

ABSTRACT

Title of Thesis: Simulation and Analysis of a Hardware Trigger
for the GLUEX Experiment at Jefferson Laboratory

Name of degree candidate: James Lester Hubbard 111
Degree and Year: Master of Science in Applied Physics & Computer Science 2002

Thesis directed by: David Doughty, Ph.D., Professor,
Department of Physics, Computer Science, and Engineering

GLUEX, Gluonic Excitations and Confinement, is a new experiment in the planning
stages at Jefferson Lab. Part of the requirements for the experiment is the development of
a hardware based level 1 trigger. The purpose of the hardware trigger is to remove back-
ground events generated by photon reactions at lower energies, while keeping the events
generated by higher energy photons. The goal of this thesis is to develop a methodology
to prevent background events from entering the data stream, which can be implemented

within a hardware level 1 trigger.

Simulation and Analysis of a Hardware Trigger

for the GLUEX Experiment at Jefferson Laboratory

By

James L. Hubbard 11

Thesis submitted to the Graduate Faculty of
Christopher Newport University in partial
fulfillment of the requirements
for the degree of

~ Master of Science in)
Applied Physics and Computer Science

2002

Approved:
Dr. David Doughty, Chair

Dr. David Hibler

Dr. John Hardie

Copyright (©) 2002

James Hubbard

DEDICATION

This work is dedicated to my wife, Lee Ann. Lee Ann has encouraged and supported
me throughout my efforts. Her faith in my abilities has never wavered. She has been
understanding of the late nights and long hours. It is also dedicated to my parents James
and Donelda for being there and believing that | could achieve what | wanted. If not for the

support and understanding of my loved ones none of this would be possible.

ACKNOWLEDGMENT

This thesis would not have been possible without the help of the people who have pro-
vided direction and aid. My advisor, Dr. Dave Doughty, has been patient and understanding
while | have been learning. Without his guidance, I could not have completed the work that
I have. Without the help of the GLUEX collaborators my job would have been much more
difficult. Dr. Elton Smith, a GLUEX collaborator, provided advice, direction, and insight
when | needed it. Another, Dr. Richard Jones modified the simulation software so that |
could get the information that | needed.

Ms. Lynn Sawyer and Ms. Mary Lou Anderson, also deserve credit. Ms. Sawyer has
been instrumental in aiding me with the graduate school paperwork. Ms. Anderson has
been patient and helpful when | have questions about general paperwork and procedures.
There is no doubt that | would have still been fighting to get my assistantship pay, if she
were not so persistant. If not for Dr. Cathy Roberts, |1 would have never known about
Christopher Newport University. She convinced me that it had a good program, and | have
not been disappointed.

I would also like to thank the Physics, Computer Science, and Engineering Department
and faculty. The PCSE Department truly is outstanding. The quality of teaching and the

accessibility of the faculty are superb.

TABLE OF CONTENTS

Section

LIST OF FIGURES

LIST OF TABLES

1

I ntroduction

1.1 Photon Beam
1.2 Detector
1.3 Triggering

M ethodology

2.1 Reactions
2.2 Simulation Tools . .
2.3 Analysis Tools

Analysis

3.1 Conditional Form . .
3.2 Functional Form . . .
3.2.1 Function . . .

3.2.2 Optimization

Results and Conclusions

4.1 Conclusion

Genetic Algorithm

Al Concepts.
A2 GAlib
A.3 GA Parameters . ..
A.4 Fitness Function . . .

Java Analysis Studio

B.1 Data Interface Module
B.2 Analysis Code

REFERENCES

Page

26
26
27
28
28

30
30
39

a7

LIST OF FIGURES

Number Page
1.1 Photon energy spectrum from an oriented diamond radiator. 2
1.2 Total ypcrosssection 3
1.3 Anoverview of the GLUEX detector. 4
2.1 Data generation flowchart. 10
3.1 Energy in calorimeters for yp — p’n n — nrtr rtat9GeV 17
3.2 Energy in calorimeters for yp — p’n n — nrtr rtatl1GeV 17

3.3 Track Counts in the Forward TOF for yp — p°7tn — nrtr—nt at9 GeV 18

3.4 Track Counts in the Forward TOF for vp — p’7ntn — nrtr—nt at 1 GeV 18

LIST OF TABLES

Number

2.1

3.1
3.2

4.1
4.2

4.3

Simulated reactions, energy level of photons, and type.

Conditional statements for conditional trigger

Conditional triggercutrates.

Functional triggercutrates
Functional trigger cut rates where hadronic energy deposition in the for-
ward calorimeter have been increased by 20%.
Functional trigger cut rates where hadronic energy deposition in the for-

ward calorimeter has beenreduced by 20%

Page

Chapter 1

| ntroduction

GLUEX, Gluonic Excitations and Confinement, is a new experiment project in the plan-
ning stages at Jefferson Lab. The purpose of GLUEX is to ”study the photoproduction of
unusual mesons and gluonic excitations”[1, pp. 1]. In order to study these, a beam of high
energy photons, a detector and a target are needed. The photoproduction occurs when pho-
tons, with energy of 9 GeV/, strike a hydrogen atom. This reaction produces other nuclear
particles that propagate through the detector, which records the interaction of the particles

with the various detector packages.

1.1 Photon Beam

While there are a couple of different techniques for producing a photon beam, the method
best suited for the facilities of Jefferson Lab is coherent bremsstrahlung radiation. Photons
are generated by placing a thin diamond wafer radiator in the electron beam. By far, the
problem that has the greatest impact on the design of the level 1 hardware trigger is the
energy spectrum of the photon beam.

When oriented a certain way the radiator yields a photon energy spectrum which peaks
at 9 GeV. Unfortunately, a large part of the beam spectrum will be below the desired peak

as shown in Fig. 1.1[1, pp. 55]. The combination of the energy spectrum and the cross

1

X

[N

o
(&)

/

~
Q
o
@]

6000

intensity (GeV/s/GeV)

W\
Q
o
@

4000

3000

2000

1000

s

‘ | |
10 12
E, (GeV)

(@)

(@)
N
~
[0)]
0]

Figure 1.1: Photon energy spectrum from an oriented diamond radiator. The y axis is
dP/dE with energy P expressed in GeV/s and E in GeV. The radiator thickness is 10~*
radiation lengths and the electron beam current is 1 zA. Shown is what emerges after the
photon beam passes through a collimator 3.4 mm in diameter located 80 m downstream
from the radiator. [1, pp. 55]

10
2 3 4 5 6 7 809 2 3 4 5 6 7 809 2
1 1 1 11 1 | 1 1 1 1 | I]

600 ! 600

500 —| y p Total Cross Section L 500

Cross Section (pb)

400 — I - Phys Rev D5(1972) 1640 - 400
0 Phys Rev D7(1973) 1362

300 — — 300

1
200 — (- (I — 200

) 'n.I o !
iy ""-"-.W«‘.MUMQM%‘I)@%@®®%WMW°®W

100 — — 100

T T T T T T T T T T T T T T I| 0
2 3 4 5 6 7 89 2 3 4 5 6 7 89 2
10
Phot on Energy (GeV)

Figure 1.2: Total cross section for vyp — hadrons as a function of photon energy.[1, pp. 208]

section, shown in Fig. 1.2[1, pp. 208], demonstrates that a large number of the reactions
will be occurring outside of the experimentally desirable range. These unwanted reactions
will contribute a great deal of background events to the experiment. At a tagged rate of 107
photons/s, the tagged hadronic rate is expected to be 1.4 kHz, while the contributions of
the background events create a total hadronic rate of 37 kHz. When the tagged rate is 108
photons/s, the expected rates increase by an order of magnitude. The tagged hadronic rate

increases to 14 kHz, while the total hadronic rate increases to 385 kHz. [1, ch. 8]

