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ABSTRACT
Systematic strategies for optimal actuator and sensor loca-
tions require £nding extrema of control performance mea-
sures. When the control is designed for a distributed pa-
rameter system, these performance measures frequently in-
volve the kernel of the Riccati operator or that of the feed-
back operator. For example, measuring the optimal lin-
ear quadratic regulator (LQR) cost over a range of initial
data involves the Riccati operator. To aid in the design
process, we consider sensitivity equations for Riccati and
Chandrasekhar equations. The latter is well-suited for com-
puting feedback kernels when there are a small number of
control inputs and control outputs. As we demonstrate, the
sensitivity of these kernels to actuator positions can lead
to ef£cient computation of gradients for optimization algo-
rithms. Numerical examples corresponding to placing an
actuator in the heat equation are provided.
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1 Introduction

Since the genesis of feedback control, design engineers
have wrestled with the issue of actuator and sensor place-
ment. A well positioned actuator can either provide more
control authority with a £xed amount of control energy, or
provide the necessary control authority with minimum en-
ergy. Recent surveys of the optimal actuator design prob-
lem can be found in [6] and [12]. Choosing actuator posi-
tions to minimize the optimal LQR cost (cf. [3]) have been
considered recently in distributed parameter control prob-
lems [2, 4]. Aside from being a natural design objective to
consider (minimizing it is the premise for LQR control), it
can be expressed in a convenient mathematical form and is
thus amenable to optimization.

In this paper, we consider a strategy for ef£cient opti-
mization of control systems using sensitivity equations for
fast gradient calculations. Our primary motivating problem
is positioning actuators to minimize the norm of the Riccati
operator. However, our discussion holds for a number of re-

lated control measures (e.g. optimal min-max Riccati norm
[4]). We begin by setting up an actuator placement prob-
lem involving the heat equation. The problem is to deter-
mine the best location of a heat sink (source) in the system.
Two popular approaches for solving the distributed param-
eter control problem are considered, one based on Riccati
equations [9, 1, 7] and the other based on Chandrasekhar
equations [11, 10]. The computational complexity of these
control problems is low enough where plotting the entire
design objective function over a parameter range is feasi-
ble.

This provides a means of testing our approach which
is based on computing gradients using sensitivity equa-
tions. The high cost of solving a distributed parameter con-
trol problem is practice, necessitates the development of ef-
£cient gradient based optimization algorithms and fast gra-
dient calculations. Sensitivity equations are extremely use-
ful in this respect, since they typically provide derivative in-
formation (and more) in a fraction of the cost of computing
a feedback control law. These are practical when a small
number of design parameters are used (as in our actuator
placement problems). We develop and discuss sensitivity
equations for both Riccati and Chandrasekhar equations as
well as provide the associated abstract PDEs (useful for
numerical procedures such as adaptive mesh re£nement).
Finally numerical results demonstrating the accuracy and
effectiveness of this optimization approach are included.

2 Problem Statement

To illustrate our ideas for optimal design of control systems
and ef£cient computational tools, we introduce a control
problem using the one-dimensional heat equation. Con-
sider

zt(t, x) = κ zxx(t, x) + b(x; γ)u(t)
z(t, 0) = 0, z(t, 1) = 0,

z(0, x) = z0(x)
(1)

for t > 0 and x ∈ (0, 1), where k is the thermal diffusivity
of the material. We describe the control source by

b(x; γ) = e−(x− γ)2 for x ∈ [0, 1], γ ∈ (.1, .9). (2)



Thus the parameter γ is used to locate the control actuator.
Our design objective is to £nd the value of γ that optimizes
some control measure.

To take advantage of distributed parameter control
theory, we formulate this boundary value problem (1) as
an abstract state space model. As is common in this £eld,
we de£ne z(·) to be an element of a Hilbert space and recast
(1) as

ż(t) = Az(t) + Bu(t)
z(0) = z0

(3)

where A is the differential operator

[Az](t) = κ
d2z

dt2
(t) (4)

de£ned on the domain D(A) ≡ H 1
0 (0, 1)∩H2(0, 1) and B

is de£ned by

[Bu](t) = e−(x− γ)2u(t). (5)

3 Distributed Parameter LQR Problem

We consider a LQR control problem de£ned by minimizing
the cost function

J(u(·)) =
∫ ∞

0

{〈y(t), y(t)〉 + 〈u(t), u(t)〉} dt (6)

subject to the constraint (3), where y(t) = Cz(t) is a con-
trolled output function. To make this discussion more in-
teresting, we consider a few control output functions. We
minimize the control output over a given interval [a, b], a ∈
(0, 1), b ∈ (0, 1), a < b :

y(t) =
∫ b

a

z(t, x) dx. (7)

3.1 Riccati Equation

Under suitable conditions [9], the LQR problem has the
optimal control given by feedback of the form

uopt(t) = −Kz(t) = −B∗Πz(t) (8)

where K is the feedback gain operator. Here Π is the (weak)
solution to the algebraic Riccati Equation (ARE)

A∗Π + ΠA − ΠBB∗Π + Q = 0 (9)

and Q = C∗C.
It has been shown [9] that the feedback operator K has

the form

Kφ =
∫ 1

0

h(x)φ(x) dx (10)

where the kernel h(·) belongs to L2(0, 1). h(·) is called the
functional gain.

