Math 2040 Test 3. Fall 2016

1. Use implicit differentiation to find $d y / d x$ when

$$
\cos (x y)=x+1
$$

2. Use implicit differentiation to find the slope of the tangent line to the curve

$$
x^{3}+2 x y^{3}+3 y^{2}=6
$$

at the point $(1,1)$.
3. Use logarithmic differentiation to find the derivative of the functions.
(a) $\quad f(x)=\frac{(x+1)^{2}(x+2)^{3}}{(x+3)^{4}(x+4)^{5}}$
(b) $\quad f(x)=(1+x)^{1 / x}$
4. Compute the derivatives of the functions. Simplify your answers.
(a) $\quad f(x)=7^{3 x^{2}+5}$
(b) $\quad f(x)=\ln \left(\frac{x}{x+1}\right)$
(c) $\quad f(x)=\frac{\sinh x-3}{\cosh x+1}$
(d) $\quad f(x)=x \cos ^{-1}\left(x^{3}\right)$
5. An object is launched vertically with an initial velocity of $96 \mathrm{ft} / \mathrm{sec}$. Its height as a function of time is given by the formula:

$$
p(t)=-16 t^{2}+96 t
$$

What is the maximum height the object will reach?
6. The population of a metropolitan area has grown from 100,000 to 130,000 over the past twenty years. Assuming that the population is growing exponentially, what will the population be in twenty more years?
7. A spherical balloon is inflated. Air is pumped into the balloon at a rate of $0.5 \mathrm{in}^{3} / \mathrm{min}$. How fast is the radius of the balloon increasing when the radius is $4 i n$? Recall that the volume of a sphere is given by the formula $V=\frac{4}{3} \pi r^{3}$.
8. Two horses with riders depart from the same point. The first horse and rider heads due north at a rate of 10 mph . The second heads due west at a rate of 15 mph . How fast is the distance between them changing after 12 minutes $(1 / 5 h r)$? 9. List all the critical points of the function $f(x)=\frac{x-1}{x^{2}+3}$.
10. Find the absolute maximum and minimum values of the function $f(x)=x^{3}-3 x^{2}+2$ on the interval $[0,4]$.
1.

$$
\begin{gathered}
-\sin (x y)\left(x y^{\prime}+y\right)=1 \\
-x y^{\prime} \sin (x y)-y \sin (x y)=1 \\
-x y^{\prime} \sin (x y)=1+y \sin (x y) \\
y^{\prime}=\frac{1+y \sin (x y)}{-x \sin (x y)}
\end{gathered}
$$

2.

$$
\begin{gathered}
3 x^{2}+2 y^{3}+6 x y^{2} y^{\prime}+6 y y^{\prime}=0 \\
\left(6 x y^{2}+6 y\right) y^{\prime}=-3 x^{2}-2 y^{3} \\
y^{\prime}=\frac{-3 x^{2}-2 y^{3}}{6 x y^{2}+6 y}
\end{gathered}
$$

The slope of the tangent line at $(1,1)$ is

$$
m=y^{\prime}(1,1)=\frac{-3-2}{6+6}=-\frac{5}{12}
$$

3.

$$
\begin{aligned}
\ln (f(x))= & \ln \left(\frac{(x+1)^{2}(x+2)^{3}}{(x+3)^{4}(x+4)^{5}}\right) \\
= & 2 \ln (x+1)+3 \ln (x+2) \\
& -4 \ln (x+3)-5 \ln (x+5)
\end{aligned}
$$

so

$$
\frac{1}{f(x)} f^{\prime}(x)=\frac{2}{x+1}+\frac{3}{x+2}-\frac{4}{x+3}-\frac{5}{x+4}
$$

Multiply both sides by $f(x)$:

$$
\begin{aligned}
f^{\prime}(x)= & \frac{(x+1)^{2}(x+2)^{3}}{(x+3)^{4}(x+4)^{5}}\left(\frac{2}{x+1}+\right. \\
& \left.\quad+\frac{3}{x+2}-\frac{4}{x+3}-\frac{5}{x+4}\right)
\end{aligned}
$$