1.2 Detector

The GLUEX detector’s major subsystems are shown in Fig. 1.3 [1, pp. 122]. Photons strike
the liquid hydrogen target causing a reaction which produces additional particles. Energy
measurements of the reaction products are taken using the barrel calorimeter and the lead
glass array, also known as the forward calorimeter. Tracking information is provided by the
vertex chamber/start counter and both the central and forward drift chambers. The forward

time-of-flight (TOF), though not shown, is connected to the forward calorimeter. Together,

DRIFT CHAMBER DRIFT CHAMBER

-y 7|

LR

CYLINDRICAL — FORWARD = l/CERENKOV DETECTOR'Jg LEAD GLASS ARRAY

IRON YOKES

VETO TARGET — '~ VERTEX DETECTOR —BARREL [(=l J
CALORIMETER

1 2
METERS

Figure 1.3: An overview of the GLUEX detector. The major subsystems are labeled. [1,
pp. 55]

the cerenkov detector and the forward TOF will perform identification of charged particles
[1, pp. 174]. In addition to particle identification, our expectation is that the forward TOF
can provide rudimentary information about hits or “tracks”.

Because the trigger must operate very quickly, the most useful subsystems are the ones
that have the lowest latency. The start counter, barrel calorimeter, forward calorimeter and
forward TOF fulfill this requirement. The drift chambers are not used because there is a
high latency between charged particles traveling through a chamber, and the signal that its
passing causes.

Data taken from calorimeters will be used to compute an energy sum for each calorime-
ter. The start counter can provide a total number of tracks produced by a reaction. Addi-

tional information about track counts will be provided by the forward TOF.

1.3 Triggering

The high event rates caused by the large number of background events presents a challenge
for the trigger. At 107 photons/s and an event rate of 37 kHz, the system is generating 180
MBI/s of data, if each event is 5 KB. At 10® photons/s and an event rate of 385 kHz, the
amount of data generated is 1.76 GB/s. Unfortunately, much of the data being generated is
not interesting because of the large number of background events being captured.

To maximize the amount of good data entering the data acquisition (DAQ) system while
minimizing the background produced by the accidentals, a triggering system needs to be
developed. For the GLUEX experiment two triggering systems are planned. The first is
hardware based and is known as the level 1 hardware trigger. The second is called the level
3 software trigger.

The level 1 hardware trigger’s job is to prevent as many of the accidentals from enter-
ing the DAQ system as possible. This is accomplished by analyzing information from the
detector subsystems, which can provide data very quickly. The trigger performs a fast anal-
ysis of the data using a set of criteria or a function to determine if an event is a background
or good event.

The level 3 software trigger will run on a cluster of machines and analyzes the data after
it has been captured by the DAQ. This trigger analyzes data from all detector packages,
including the tracking chambers, to find good events. After finishing the analysis and
removing any background events, the data is sent to storage.

Combined, the goal of both the level 1 and 3 triggers is to reduce the total rate to the
acutal tagged hadronic rate. Going from an event rate of 37 kHz to 1.4 kHz tagged equates
to a reduction of 20:1. With an event rate of 1.4 kHz and event block data amount of 5 KB,
the data rate to storage is 6.8 MB/s. When the tagged rate is 14 kHz, the data rate is 68
MB/s. These data rates are much easier to manage.

The focus of this thesis is to develop an algorithm that is usable by the level 1 trigger to

prevent background events from entering the data stream. The tentative goal of the level 1

trigger is to remove at least 50% of the background events in real time without removing
more than 0.5% of the desirable events. Two techniques for cutting have been examined.
The first method uses a series of conditional tests. The second technique, which has proven
itself the most capable, uses a computed function to decide if an event is a background

event.

Chapter 2

M ethodology

As stated previously, GLUEX is in the planning stages, which means that the detector and
beam are unavailable. Most of the major subsystems are in the design phase now, except
the forward calorimeter, which had been used in another experiment. The designers are
building on past knowledge and experience. This knowledge and experience is used to
construct simulations.

Simulations are necessary for design. Event information is generated based on pre-
vious experimental results, and is used in the detector simulation. A detector simulation
uses information about particle interactions to pass particles through detector subsystems.
As these particles pass through the detector, the simulation produces data about the inter-
actions. This data can be analyzed, and from the analysis design decisions can be made
that will allow a working prototype to be built. The prototype serves as a basis for do-
ing preliminary experiments, which allows the simulation to be modified to produce better
results.

To design the level 1 hardware trigger, we relied heavily on the software that the
GLUEX collaborators have already built. The primary tools they supplied were the event
generator and detector simulation. Using these tools we were able to simulate various

reactions and perform an analysis of the performance of many trigger designs.

2.1 Reactions

For simulation and analysis the six reactions in Table 2.1 were chosen. They are repre-
sentative of reactions that are of interest (such as the yp — p’7ntn — nata—xT), or are
background. The two A reactions are purely background and only occur at the low end of
the photon energy spectrum. The other four are more representative of reactions that will
occur at peak energy levels. However, they too can occur at lower energy levels. Another
reason for choosing this set of reactions was to obtain a mix of event types, with some

having a lot of neutral energy, while others have more charged particles.

| Reaction | Energy(GeV) | Type |
vp — pPPntn — notrort 1 Bkgrd
2 Bkgrd
9 Good
yp — pp — prta~ 1 Bkgrd
2 Bkgrd
9 Bkgrd
vp — X*(1600)n — (°7T)n — natyy 1 Bkgrd
2 Bkgrd
9 Bkgrd
| yp = X (1600)A° — (rtat77)(na®) = atatm nyy | 9 | Good |
= A—nrt | 0.337 | Bkgrd |
‘ vp — A — prl ‘ 0.337 ‘ Bkgrd ‘

Table 2.1: These reactions were chosen for simulation and analysis. Three of the reac-
tions were also simulated at 1 GeVand 2 GeV'to represent interesting reactions occurring
at energy levels where they would be considered background. The two A reactions are
background only.

2.2 Simulation Tools

The software packages needed to perform the simulations have already been built by the
GLUEX collaboration. Generating data which can be used for analysis requires the series of

steps shown in Fig 2.1. Simulation begins by generating the reaction products of a photon-

proton collision, The reaction description file details how the products of the reaction are
created. Genr8 [2] is a program that produces an event file containing a specified number of
events based on the event description supplied by the reaction description file. Each event
specifies the particle’s energy, momentum, and the direction of all particles in the event.

Before the events can be used in the simulation the format of the data file must converted
to the Hall D Data Model or hddm [3]. Hddm is a modified form of Extensible Markup
Language (XML). XML is a self documenting method of formatting data which uses tags
to describe the data. The hddm format is a stream of data that is in a form similar to XML,
except the XML tags have been stripped from the data stream to conserve space. The XML
description included at the beginning of the hddm file can be used to convert the format
into a true XML file.

The event information from Genr8 is converted to hddm by using two other conver-
sion programs. After conversion the hddm file produced is run through the HDGeant [4]
Monte Carlo simulation package. The detector geometry and other information about the
detector packages are also used by the simulation. By modifying these files and rebuilding
HDGeant, the simulation can be changed. Using the event information file and the detector
information files, HDGeant models the behavior of the detector packages as each particle
passes through. The end result is a file that contains information about how each particle,
in each event, interacted with the detector during the simulation.

These simulation tools can be compiled and run on any system that supports the stan-
dard GNU compilers. Much of the code is in C, but there is some FORTRAN and shell

scripting involved. Current Linux distributions can be used to build and run these tools.

