Math 2040 Test 1. Fall 2016

1. Find the equation of the secant line through the points $(0, f(0))$ and $(2, f(2))$ for the function $f(x)=x^{2}+x+1$.
2. An object's position as a function of time is given by the function $p(t)=-16 t^{2}+60 t$ (where t is measured in seconds and p is measured in feet). Find the object's average velocity between $t=0$ and $t=2$.
3. Evaluate each of the following limits. If the limit does not exist, say so.
(a) $\lim _{t \rightarrow 2} \frac{t^{2}-4}{t-2}$
(b) $\lim _{x \rightarrow 3} \frac{x-2}{x^{2}+2 x+3}$
(c) $\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}$
(d) $\lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h}$
(e) $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-10 x+25}$
(f) $\lim _{x \rightarrow 1} \cos \left[\pi \cdot\left(\frac{x-1}{x^{4}-1}\right)\right]$
4. Find the value(s) of c that make the function continuous:

$$
f(x)= \begin{cases}x^{2}+3 c & \text { if } x<0 \\ \cos x+c & \text { if } x \geq 0\end{cases}
$$

5. Use the intermediate value theorem to prove
that the equation

$$
x^{4}+5 x+1=0
$$

has at least one solution in the interval $[-1,1]$. Be sure to clearly explain your reasoning.
6. The graph of the function $f(x)$ is shown below.

(a) For what value(s) c does $f(c)$ fail to exist?
(b) For what value(s) c is $f(c)=0$?
(c) For what value(s) c does $\lim _{x \rightarrow c} f(x)$ fail to exist?
(d) For what value(s) c is $\lim _{x \rightarrow c} f(x)=0$?
7. The graph of the function $f(x)$ is shown below. Identify all the points of discontinuity of $f(x)$. For each, explain (in a few words) why the function fails to be continuous there.

8. Give a $\delta-\epsilon$ argument to show that

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{2(x-1)}=1 .
$$

SOLUTIONS

1. The slope of the secant line is

$$
m=\frac{f(2)-f(0)}{2-0}=\frac{7-1}{2}=3 .
$$

The point $(0, f(0))=(0,1)$ is on the secant line. The equation of the secant line is $y=$ $3 x+1$.
2. The average velocity is

$$
v=\frac{p(2)-p(0)}{2-0}=\frac{56-0}{2-0}=28 \mathrm{ft} / \mathrm{s} .
$$

3. (a)

$$
\begin{aligned}
\lim _{t \rightarrow 2} \frac{t^{2}-4}{t-2} & =\lim _{t \rightarrow 2} \frac{(t-2)(t+2)}{t-2} \\
& =\lim _{t \rightarrow 2}(t+2) \\
& =4 .
\end{aligned}
$$

(b)

$$
\lim _{x \rightarrow 3} \frac{x-2}{x^{2}+2 x+3}=\frac{3-2}{3^{2}+2 \cdot 3+3}=\frac{1}{18} .
$$

(c)

$$
\begin{aligned}
\lim _{h \rightarrow 0} & \frac{\sqrt{2+h}-\sqrt{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2}}{h} \cdot \frac{\sqrt{2+h}+\sqrt{2}}{\sqrt{2+h}+\sqrt{2}} \\
& =\lim _{h \rightarrow 0} \frac{2+h-2}{\sqrt{2+h}+\sqrt{2}} \\
& =\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\lim _{h \rightarrow 0} & \frac{(3+h)^{-1}-3^{-1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3}{3(3+h)}-\frac{3+h}{3(3+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{3(3+h)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{3(3+h)} \\
& =-1 / 9 .
\end{aligned}
$$

(e)

$$
\begin{aligned}
\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-10 x+25} & =\lim _{x \rightarrow 5} \frac{x-5}{(x-5)^{2}} \\
& =\lim _{x \rightarrow 5} \frac{1}{x-5}
\end{aligned}
$$

The limit does not exist.
(f)

$$
\begin{aligned}
\lim _{x \rightarrow 1} & \cos \left[\pi \cdot\left(\frac{x-1}{x^{4}-1}\right)\right] \\
& =\cos \left[\lim _{x \rightarrow 1} \frac{(x-1) \pi}{\left(x^{2}-1\right)\left(x^{2}+1\right)}\right] \\
& =\cos \left[\lim _{x \rightarrow 1} \frac{(x-1) \pi}{(x-1)(x+1)\left(x^{2}+1\right)}\right] \\
& =\cos \left[\lim _{x \rightarrow 1} \frac{\pi}{(x+1)\left(x^{2}+1\right)}\right] \\
& =\cos (\pi / 4) \\
& =\sqrt{2} / 2
\end{aligned}
$$

4. We need $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)$. So

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}}\left(x^{2}+3 c\right) & =\lim _{x \rightarrow 0^{+}}(\cos x+c) \\
3 c & =1+c \\
c & =1 / 2 .
\end{aligned}
$$

5. The function $f(x)=x^{4}+5 x+1$ is a polynomial and so is continuous on $[-1,1]$. We see that

$$
\begin{aligned}
& f(-1)=1-5+1=-3, \\
& f(1)=1+5+1=7 .
\end{aligned}
$$

Since 0 is between -3 and 7 , by the intermediate value theorem there is a number $c \in[-1,1]$ so that $f(c)=0$. It is a solution to the equation.
6. (a) $c=1,5,6$
(b) $c=0,2,4$
(c) $c=3,5$
(d) $c=0,2,4,6$
7. There are three discontinuities: at $c=1$, because $\lim _{x \rightarrow 1} f(x) \neq f(1)$; at $c=2$, because $\lim _{x \rightarrow 2} f(x)$ does not exist; at $c=4$, because $f(4)$ is undefined.
8. Given $\epsilon>0$, we need to find $\delta>0$ so that if $0<|x-1|<\delta$, then

$$
\left|\frac{x^{2}-1}{2(x-1)}-1\right|<\epsilon .
$$

Note that

$$
\begin{aligned}
& \left|\frac{x^{2}-1}{2(x-1)}-1\right|<\epsilon \\
& \Longleftrightarrow\left|\frac{(x-1)(x+1)}{2(x-1)}-1\right|<\epsilon \\
& \Longleftrightarrow\left|\frac{x+1}{2}-1\right|<\epsilon \\
& \Longleftrightarrow\left|\frac{x-1}{2}\right|<\epsilon \\
& \Longleftrightarrow|x-1| \\
& \Longleftrightarrow \frac{\mid x}{2}<\epsilon \\
& \Longleftrightarrow|x-1|<2 \epsilon .
\end{aligned}
$$

So, choose $\delta=2 \epsilon$. If $|x-1|<\delta$, then

$$
\begin{aligned}
\left|\frac{x^{2}-1}{2(x-1)}-1\right| & =\left|\frac{(x-1)(x+1)}{2(x-1)}-1\right| \\
& =\left|\frac{x+1}{2}-1\right| \\
& =\left|\frac{x-1}{2}\right| \\
& =\frac{|x-1|}{2} \\
& <\frac{2 \epsilon}{2} \\
& <\epsilon .
\end{aligned}
$$