3.2 Chandrasekhar Equations

Chandrasekhar methods may be used to bypass the step of
solving the Riccati equations [5, 8]. The Chandrasekhar
equations are formally de£ned by

−K̇(t) = B∗L∗(t)L(t) (11)

−L̇(t) = L(t)[A − BK(t)] (12)

with £nal conditions

K(T ) = 0 and L(T ) = C. (13)

Under suitable conditions, it has been shown that K(t) →
K as t → −∞. Similarly, Sorine [11] has shown

K(t)φ =
∫ 1

0

h(t, ξ)φ(ξ) dξ (14)

and

L(t)φ =
∫ 1

0

l(t, ξ)φ(ξ) dξ. (15)

4 Computing Functional Gains

There are two approaches to £nd feedback control laws for
(linear) distributed parameter systems: Introduce approxi-
mations to the system, then use £nite dimensional control
techniques or develop representations for the control laws
as the solutions to a partial differential equation (PDE),
then approximate the system. These techniques are re-
ferred to as “approximate-then-control” and “control-then-
approximate,” respectively. The discrete and PDE versions
of the Chandrasekhar and Riccati equations may be com-
putationally equivalent, but are conceptually different.

4.1 Riccati Equation

We can approximate (3) by projecting it onto a suitable £-
nite element subspace, cf. [7]. Then we get the approxi-
mating system

żN (t) = ANzN (t) + BNu(t) (16)

which should be interpreted in the weak sense. Thus us-
ing £nite element formulations we get a discrete equation
which can be expressed as

Mż(t) = −Sz(t) + Eu(t) (17)

where the matrices M and S are sparse and E has low rank.
Placing the above system in canonical form yields

ż(t) = −M−1Sz(t) + M−1Eu(t)
≡ Az(t) + Bu(t) (18)

and z(0) = z0. Then we solve the Riccati equation

ΠA + ATΠ − ΠBB∗Π + Q = 0 (19)



for Π, a symmetric positive de£nite matrix. This can
be done using ef£cient software such as MATLAB’S lqr.
Thus the approximate feedback operator will be of the form

K = BTΠ (i.e. u(t) = −Kz(t)) (20)

and the functional gain of the form

H = M−1KT. (21)

There is a continuous PDE version of the Riccati
equation, R-PDE, but due to space limitation and lack of
ef£ciency in using the R-PDE to compute functional gains,
we omit discussing it here.

4.2 Chandrasekhar Equations

For problems in which the number of controls m and ob-
servations p are dominated by the dimension of the ap-
proximating state, N, it is more ef£cient to use the Chan-
drasekhar factorization to simplify the calculations. This is
due to the fact that there are N(N−1)

2 unknowns in Π and
only N × m unknowns in K.

The feedback matrix K may be found by solving

−K̇(t) = B∗L∗(t)L(t)
−L̇(t) = L(t)[A − BK(t)] (22)

with initial conditions K(T ) = 0 and L(T ) = C. This
method does not adapt itself to mesh re£nement.

Instead we develop partial differential equations for
the Chandrasekhar equations by essentially combining
(11), (12), (13), (14), and (15).

Theorem 1 The kernels h(·, ·) and l(·, ·) from (14) and
(15) satisfy the following Chandrasekhar partial differen-
tial equations (C-PDE):

− ∂

∂t
h(t, ξ) = l(t, ξ)

∫ 1

0

e−(x− γ)2 l(t, x) dx (23)

− ∂

∂t
l(t, ξ) = κ

∂2

∂ξ2
l(t, ξ)

− h(t, ξ)
∫ 1

0

e−(x− γ)2 l(t, x) dx

(24)

with £nal conditions

h(T, ξ) = 0 and l(T, ξ) = c(ξ). (25)

One could combine (22) with (23) and (24) to develop
adaptive mesh re£nement strategies.

5 Actuator Placement Problem

The dependence of B upon γ provides a design variable for
optimal actuator location. We now consider possible design
objectives for the optimal actuator location problem.

Since the area where the heat sink is concentrated is
parameter dependent, one possible design objective is to
[2]: £nd γ that minimizes

max
z0∈Z̄

J(uopt, z0) (26)

for initial data in a certain set of functions Z̄ and γ in an
acceptable range. For the LQR problem, this is equivalent
to:

min
γ∈(.1,.9)

max
z0∈Z̄

〈z0,Π(γ)z0〉. (27)

For the case where ‖ z0 ‖ = 1, we have the problem of
minimizing the norm of Π(γ) over all possible γ ∈ (.1, .9).

It has been conjectured [2] that if b > 0, we have the
equivalent problem of maximizing

∫ 1

0

[h(x; γ)]2 dx (28)

over all admissible γ′s, where h(·) is the kernel of K ob-
tained from the Chandrasekhar equations.

6 Sensitivity Equations

The concern is that it is not very ef£cient to optimize ‖ Π ‖
or ‖ h ‖ by plotting the entire objective function. Thus we
need an ef£cient gradient-based algorithm to optimize the
objective function. We use sensitivity equations to compute
the gradients needed to optimize the objective function.