Reacti on
Description
File
(ascii)

genr 8

ascii 2st dhep
st dhep2hddm

Det ect or
Package
Descri ption
(XM)

hdgeant

hddm xmi

O —Fi| e =Pr ocess

Figure 2.1: This diagram shows the chain of events required to go from an initial reaction
description file to the final simulation data file in xml format.

10

2.3 AnalysisTools

After simulating the reactions, the data needs to be converted to another format for use
by the analysis tools. We chose to convert the data from hddm into XML form. XML
was chosen because a converter was available, XML is self documenting, and there are a
plethora of tools available to manipulate the files. To enable the analysis tools to read the
XML data files, Sun’s Java Architecture for XML Binding (JAXB) [5] was used.

JAXB is a new API and specification from Sun. JAXB’s primary purpose is to pro-
vide a way of automatically mapping between XML and Java objects. To access data in
XML format, a Document Type Definition (DTD) and a schema binding representation are
needed. Together, these files are used by a binding compiler to generate the class files with
methods to move data between Java object representation and XML format.

Part of a simulation data file is shown below. The data for an event starts with the
physicsEvent tag. Data about the event is stored in the attribute. runNo stores data about
what simulation produced the event. eventNo is the number of the event. The product tag
describes the products of the reaction. The first particle produced was the pi+. Information

about the particle is stored in the attributes of the momentum tag.

: n3pi-1%$¥
<physi csEvent runNo="-9000" eventNo="1">

<reaction type="0" wei ght="0">
<vertex>
<product type="pi+" decayVertex="0">
<nmonment um E="0. 264355" px="-0.073488" py="-0.077761"
pz="0.197069" />
<properties mass="0.14" charge="1" />
</ pr oduct >

The following text is part of the DTD file, detailing how the XML parameters arrive.
physicsEvent is an element that defines an XML tag with two child tags called reaction and

hitView. Since reaction occurs first, it must be the next XML tag after physicsEvent. The

11

attributes of physicsEvent are shown next. These are located within the tag and have data

associated with them.

: hal | dxni . dtd
<! ELEMENT physi csEvent (reaction, hitView >

<! ATTLI ST physi csEvent
runNo CDATA #REQUI RED
event No CDATA #REQUI RED >
<! ELEMENT reaction (vertex) >
<I ATTLI ST reaction
type CDATA #REQUI RED
wei ght CDATA #REQUI RED >

The next section contains part of the schema binding from the halldxml.xjs, which maps
the data in the XML file to actual data types. As can be seen the XML tag names are mapped

to classes and the attributes are given a data type.

: hal | dxm . xj s
<el ement nanme="physi csEvent" type="class" root="true" >

<attribute nanme="runNo" convert="int"/>
<attribute name="event No" convert="int"/>
</ el enent >
<el ement nane="reaction" type="cl ass">
<attribute name="type" />
<attribute nane="wei ght" convert="float"/>
</ el enent >

The code section shown below is part of the PhysicsEvent.java source code file. It was
generated by the JAXB binding compiler based on the information from halldxml.xjs and
halldxml.dtd. The XML tags and attributes from the DTD are clearly visible as data types.
A few of the methods that are available to the programmer to view and modify data are

visible as well.

Physi csEvent . j ava

public class Physi csEvent

12

ext ends Mar shal | abl eRoot El enent
i npl ement s Root El enent

private int _RunNo;

private bool ean has_RunNo;
private int _Event No;
private bool ean has_Event No;
private Reaction _Reaction;
private HitView _HitView,

public int get RunNo() {
i f (has_RunNo) {
return _RunNo;

}

t hr ow new NoVal ueException("runNo");

}

public void set RunNo(int _RunNo) {
this. _RunNo = _RunNo;
has_RunNo = true;
i nval i date();

}

publ i c bool ean hasRunNo() {
return has_RunNo;

}

Physics Analysis Workstation (PAW)[6] is a well known tool that has been extensively
used by nuclear and particle physicists to perform data analysis and display results. How-
ever, we chose to use Java Analysis Studio [7] (JAS) as our primary analysis tool. JAS is an
application that is targeted toward users who need to create histograms and other plots for
data analysis. Plots are created by writing Java code to access data and fill in histograms.
One of JAS’s strengths is its ability to read many of the standard physics data formats.
The deciding factors in choosing JAS were the ease in extending it to read the XML files
generated by the simulation, and the ability to use Java code in the analysis. To add the
capability to read these XML files, a Data Interface Module (DIM) was needed. The Hall
D XML DIM was written in Java and used JAXB to create the interfaces needed by JAS to

read the data. This meant that everything needed to do analysis could be performed within

13

the Java environment and could be run on any machine with a Java Virtual Machine.

14

Chapter 3
Analysis

The hardware level one trigger has to analyze data very quickly from the detector so that
it can prevent background events from entering the data stream. To do this, it can only use
data from those subsystems that output the data very quickly. This limits the useful data
to the energy in the forward and barrel calorimeters, and the number of tracks in both the
start counter and the forward TOF. Traditionally, a trigger system operates with a group
of conditional statements which test for certain conditions. Using these tests, the level 1
trigger makes a decision about the event and signals the DAQ system to either throw away
or read out the data. When the DAQ system reads out the data, the data is passed on to the

level 3 trigger.

3.1 Conditional Form

Initially, our research focused on using multiple conditional statements to cut the back-
ground events. Using JAS, various event data were studied. As can be seen in Fig. 3.1,
the amount of energy in both the calorimeters is almost always greater than 0.5 GeV'when
the photon energy is at 9 GeV'. On the other hand, when the interacting photon is around 1
GeV, there are many events where the energy is less than 0.5 GeV/, see Fig. 3.2. Also of

note is that most of the event’s energy is in the forward calorimeter when photon energy is

15

9 GeV. When photon energy is 1 GeV, much of the energy is in the barrel calorimeter.

Another feature that we relied on was using the track counts in the forward TOF. When
the photon energy is 9 GeV/, the forward TOF almost always has a particle track as shown
in Fig. 3.3. As can be seen in Fig 3.4, at 1 GeV there are close to 1300 events where there
were no particles in the forward TOF.

Using the above information, we experimented with different conditional statements to
develop an optimized algorithm that would cut background events from the data stream.
To rank the efficiency of various triggering algorithms, an evaluation function was used.
The evaluation function is shown in Egn. 3.1. This function produces a value between zero
and one, where a result of zero means the trigger did not cut any background events and
cut all of the good events. A result of one means the trigger was perfect and cut all of the

background events and kept all of the good events.

Total Calorimeter Energy < 0.5 GeV
AND
Forward Calorimeter Energy < Barrel Calorimeter Energy
| OR |
Forward Calorimeter Energy < 0.5 GeV
AND
Forward TOF Track Count =0

Table 3.1: Conditional tests to cut background events.

The conditional statements shown in Table 3.1, provided the best results. The trigger
meets the goal of cutting no more than 0.5% of the high energy events. Applying the
evaluation function produced a score of 0.786. As Table 3.2 shows, it was still not cutting
as many of the low energy events as we would like. We thought it should be possible to get

better results.

16

Reaction: rhoO pi+ n -> n pi+ pi- pi+ Energy 9 GeV

Energy Forward Calorimeter

9.0T
85T
8.0T
75T

651 s,

6.0
5.5
5.0
4.5
4.07
3.57
3.07
2.57
2.0
1.57
1.07
0.5
0.0

70T

Energy Barrel Calorimeter

Figure 3.1: Energy in calorimeters for yp — p’7tn — nrtr—7" at 9 GeV. The y axis is
the amount of energy in the forward calorimeter. The z axis is the amount of energy in the
barrel calorimeter. Both are in GeV'.

