψ(x) =
3∑

i=1

pifi(x)+ε(x1f1(x)+x2f2(x))/(x1+x2)

in int(IR3
+). However, the last term in Ψ does not ad-

mit a continuous extension to the x3-axis. To correct
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this, we take the lower semicontinuous extension and
the last term in (4) becomes

Ψ(0, 0, x3) = ε min(f1(0, 0, x3), f2(0, 0, x3)).

By (H2), condition (15) reduces to

Ψ(x) > 0 (27)

for all equilibrium points in ∂IR3
+, for a suitable

choice of ε ≥ 0, p1, p2, p3 > 0. For FRC and FRP ,
(27) becomes,

p1f1(0, C̄, R̄1) > 0 (28)

p2f2(P̄ , 0, R̄2) > 0 (29)

respectively. But, we assumed that no boundary equi-
libria are saturated. Thus, we have that (28) and (29)
hold for any p1, p2 > 0.

At F0 and FR, (27) yields:

p1f1(0) + p2f2(0) + p3f3(0)
+ε min(f1(0), f2(0)) > 0 (30)

p1f1(0, 0, K) + p2f2(0, 0, K)
+ε min(f1(0, 0, K), f2(0, 0, K)) > 0. (31)

Since r > 0 we have that F0 is not saturated. In order
for FR not to be saturated, we need either

f1(0, 0, K) =
eRP λRP K

1 + λRP hRP K
− mP > 0

or

f2(0, 0, K) =
eRCλRCK

1 + λRChRCK
− mC > 0

or both, since P̄ = C̄ = 0. So in either case, we can
first choose p1 > 0, p2 > 0, and ε = 0 such that (31)
holds. Since f3(0) > 0, then for large p3, (30) holds
too. Hence, by Theorem 2 the system 1 is permanent.
��

5 Conclusion
In this paper we have analyzed the conditions under
which our nonlinear response omnivory model is per-
manent, or in a realistic biological sense, the coex-
istence of species is ensured. In summary, perma-
nence requires that the solutions of (1) are uniformly
bounded in IR3

+ , the Ω-limit set of every orbit on
∂IR3

+ consists of equilibrium points, and no boundary
equilibrium can be saturated.

The permanence of models with migration dy-
namics, symmetrical interactions, and additional
species is still an open question. One limiting factor is
that most available theory assumes that the boundary
of the state space is invariant. Therefore, it would be
useful to investigate these more complicated models
and provide the theory to analyze the permanence of
these models.
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