4. (a)

$$
f^{\prime}(x)=7^{3 x^{2}+5} \cdot \ln 7 \cdot 6 x
$$

(b) Rewrite $f(x)=\ln x-\ln (x+1)$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x}-\frac{1}{x+1} \\
& =\frac{(x+1)-x}{x(x+1)} \\
& =\frac{1}{x(x+1)}
\end{aligned}
$$

(c)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(\cosh x+1) \cosh x-(\sin x-3) \sinh x}{(\cosh x+1)^{2}} \\
& =\frac{\cosh ^{2} x+\cosh x-\sinh ^{2} x+3 \sinh x}{(\cosh x+1)^{2}} \\
& =\frac{1+\cosh x+3 \sinh x}{(\cosh x+1)^{2}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
f^{\prime}(x) & =x\left(-\frac{1}{\sqrt{1-x^{6}}} \cdot 3 x^{2}\right)+\cos ^{-1}\left(x^{3}\right) \\
& =-\frac{3 x^{3}}{\sqrt{1-x^{6}}}+\cos ^{-1}\left(x^{3}\right)
\end{aligned}
$$

5. The maximum height is when $p^{\prime}(t)=0$, so when

$$
\begin{gathered}
-32 t+96=0 \\
32 t=96 \\
t=3
\end{gathered}
$$

The height at that time is

$$
p(3)=-16 \cdot 3^{2}+96 \cdot 3=144 f t
$$

6. Use $A=A_{0} e^{r t}$. First find the rate of growth:

$$
130=100 e^{20 r} \Longrightarrow r=\frac{\ln (130 / 100)}{20} \approx 0.013
$$

In twenty more years,

$$
A=100 e^{0.013 \cdot 40}=168.2
$$

The population will be around 168,000 .
7.

$$
\begin{gathered}
V=\frac{4}{3} \pi r^{3} \\
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t} \\
0.5=4 \pi 4^{2} \frac{d r}{d t} \\
\frac{1}{128 \pi}=\frac{d r}{d t}
\end{gathered}
$$

8. Let y be the distance the first rider has covered, x be the distance the second has covered, and D be distance between them. Then $d x / d t=15, d y / d t=10$, and by the Pythagorean theorem

$$
\begin{gathered}
x^{2}+y^{2}=D^{2} \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 D \frac{d D}{d t} \\
x \frac{d x}{d t}+y \frac{d y}{d t}=D \frac{d D}{d t}
\end{gathered}
$$

In 12 minutes, $y=2, x=3$, and so $D=\sqrt{13}$. Then

$$
3 \cdot 15+2 \cdot 10=\sqrt{13} \frac{d D}{d t}
$$

so $d D / d t=65 / \sqrt{13}$.
9. The function is defined for all real numbers. Its derivative is

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}+3\right)(1)-(x-2)(2 x)}{\left(x^{2}+3\right)^{2}} \\
& =\frac{-x^{2}+2 x+3}{\left(x^{2}+3\right)^{2}}
\end{aligned}
$$

The derivative is defined for all real numbers. Therefore the only critical points are where $f^{\prime}(x)=0$, when

$$
\begin{gathered}
x^{2}-2 x-3=0 \\
(x-3)(x+1)=0 \\
x=3, \quad x=-1
\end{gathered}
$$

10. The derivative is zero when

$$
\begin{aligned}
& 3 x^{2}-6 x=0 \\
& 3 x(x-2)=0 \\
& x=0, \quad x=2
\end{aligned}
$$

Then

$$
\begin{aligned}
& f(0)=2 \\
& f(2)=-2 \\
& f(4)=18
\end{aligned}
$$

The global minimum is -2 when $x=2$. The global maximum is 18 when $x=4$.