Reaction: rhoO pi+ n -> n pi+ pi- pi+ Energy: 1 GeV

Energy Forward Calorimeter

1.00 7
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
-0.05 7

-0.10

-0.1

+ + + + + + + + + + i
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Energy Barrel Calorimeter

Figure 3.2: Energy in calorimeters for vyp — p’7tn — nrtr~7" at 1 GeV. The y axis is
the amount of energy in the forward calorimeter. The z axis is the amount of energy in the
barrel calorimeter. Both are in GeV'.

17

Reaction: rhoO pi+ n -> n pi+ pi- pi+ Energy: 9 GeV

6,000 T

5,500 7

5,000 7

4,500

4,000

3,500

3,000

2,500

2,000 7

1,500 7

1,000 7

500

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Track Count in the Forward TOF

Figure 3.3: Track Counts in the Forward TOF for vp — p7tn — nata—aT at 9 GeV.
The y is the number of events. The x axis is the number of track counts in the forward TOF.
A zero means that none of the event’s particles hit the TOF.

Reaction: rhoO pi+ n -> n pi+ pi- pi+ Energy: 1 GeV
4,200 T
4,000
3,800
3,600
3,400
3,200
3,000
2,800
2,600
2,400
2,200
2,000
1,800

1,600 7

1,400

1,200

1,000
-0.5 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5

Track counts in the Forward TOF

Figure 3.4: Track Counts in the Forward TOF for vp — p°7"n — nrta—nt at 1 GeV.
The y is the number of events. The x axis is the number of track counts in the forward TOF.
A zero means that none of the event’s particles hit the TOF.

18

Reaction | Energy(GeV) | Percent Cut |

vp — pPontn — nrtrowt 1 45.07%

2 30.88%

9 0.25%

Yp — pp — prrwo 1 61.06%

2 47.18%

9 0.30%

vp — X*(1600)n — (n°7")n — nrtyy 1 42.29%

2 53.89%

9 0.04%
| vp = XT(1600)A° — (rFat77)(na®) = 7fatmnyy | 9 | 05% |
= A= nrt | 0337 | 81.99% |
[yp— A — pr® | 0337 [97.73% |
|

| Evaluated Score 0.786

Table 3.2: Conditional trigger cut rates for reactions and their energies.

_ . [Total NumberO f BackgroundEventsCut]
F= ([NumberOfBackgroundReactwns] * [T'otal NumberO f BackgroundEvents] +

. . [T'otal NumberO f Desired Events N otCut)
2 x [NumberO f DesiredReactions)| * Total NumberO DesiredFvents])/

([NumberO f BackgroundReactions| + 2 x [T'otal NumberO f Desired Events])

(3.1)

19

3.2 Functional Form

During a discussion of the conditional trigger results with fellow GLUEX collaborators,
one individual suggested using a general function[8]. Using a general functional form, we
could divide the multi-parameter space with a hyper-surface that could provide a much
finer tuning than the straight planes that the conditional triggers were providing. We began

looking into various functional forms and methods of function optimization.

3.2.1 Function

Building on our earlier efforts to find a group of conditional statements to perform cuts, a
function was developed in the form of Egn. 3.2. This function uses the same variables as
the conditional trigger and four coefficients. Computing the equation results in an answer

which is compared to Z. If the result is less than or equal to Z, the event is cut.

Z >= Ax[NumberTracksForwardlOF)| (3.2)

+ B x[EnergyForwardCal]

[EnergyForwardCal + 1]
[EnergyBarrelCal + 1]

+ O+«

3.2.2 Optimization

Having a function with coefficients presents the problem of determining the values that the
coefficients should take. This is an optimization problem and there are several well known
techniques for performing optimizations. Among various methods, neural networks are
one of the better known techniques for learning. They use a gradient descent method that
allows them to learn patterns. The down side is that they can be slow, hard to train and can
easily get trapped at local minima.

Another method for doing optimization is to use genetic algorithms. Genetic algo-

20

rithms randomly search a solution space. One result of this is that they do not fall into the
trap of local minima or maxima. If they do, it is relatively easy to modify the algorithm
to avoid these traps. Another plus is that, because of their randomness, they are fast in
searching a solution space. An additional advantage is that there are many freely available
implementations that make it relatively easy to use genetic algorithms.

The downside to using a genetic algorithm is that it may have to be run multiple times
to ensure that a “good enough” solution has been found. This is because it randomly walks
the search space in a finite amount of time. We chose to use genetic algorithms based on
the strong points, and minimized the problem using many repetitions.

Genetic algorithms are modeled after the basic ideas of evolution. The chromosome
represents a possible solution to the problem. A group of chromosomes make up a pop-
ulation. By using crossover and mutation operations, the population of solutions change
each generation. During each evolution of the population, each solution is evaluated using
a fitness function. The score that it receives, combined with the selection operator being
used, determines if the chromosome will be used in the next generation.

The fitness function plays a crucial role in finding a solution. While the crossover,
mutation, and selection operators can be changed, the fitness function is chosen entirely
by the user. It scores the chromosome based on some criteria or function. After assigning
it a score, the selection process determines which chromosomes continue into the next
generation. When it has finished evolving the solution for a number of generations, the
solution with the highest score is chosen.

Our fitness function scored the chromosomes on how well the solution they represented
cut background events while preserving the good events. In order to do this, the score of the
chromosome would be “punished” by subtracting points when it would cut the desirable
events. When doing the right thing, score would be increased. The criteria for our fitness

function is listed below.

e +1 point for cutting a background event

21

e +5 points for not cutting a good event

e -50 points for cutting a good event

e reset score to zero for cutting more than 50 good events.

22

Chapter 4

Results and Conclusions

To find the solution that performed the best, we used the evaluation function discussed
previously. After running the optimizer several hundred times, the solutions were ranked.
The best solution for the coefficients of the cut function was equation 4.1. This function
cut more events than the conditional trigger by a large margin. The conditional trigger
had a score of 0.786, while the functional trigger had a score of 0.861. The results of
the functional trigger can be seen in the Table 4.1. The functional trigger met the goal of
cutting no more than 0.5% of the good events, but it also surpassed the goal of cutting 50%

of the background events by cutting an average of 72% of the background events.

—0.520 >= —0.168 x [NumberTracksForwardT OF] (4.1)

+ 7972 [EnergyForwardCal]

[EnergyForwardCal + 1]

—1.855
* * [EnergyBarrelCal + 1]

Even though the results were good, we were concerned that the simulation might not
be modeling the hadronic energy deposition in the forward calorimeter properly. In order

to deal with this, the hadronic energy deposition was varied by +20% and -20% using the

23

Reaction | Energy(GeV) | Percent Cut |

vp — pPontn — nrtrowt 1 67.99%

2 41.68%

9 0.05%

Yp — pp — prim 1 70.48%

2 54.82%

9 0.50%

vp — X*(1600)n — (n°7")n — nrtyy 1 90.10%

2 56.24%

9 0.11%
| vp = XT(1600)A° — (rFat77)(na®) = 7fatmnyy | 9 | 023% |
= A= nrt | 0337 | 99.99% |
[yp— A — pr® | 0337 | 98.75% |
|

| Evaluated Score 0.861

Table 4.1: Functional trigger cut rates for reactions and their energies.

existing data sets. The analysis was re-run against the modified data sets. The results were
comparable to the results for the original trigger. When the hadronic energy was increased
by +20%, the score of the highest solution was 0.861. When it was decreased by -20%, the

score became 0.863. The results for both data sets can be seen in Tables 4.2 and 4.3.