6.1 Riccati Equation

We formally differentiate the parameter dependent Riccati
equation (19) with respect to the design variable γ. After
rearranging we get a Lyapunov matrix equation:

DX + XDT = −C (29)

where

D = (A − BBTΠ)T (30)

C = −Π(
∂B
∂γ

BT − B
∂BT

∂γ
)Π (31)

X =
∂Π
∂γ

. (32)

We can solve for ∂Π
∂γ using MATLAB’S lyap. Then

∂H
∂γ

= M−1(
∂BT

∂γ
Π + BT ∂Π

∂γ
). (33)

6.2 Chandrasekhar Equations

We derive the sensitivity equations for γ by formally dif-
ferentiating the weak form of the C-PDE (23), (24), and
(25) with respect to the parameter γ. We do not give the
equations due to space limitations.



Thus we can optimize our objective functions

min
γ∈(.1,.9)

‖ Π(γ) ‖, (34)

or

max
γ∈(.1,.9)

∫ 1

0

[h(x; γ)]2 dx (35)

without plotting the entire objective functions. Another
important observation about the Chandrasekhar PDE ap-
proach is that it allows for parallel tools and adaptive mesh
re£nement.
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Figure 1. Functional gains

7 Numerical Results

We use the Galerkin procedure with continuous linear el-
ements to approximate the PDE’s above. Then the right
hand sides are evaluated by the Crank Nicolson £nite dif-
ference scheme and the equations are solved by Newton’s
Method.

We test our solutions using the initial condition
z(0, x) ≡ 1. The £nal time T = 6 and time step, ∆t = .05
are used in our calculations. Relatively coarse meshes of
10 and 20 elements are used to obtain our approximations.

The functional gain, h(·), via MATLAB’S lqr and
via C-PDE are plotted in Figure 1 when we are minimizing
the average temperature over the interval [.7, .9] and the
actuator location is stationary at γ = 0.5. There is really
no noticable difference in the plots. The C-PDE method
requires a considerable amount of time more than MAT-
LAB’S lqr. We feel that this differential would lessen if
the number of controls and observations were increased.

The sensitivities, ∂H
∂γ , and ∂h

∂γ are plotted in Figures
2 and 3 respectively when we are minimizing the aver-
age temperature over the interval [0, 1] and the actuator
location is stationary at γ = 0.5. Notice that both meth-
ods (Riccati and Chandrasekhar) yield similar sensitivity
results.
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Figure 2. Sensitivity via Riccati
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Figure 3. Sensitivity via C-PDE

The CPU time to get Figure 2 is .5010 seconds, since
we have to solve one Riccati and one Lyapunov Equation.
The Lyapunov equation solve is essentially free. Plots of
∂H
∂γ , over the interval [0, 1] via £nite differences are in Fig-
ures 4 and 5. The CPU time for these two plots is ..9120
seconds. This is due to the fact that we had to solve 2 Ric-
cati Equations. In Figure 4 we used ∆γ = .01 and in Fig-
ure 5 we used ∆γ = .001. So not only does it take longer
using £nite differences, but you must also worry about the
step size of γ. Thus, using sensitivity equations to compute
∂H
∂γ is more precise than £nite differences.

In Figure 6, we plot the norm of the Riccati matrix
as we vary the parameter γ from 0.1 to 0.9. Here we are
minimizing the average temperature over the interval [.7,
.9].

The objective looks like a nice quadratic function.
Figure 7 plots ∂‖Π‖

∂γ as we vary γ. Notice that the mini-
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Figure 4. Sensitivity via Finite Differences
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Figure 5. Sensitivity via Finite Differences

mum of ‖ Π ‖ corresponds to the zero of ∂‖Π‖
∂γ . Thus, the

sensitivity produces derivatives that are consistent with the
approximated design objective.

Next, we consider the norm of the feedback gain, ‖
h ‖ as we vary γ (Figure 8). Again we see a nice quadratic
function. As [2] conjectured, minimizing ‖ Π ‖ appears to
be equivalent to maximizing ‖ h ‖ . Figure 9 depicts that
the zero of ∂‖h‖

∂γ corresponds to the maximum of ‖ h ‖ .

8 Conclusions and Future Work

We have demonstrated the plausibility of using control per-
formance measures to position actuators. For example,
when attempting to control the heat over the interval [.7,.9],
we see in Figure 6, that the optimum actuator location is
near γ = .7. Presumably the in¤uence of the zero bound-
ary condition at x = 1, leads to this result. In practical
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Figure 6. Norm of the Riccati Matrix
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Figure 7. Partial of Norm of Riccati Matrix

problems, we don’t have the luxury of computing the con-
trol performance objective over the entire parameter range,
but rather need to resort to more systematic optimization al-
gorithms. We have demonstrated the possibility of provid-
ing gradients to these algorithms using ef£cient sensitivity
calculations.

In future work, we attempt to extend these results to
higher dimensional problems, where the actuator location
may be described by several parameters. These results are
underway and are expected for the £nal version of this pa-
per.
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