Math 1110 Test 2. Fall 2016

1. Solve the inequality: $x^{2}-2 x-8 \leq 0$.
2. Let $f(x)=x^{2}+x$ and $g(x)=5 x+5$. For what values of x is $f(x) \geq g(x)$?
3. Identify which of the functions are polynomials and which are rational functions. Put a check in the box to indicate that it is a polynomial or rational function.

$$
\begin{aligned}
& f(x)=\frac{1}{x^{2}} \\
& f(x)=x(x-3)(x+4) \\
& f(x)=\frac{|x|+2}{|x|} \\
& f(x)=\frac{x^{2}+x}{1-x} \\
& f(x)=\sqrt{\frac{x^{2}+1}{x}}
\end{aligned}
$$

4. $f(x)=x^{3}-3 x^{2}$
(a) What is the degree of $f(x)$? What is its leading coefficient? What is its end behavior (describe it in words or draw it)?
(b) Make a table of the zeros of $f(x)$ and their multiplicities.
(c) Use the information from the previous parts to sketch the graph of $f(x)$. Be sure to label all relevant information.
5. $\quad f(x)=x(x-1)(x+2)^{2}$
(a) What is the degree of $f(x)$? What is its leading coefficient? What is its end behavior (describe it in words or draw it)?
(b) Make a table of the zeros of $f(x)$ and their multiplicities.
(c) Use the information from the previous parts to sketch the graph of $f(x)$. Be sure to label all relevant information.
6. Find the equation of the slant (oblique) asymptote of the rational function

$$
f(x)=\frac{x^{3}+5 x^{2}+1}{x^{2}+3 x} .
$$

7. $f(x)=\frac{x+2}{x(x-3)(x+1)}$
(a) What is the domain of $f(x)$?
(b) List the vertical asymptote(s) of $f(x)$.
(c) Does $f(x)$ have a horizontal asymptote, and if so, what is it?
(d) What is the y-intercept?
(e) List the x-intercept(s).
(f) Graph $f(x)$. Label all relevant information.
8. $f(x)=\frac{x^{2}+3 x-4}{x^{2}+x-2}$
(a) What is the domain of $f(x)$?
(b) List the vertical asymptote(s) of $f(x)$.
(c) Does $f(x)$ have a horizontal asymptote, and if so, what is it?
(d) What is the y-intercept?
(e) List the x-intercept(s).
(f) Graph $f(x)$. Label all relevant information.

SOLUTIONS

1. The function $f(x)=x^{2}-2 x-8$ is quadratic. Its vertex has coordinates

$$
h=-\frac{(-2)}{2(1)}=1, \quad k=(1)^{2}-2(1)-8=-9 .
$$

Its x-intercepts are:

$$
\begin{gathered}
x^{2}-2 x-8=0 \\
(x-4)(x+2)=0 \\
x=4, \quad x=-2
\end{gathered}
$$

Its graph is

so the solution to the inequality is $[-2,4]$.
2. We need to solve the inequality

$$
\begin{aligned}
& x^{2}+x \geq 5 x+5 \\
& x^{2}-4 x-5 \geq 0
\end{aligned}
$$

The function $f(x)=x^{2}-4 x-5$ is quadratic. Its vertex has coordinates

$$
h=-\frac{(-4)}{2(1)}=2, \quad k=2^{2}-4 \cdot 2-5=-9 .
$$

Its x-intercepts are

$$
\begin{gathered}
x^{2}-4 x-5=0 \\
(x-5)(x+1)=0 \\
x=5, \quad x=-1 .
\end{gathered}
$$

The graph is

so the solution to the inequality is $(-\infty,-1] \cup$ $[5, \infty)$.
3. Only the second one is a polynomial. The first, second, and fourth are rational functions.
4. (a) The leading coefficient is 1 and the degree is 3 , so the function falls to the left and rises to the right.
(b)

zero	mult.
0	2
3	1

(c)

5. (a) The leading coefficient is 1 and the degree is 4 , so the function rises on both left and right.
(b)

zero	mult.
0	1
1	1
-2	2

(c)

6. Use long division to divide $x^{2}+3 x$ into $x^{3}+5 x^{2}+1$. The quotient is $x+2$ (with remainder $-6 x+1$), so the equation of the slant asymptote is $y=x+2$.
7. (a) The domain is the set of all real numbers except 0,3 , and -1 .
(b) The vertical asymptotes are $x=0, x=3$ and $x=-1$.
(c) Yes, $y=0$ (because the degree of the numerator, 1 , is less than the degree of the denominator, 3.
(d) There is no y-intercept (because 0 is not in the domain of the function).
(e) $x=-2$
(f) Note that you need to plot at least one more point. For instance, if $x=-3$,

$$
f(-3)=\frac{-3+2}{-3(-6)(-2)}=\frac{1}{36} .
$$

The graph is

8. Note that, in factored form,

$$
f(x)=\frac{(x+4)(x-1)}{(x+2)(x-1)}
$$

(a) The domain is the set of all real numbers except -2 and 1 .
(b) $x=-2$
(c) Yes (the degree of numerator and denominator are the same): $y=1$
(d) $y=2$
(e) $x=-4$
(f)