4.1 Conclusion

The results that have been obtained are promising. They show that a level 1 hardware
trigger can be built which will meet the goal of cutting greater than 50% of the background
events while keeping the good events. While the simulation may not be perfect, the results
of modifying energy deposition show that our method is adaptable. The functional trigger
will play a major role in cutting down the data stream to a size that is manageable by the
data acquisition system.

While this thesis has been a proof of concept, it lays down the ground work necessary
to implement a more robust analysis system. This system will be necessary in order to

analyze the data coming from a real detector in the initial stages of testing and running.

24

Reaction | Energy(GeV) | Percent Cut |

vp — p’rtn — nrta T 1 66.41%

2 40.7%

9 0.08%

Yp — pp — prTwT 1 70.64%

2 54.91%

9 0.50%

vp — X*(1600)n — (n°7")n — nrtyy 1 90.71%

2 57.12%

9 0.10%
| 7p = X (1600)A° — (nt 77) (na®) = atr o nyy | 9 0.22% |
= A—nrt | 0337 99.99% |
o= A —pr® | 0337 99.08% |
|

\ Evaluated Score 0.861

Table 4.2: Functional trigger cut rates for reactions and their energies. The hadronic energy
deposition has been increased by 20% in the forward calorimeter.

Reaction | Energy(GeV) | Percent Cut |
vp — pPontn — nrtrort 1 65.72%
2 43.20%
9 0.13%
Yp — pp — prtwT 1 73.42%
2 56.03%
9 0.50%
vp — X*(1600)n — (n°7")n — nrtyy 1 89.43%
2 55.61%
9 0.10%
| vp = XT(1600)A° — (rFat77) (na®) = 7fatmnyy | 9 0.22% |
[vp = A = nrt [0.337 99.99% |
[— A — pr® [0.337 99.41% |
|

\ Evaluated Score 0.863

Table 4.3: Functional trigger cut rates for reactions and their energies. The hadronic energy
deposition has been decreased by 20% in the forward calorimeter.

25

Appendix A

Genetic Algorithm

A.1 Concepts

Genetic algorithms are an evolutionary programming technique that borrows some basic
ideas from biological science. Although it may be an oversimplification, evolution theory
basically states that individuals that are most adaptable to their environment will survive
and pass on their genetic adaptations to their offspring. This in turn should make their
offspring even more adapted to their environment.

Genetic algorithms (GA) make use of a simplified version of genes, chromosomes,
crossover, mutation, and fitness selection. Using these operators, a problem can be coded
that will search a solution space.

The most simple chromosome can be considered an array of integers. Each location in
the array would be considered a gene. Each gene is part of the solution for the problem. A
population of chromosomes have to be initialized. Typically they are randomly initialized
so that each time the GA is run it can possibly access a new part of the search space.

To allow an GA to find better solutions, crossover and mutation are used to create
children that may be better adapted to their environment. Crossover splits chromosomes

and combines the genes from different chromosomes to form a new one. Mutation will

26

randomly change the data in the genes.

In nature environmental factors decide how an organism will survive. It can either adapt
and pass on it’s genetic information or it dies. GAs try to work in a similar manner by using
a fitness function. The fitness function scores a chromosome’s ability to provide a solution
to a problem.

A selection operator is used to determine which chromosomes will pass on their genetic
information based on their fitness scores. There are several different techniques to decide
which chromosomes will contribute to the next generation. The technique that was used
in this thesis was tournament selection. Tournament selection is a fast way of selecting
chromosomes to provide genetic information. Another strong point of tournament selection
is its ability to maintain diversity in the population, which can help in finding optimal
solution. It works by randomly selecting two individuals from the population. It then
chooses a value for » between 0 and 1. Using a parameter & set previously, it chooses the

fitter of the two individuals if » < £. [9, pp. 170-171]

A.2 GAlib

The genetic algorithm library chosen to implement the function optimizer was GAlib[10].
It is a powerful and free implementation of a C++ library to write solutions using genetic
algorithms. It has several chromosome encoding techniques. The one used for this thesis
was the real number encoding. This encoding provided an abstract interface that made it
easy to use real numbers.

GAlib also provides interfaces where parameters are used to specify the rate of mutation
and crossover, the number of generations and the population size. This made it very easy

to setup a solution generator.

27

A.3 GA Parameters

The values used to setup the genetic algorithm are given in table below.

Parameter | Value
Generations | 100
Population 30
Crossover 0.8
Mutation 0.01

A.4 Fitness Function

The following C++ code is the Objective scoring function that tells the GA how to score
the chromosomes for fitness. The coefficients to be optimized are stored in the GAGenome
data structure. The right hand side of the trigger function is evalutated in another function

call.

hj ective Function

/1 The bjective Function defines how the solution is scored.
fl oat Objective(GAGenonme& g)
{
GABi n2DecGenone & genormne
vect or <si nEvent > *si nptr
stati c_cast <vector<si nEvent> *>(g. userData());
vect or <si nEvent > &si mVector = *sinptr;
i nt numberOF Si ms = si mVector. size();
float score = 0.0;
float function = 0.0;
fl oat val ueZ = genone. phenotype(3);
i nt nunmber Events = O;
i nt count NunCut = 0;

(GABi n2DecCGenone &) g;

for (int j =0; j < nunberOFSinms; j++){
nunmber Events = sinmVector[j].get_numevents();
/] Counts the nunber cut for each group.
count NumCut = O;
for (int i 0; i < nunberEvents; i++){
function eval Function(g, sinVector[j].get _event(i));

28

[lif the function <= valueZ it neans to cut the event

//Test to see it is a bad event and gets cut
/] Score +1
if ((function <= valuezZ) &&
(sinmvector[j].get _isGood() == 0)){
score += 1.0;
count NunmCut ++
}
//Test to see it is a good event and doesn’t get cut
/] Score +5
else if ((function > valueZ) &&
(sinVector[j].get _isGood()==1)){
score += 5.0;

}
//Test to see it is a good event and does get cut
/] Score -50

else if ((function <= valueZ) &&
(sinVector[j].get_isGood()==1)){
count NunCut ++
if (score < 50)

score = O;
el se
score -= 50.0;
}
} //for (int i = 0; i < nunberEvents; i ++)

/1 Check to see how nany of the good
[/l events got cut and reduce thescore.
[/1f the nunmber cut is above the threshold
//then reset score to zero. The goal
/[lis to not cut good ones.
if ((simvector[j].get_isGood()==1) &&
(count NuntCut > 50)) {
score = O;
}
Y} //for (int j=0; j < nunberOF Sins; j++)
return score

}

29

Appendix B

Java Analysis Studio

Java Analysis Studio (JAS) is a relavtively new tool for performing data analysis and dis-
playing results. Its focus group is nuclear and particle physicists, but it provides an easily
extensible architecture that can be used to suppport analysis of data in any structured for-

mat. It has the ability to produce scatter plots, histograms, and lego plots.

B.1 Datalnterface Module

A Data Interface Module (DIM) is an extension to JAS that enables it to read new data
formats. There are five files required by JAS in addition to the other class files that are
needed store data required.

The plugins.txt is used by JAS to find the register code.

JAS- i nf/pl ugi ns. t xt

j asext. hal | dxm . Regi st er

Register.java registers the DIM by passing the name of the local dim class. It also

provides methods to allow JAS to display information about the DIM,

30

Regi ster.java

package jasext. hal |l dxm ;
i nport jas.plugin.*;

public class Regi ster extends ExtensionPlugin
i mpl ements | Pl uginlnfo

{
public void init()
{
regi ster Dl M new Hal | DXM_Local DI M)) ;
}
public String getName()
{
return "Hal | DXM_Local DI M';
}
public String getVersion()
{
return "1.0.0";
}
}

The class file HalIDXMLLocalDIM.java creates a new event source object. It also

provides information about file extensions.

i Hal | DXM.Local DI M j ava
package jasext. hal |l dxm ;

i mport jas.jds.nodule.*;
i nport hep. anal ysi s. Event Sour ce;

/*-k
* A Local DIMfor accessing Hall D XML files froma JAS client
*/
public class Hall DXM.Local DI M
extends BasiclLocal DI M

{

/**

* enpty constructor

*/
public Hal | DXM.Local DI M)
{
super("Hall D XM. File (*.xm)",".xm");
}

31

/**
* openDat aSet opens the file specified by the dataSource
* and returns it as an Event Source
* @aram dataSource the String name of the file
* @eturns Event Source the Event Source derived fromthe file
*/
publ i ¢ Event Source openDat aSet (String dat aSource)
t hrows Modul eExcepti on

{
Event Sour ce t heEvent Source =
new Hal | DXMLEvent Sour ce(dat aSour ce) ;
return theEvent Sour ce;
}
/*-k

* override toString to return nane of this DM
*/

public String toString()
{

}

return("Hall D XM. DI M);

}// end class

HallDAnalyzablePhysicsEvent.java is used by the analysis classes that the user creates

to access the event data.

: Hal | DAnal yzabl ePhysi csEvent. j ava
package jasext. hal |l dxn ;

i nport java.util.?*;
i nport hep. anal ysi s. Event Dat a;

public class Hal | DAnal yzabl ePhysi csEvent
i nmpl enment s Event Dat a

{

Physi csEvent theEvent = null;
publ i ¢ Hal | DAnal yzabl ePhysi csEvent (Physi csEvent ev)

{
}

t heEvent = ev;

publ i ¢ Physi csEvent get PhysicsEvent ()

32

{
}

return theEvent;

}// end cl ass

The event source class loads the data into the objects. Due to the large size of the data
files HallDXMLEventSource.java reads each event’s data separately instead of loading all

of the data at once.

: Hal | DXMLEvent Sour ce. j ava
package jasext. hal |l dxm ;

i nport java.io.?*;
i mport java.util.List;
i nport java.util.lterator;

i mport jas.job.*;
i mport jas.jds.nodule.*;
i mport hep. anal ysis. *;

/*-k

A class for opening a Hall D XM. file as an event source.
@ut hor Dr. Dave Doughty Janes Hubbard
*/
public class Hal | DXM_LEvent Source i npl enents Event Source
{
protected String fil enane = null
protected int nunberOf Events = -1
protected Physi csEvent next Event = null;
prot ect ed Hal | DAnal yzabl ePhysi csEvent next Anal yzabl eEvent
= nul | ;
protected int current Event Nunber = O0;

protected File xm Events = null
prot ected BufferedReader fln = null

private int particleCount = O;
private String [] particleTypes = null

/**

* Create a Hal | DXM_Event Source connected to the XML file
* specifi ed.

* @aramfileNane the Hall D XM. data file to open

33

*/
public Hal | DXMLEvent Source(String fil enane)
t hrows Modul eExcepti on

{
this.filenane = fil enaneg;
[1Systemout.println("filenanme is ="+fil enane);
init();

}

/**

* Open a Hall D XM. Event Data File and prepare it for
* anal ysi s

*/
public void init()
{
/1 Open the xm file
try
{
xm Events = new File(fil enane);
fln = new Buf f er edReader
(new Fi | eReader (xm Events));
nunber OfF Event s = count Event s();
fin.close();
xm Events = new File(fil enane);
fln = new Buf f er edReader
(new Fi | eReader (xm Events));
}
catch (Exception e)
{
Systemout.println("Problemgetting events
fromfile - error was ->"+e);
}
/1 Set the current event pointer
current Event Nunber = 0;
}
/**
* Return the string name of the file
*/
public String get Name()
{
int i = filenane.lastlndexO (
System get Property("file.separator"));
return filenane. substring(i+1);
}

34

/**

* Return the class of the objects returned by

* get Next Event
* @eturn Class the class of the
* Hal | DAnal yzabl ePhysi csEvent

*/
public Cl ass get Event Dat aCl ass()
{
return Hal | DAnal yzabl ePhysi csEvent. cl ass;
}
/**

* return the nunber of events
* @eturn int i the nunber of events
*

public int getTotal Nunmber O Event s()

{

}

/**

return nunber & Events;

* return the next event
* @eturn EventData the next event
* [

publ i c Event Data get Next Event () throws EndOf Dat aExcepti on

{

Physi csEvent next Event =

get Next Physi csEvent FronFil e();

current Event Nunber += 1;
i f(nextEvent !'= null)

{

next Anal yzabl eEvent =

new Hal | DAnal yzabl ePhysi csEvent (next Event);

return next Anal yzabl eEvent ;

el se

t hrow new EndOf Dat aException();

/**

* Returns a physics event froma file. The events are read

*

* will cause an out of nenory error.
* @eturn return physi csEvent
*/

35

only when called. Reading all events into nenory at once

private Physi csEvent get Next Physi csEventFronFile ()

{

String line = null;
String beginTag = "<physi csEvent";
String endTag = "</ physi csEvent >";
bool ean i nPhysi csEvent = fal se;
Physi csEvent event = null
Byt eAr rayQut put St r eam baos =
new Byt eAr rayQut put St ream()

PrintWiter out = new PrintWiter (baos, true);

Byt eArrayl nput Stream bais = null
int linecount = 0;
bool ean get Event = fal se;

try
{

[IWhile | oop reads data until eof or
/1 it’s gotten an event.
/1 get Event needs to go first, relies on
//shortcircuiting test to
[l prevent reading of next line.
while (!getEvent &&
(l'ine=fln.readLine()) != nul
{
| i necount += 1;
if (('inPhysicsEvent) &&
(l'ine.indexCOf (begi nTag) >= 0))

{
i nPhysi csEvent = true;
out.println (line);
}
el se if (inPhysicsEvent)
{
out.println(line);
if (line.indexOh(endTag) >=0)
{
i nPhysi csEvent = fal se;
get Event = true;
}
}
} //while ((line=fIn.ReadLine()) !'= null)
}
catch (Excepti on eFi nReadLi ne)
{

System out. printl n(

"Exception reading |ine getNextPhysci sEvent:

System out . print | n(eFi nReadLi ne) ;

36

)

}

System out. println("Linecount: " + |inecount);

[/ Test to see if an event was read.

it was read then unnmarshal it.

if (baos.size() > 0)

byte[] bArray = baos.toByteArray();
bai s = new Byt eArrayl nput St rean(bArray);

try

event = event.unmarshal (bais);
baos. cl ose();
bai s. cl ose();

catch (Exception eUnmarshal)

}
[11f
{
{
}
{
}
}

Systemout.println ("Exception Unmarshalling
data i n get Next Physi csEvent: ");

Systemout.println (eUnmarshal);

Systemout.println ("Linecount:

+ linecount);

return event;

/1 This method counts the nunber of events fromthe file fln.
/I Relies on scanning the file.
private int countEvents()

{

int counter = O;
String |ine;

i nt nunber O Product s
int counterParticles

try
{

no
ee

while ((line=fln.readLine()) !'= null)

{

if (counter == 0) {
i f(line.indexOF("<product") >= 0)
nunber O Product s++;

}

if ((counter == 1) &&
(particleTypes == null)) {
particl eTypes = new String[nunber O Products];

37

}

if ((counter == 1) &&
(l'ine.indexOF("<product™) >= 0)) {
particl eTypes[counterParticles] =
findParticleType(line);
counterParticl es++;

}
if (line.indexO("</physicsEvent>") >=0){
count er ++;
}
}
}
catch (Excepti on eFi nReadLi ne)
{
System out . println("Exception readi ng
line in count Events " + eFi nReadLi ne);
}

particl eCount = nunber O Products;
return counter;
} /] private int countEvents()

/*-k

* Returns a string particle type froma line of input.
* @aramline line read froma file or other input

* @eturn a particle type as a string

*/

private String findParticleType(String |ine)
{

int begin = 15;

int end = 0;

String type = null

begin += line.indexOh (" <product");
end = line.indexOr("\"", begin);
type = line.substring(begin, end);

[/ Systemout.println ("Particle Type: " + type);

return type;

}
public String [] getParticleTypes ()
{
return particl eTypes;
}

38

public int getParticleCount()
{

}

return particl eCount;

/*'k

* This is called before analyzing the first event
*/

public void beforeFirstEvent()

{
}

/*'k

* This is called after analyzing the | ast event
*/

public void afterLast Event()

{
}

[** * Cl ose the Event Source and free all resource
*f
public void close()

{
}

public void finalize()

{
}

cl ose();

}// end class

B.2 AnalysisCode

The following code section is an analysis file that displays historgrams of energy and track

counts for various detector components.

N3Pi Anal ysi s. j ava

i mport hep. anal ysis. *;
i nport hep. anal ysis.partition.?*;

39

i mport jasext.halldxm.*;
i nport java.util.?*;
i mport java.io.*;

final public class N3Pi Anal ysis extends Event Anal yzer

{

final private float PI = (float)Math. Pl;

private i nt NUMBER _PARTI CLES = 3;
private String [] particleTypes = {"unk",

unk", "unk"};

private fl oat ENERGY M N=(float) -0.3;
private float ENERGY_MAX=(float) 9.1;
private int ENERGY_PART = (int)((ENERGY_MAX - ENERGY_M N) *10) ;

final private FixedPartition2D test2DPart =

new Fi xedPartition2D(0, PI, 100, 0O, PI, 100);
final private FixedPartition thetaStd =

new Fi xedPartition (0, PI, 100);

private H
private H
private H
private H

stogramthetaM n = nul | ;
stogramthetaM ddl e = nul | ;
st ogram t het aMax =nul | ;
stogram m nMax = nul | ;

private H
private F
private F
private H
private H
private H
private H
private H
private H
private H
private H
private H
private H
private H
private F

stogram|[] pAngle = null;

xedPartition2D part EnergyVsEnergy= nul | ;
xedPartition partEnergy = null;

st ogram f or war dEMcal Energy = nul | ;

st ogram barrel EMcal Energy = nul | ;

st ogram f or war dEner gyBarrel Energy = nul | ;
stogramtotal Cal Energy = nul | ;

st ogr am number Of Tr ackst of Poi nt = nul I ;

st ogram nunber O TracksStart Point = nul | ;

st ogram t ot al Nunilr ackst of Poi nt St art Poi nt = nul | ;
stogram tracksTof Poi nt Start Point = nul | ;

st ogr am hi st Ener gyPer Track = nul | ;

stogram trackBar EnergyStart = null;

stogram trackFor EnergyStart = nul | ;
xedPartition2D particl eCal EnergyPart = null;

nul | ;
nul | ;

private H
private H

stogram|[] energyParti cl eFor Cal
stogram|[] energyParti cl eBar Cal

final private FixedPartition paritionEnergyDepositions =
new Fi xedPartition (-0.3, 1.1, 140);

40

private Histogram|[] energyDepositions = null;

final private Hi stogram histUniqueParticles =
new Hi stogram (" CGood (1) & Bad(-1) Event Count");

private Barrel Anal ysis theBarrel = null;
private ForwardCal Anal ysi s t heForwar dCal
private ParticleAnal ysis particle = null;
private ForwardTOFAnal ysi s t heForwardTOF = nul | ;
private StartCntrAnalysis theStartCntr = null;

nul | ;

/! To group these histograns into fol ders,

/! declare sone vari abl es of type Hi stograntol der,

/! initialize those folders in the consructor, and

/1l pass the appropriate folder to the Hi stogram and
/1 ScatterPl ot constructors.

publ i c N3Pi Anal ysi s()
{

/! Enter constructor code here.
NUVBER _PARTI CLES = 3;

particleTypes = new String [] {"pi+", "pi-", "pi+"};
ENERGY_M N=(fl oat) -0.3;

ENERGY MAX=(fl oat) 9.1,

ENERGY_PART = (int) ((ENERGY_MAX - ENERGY_M N) *10) ;

t heBarrel = new Barr el Anal ysi s(NUMBER_PARTI CLES) ;

t heForwardCal = new Forwar dCal Anal ysi s(NUMBER PARTI CLES) ;
particle = new Particl eAnal ysis (NUMBER PARTI CLES);

t heForwar dTOF = new For war dTOFAnal ysi s(NUMBER_PARTI CLES) ;
theStartCntr = new StartCntrAnal ysis (NUMBER _PARTI CLES) ;

thetaMn =
new Hi stogran("Angl e: thetaMn",
t het aSt d. makeCopy());
thetaM ddl e =
new Hi st ogram(" Angl e: thetaM ddl e",
t het aSt d. makeCopy()) ;
t hetaMax =
new Hi st ogram(" Angl e: thetaMax",
t het aSt d. makeCopy()) ;
m nMax =
new Hi st ogranD ("Angle: thetaMn(y) vs thetaM d(x)",

41

test 2DPart);

particl eCal EnergyPart =
new Fi xedPartition2D (ENERGY_M N, ENERGY_NAX,
ENERGY_PART, ENERGY_M N,
ENERGY_MAX, ENERGY_PART) ;

part Ener gyVsEnergy =
new Fi xedPartition2D
(ENERGY_M N, ENERGY_MAX, ENERGY_PART,
ENERGY_M N, ENERGY_MAX, ENERGY_PART);

part Energy = new Fi xedPartition (ENERGY_M N,
ENERGY_MAX, ENERGY_PART) ;

pAngl e = new Hi st ogr anf NUMBER_PARTI CLES] ;
for (int i = 0; i < NUMBER PARTICLES; i ++){
pAngle [i]=
new Hi stogram("Angle: Particle" + (i+1)
+" ("+ particleTypes[i]+ ") ",
t het aSt d. makeCopy()) ;
}

f orwar dEMcal Ener gy =
new Hi stogran("Energy Cal: Forward EM Cal E",
part Ener gy. makeCopy());
barrel EMcal Energy =
new Hi st ogram("Energy Cal: Barrel EM Cal E",
part Ener gy. makeCopy());

f or war dEner gyBarrel Energy =

new Hi st ogrankD (" Energy Cal: Forward Cal (y)

vs Barrel Cal (x)",
part Ener gyVsEner gy. makeCopy());

t ot al Cal Energy =

new Hi stogram ("Energy Cal: Total in Both

Cal ori meters",
part Ener gy. makeCopy());

nunber O Tr ackst of Poi nt =
new Hi st ogram (" Tracks: ForwardTOF");
nunber Of Tr acksSt art Poi nt =
new Hi stogram (" Tracks: StartCntr");
t ot al NunTr ackst of Poi nt St art Poi nt =
new Hi stogram (" Tracks: Total forwardTOF and StartCntr");
tracksTof Poi nt St art Poi nt =
new Hi st ogranD (" Tracks: ForwardTOF(y) vs StartCntr(x)",

42

new Fi xedPartition2D
(0, 4.1, 50, 0, 4.1, 50));
hi st Ener gyPer Track =
new Hi st ogranD(" Tracks: Energy vs Track Count",
new Fi xedPartition2D
(0, 6.1, 100,
ENERGY_M N, ENERGY_MAX, 100));
trackBar EnergyStart =
new Hi st ogranD(" Tracks: Barrel Cal
Energy vs Track Count",
new Fi xedPartition2D(0, 3.1, 100,
ENERGY_M N,
ENERGY_MAX,
100)) ;
trackFor EnergyStart =
new Hi st ogr anRD(
"Tracks: Forward Cal
Energy vs Track Count",
new Fi xedPartition2D(0, 3.1, 100,
ENERGY_M N,
ENERGY_MAX,
100)) ;
ener gyDeposi ti ons = new Hi st ogram [NUVBER_PARTI CLES]

for (int i =0; i < NUMBER_PARTICLES; i ++){
ener gyDepositions[i] =
new Hi st ogran("Energy Deposition: Forward Cal Particle"
+ (i+1)+ " - " + particleTypes[i],
pariti onEner gyDepositions. makeCopy());
}

ener gyParti cl eFor Cal
ener gyParti cl eBar Cal

new Hi st ogran2D [NUMBER PARTI CLES] ;
new Hi st ogran2D [NUMBER PARTI CLES] ;

for (int i=0; i < NUMBER_PARTI CLES; i ++){
energyParticleForCal[i] =
new Hi st ogran2D("Energy Forward Cal: Initial Particle
+ (i+1) +" ("
+ particleTypes[i]+
") vs Forward EM Cal (x)",
part Ener gyVsEner gy. makeCopy());
energyParticleBarCal[i] =
new Hi st ogran2D("Energy Barrel Cal: Initial Particle"
+ (i+1) +" (" + particleTypes[i]+
") vs Barrel Cal(x)",
part Ener gyVsEner gy. makeCopy());

43

}// public Analysis() constructor

public void beforeFirstEvent()

{
}

public void afterlLast Event()

{
}

public void processEvent (final EventData d)

{

final jasext.halldxmn .Hall DAnal yzabl ePhysi csEvent data =
(j asext. hal | dxm . Hal | DAnal yzabl ePhysi csEvent) d;

Physi csEvent next Event = data. get Physi csEvent ();
/1 hi st Angl es(next Event) ;
/1 Cal cul ation for Hi stogram here

t heBarrel . rel oadBarrel (next Event);

t heForwar dCal . rel oadForwar dCal (next Event);
particle.rel oadParticl e(next Event);

t heFor war dTOF. r el oadFor war dTOF(next Event) ;
theStartCntr.rel oadStartCntr(nextEvent);

fl oat forwardCal Energy =
t heForwar dCal . get Energy() ;
fl oat forwardCal Cheat Energy =
t heForwar dCal . get Cheat Ener gy() ;
fl oat barrel Cal Energy =
t heBarrel . get Energy();
fl oat barrel Cal Cheat Energy =
t heBarr el . get Cheat Ener gy() ;
float total EnergyCal orineters = 0;
float [] barrel Cal Particl eEnergy =
theBarrel . getParticl eEnergy();
float [] forwardCal Particl eEnergy =
t heForwar dCal . get Particl eEnergy();

float [] inital ParticleEnergy =
particle.getEnergy ();

float [] m nMaxAngl es =
particle.get ThetaOrdered ();

float [] thetaAngles =
particl e. get Thet aAngl es() ;

44

for (int i=0; i < NUMBER_PARTI CLES; i ++){
pAngle[i].fill(thetaAngles[i]);

}

thetaM n.fill (m nMaxAngl es[0]);

thetaM ddl e. fill (m nMaxAngl es[1]);

t hetaMax. fill (m nMaxAngl es[2]);

m nMax. fill (m nMaxAngl es[1], m nMaxAngl es[0]) ;

for (int i = 0; i < NUMBER PARTICLES; i++) {
if (forwardCal Particl eEnergy[i]>= 0) {
energyDepositions[i].fill(
forwardCal Particl eEnergy[i]
/linital ParticleEnergy[i]);

}
el se {
energyDepositions[i].fill(
forwardCal Particl eEnergy[i]/5);
}
}
for (int i = 0; i < NUMBER PARTICLES; i ++){
if (forwardCal ParticleEnergy[i] == -1){
energyParticleForCal[i].fill(
forwardCal Particl eEnergy[i]/5,
inital Particl eEnergy[i]);
}
el se{
energyParticleForCal [i].fill(
forwardCal Particl eEnergy[i],
inital Particl eEnergy[i]);
}
if (barrel Cal ParticleEnergy[i] == -1){
energyParticleBarCal[i].fill(
barrel Cal Particl eEnergy[i]/5,
inital ParticleEnergy[i]);
}
el se{
energyParticleBarCal[i].fill(
barrel Cal Particl eEnergy[i],
inital Particl eEnergy[i]);
}
}

tot al EnergyCal ori neters = barrel Cal Cheat Energy +
f or war dCal Cheat Ener gy;

45

f orwar dEMcal Energy. fil |l (f or war dCal Cheat Ener gy) ;

barrel EMcal Energy. fill (barrel Cal Cheat Ener gy) ;
f or war dEner gyBarrel Energy.fill (barrel Cal Cheat Ener gy,
f orwar dCal Cheat Ener gy) ;

total Cal Energy.fill (total EnergyCal orineters);

i nt numlracksl nForwardTOF = t heForwar dTOF. get TrackCount () ;
int numfrackslnStartCntr = theStartCntr.getTrackCount();
i nt total Nunber O Tracks = numlracksl nFor war dTOF +

numir acksl nStartCntr;

trackBar EnergyStart.fill (numlrackslnStartCntr,

barr el Cal Cheat Ener gy) ;
trackFor EnergyStart.fill (numfracksl nForwar dTCF,

f or war dCal Cheat Energy);
number O Tr ackst of Poi nt. fi |l | (numlracksl nForwar dTOF) ;
nunmber O TracksStart Point. fill (nunmfracksinStartCntr);
t ot al Numfrackstof PointStartPoint.fill(total Number Of Tracks);
hi st Ener gyPer Track. fill (total Nunber Of Tr acks,

t ot al EnergyCal ori neters);

tracksTof PointStartPoint.fill (numlrackslnStartCntr,
nunmilr acksl nFor war dTOF) ;

} //public void processEvent

}// N3Pi Anal ysi s

46

REFERENCES

[1] Hall D Collaboration Board. The Science of Quark Confinement and Gluonic Excita-
tions: Gluex/Hall D Design Report. Technical report, Jefferson Laboratory, Newport
News, VA. Nov. 2002.

[2] P. Eugenio. Genr8: A general monte carlo event generator. Technical report, Carnegie
Mellon University, 1998.

[3] R. Jones, HDDM - HALL D Data Model, Web page,
http://zeus.phys.uconn.edu/halld/datamodel/doc. University of Connecticut, May,
2001.

[4] R. Jones, 2001. The HDGeant Monte Carlo Program. University of Connecticut

[5] Sun Microsystems, Inc., Java Architecture for XML Binding, Web page,
http://java.sun.com/xml/jaxb/.

[6] CERN, Physics Analysis Workstattion, Computer Software,
http://wwwinfo.cern.ch/asd/paw/.

[7] T.Johnson et al, Java Analysis Studio, Computer Software, http://jas.freehep.org.
[8] E. Wolin, Private Communication.

[9] M. Mitchell, An Introduction to Genetic Algorithms, (The MIT Press, Cambridge,
1998).

[10] M. Wall, GAlib: Genetic Algorithm Library, Computer software,
http://lancet.mit.edu/ga/.

47

