$\lim _{x \rightarrow a} f(x)=L$ if:
For every $\epsilon>0$ there exists a $\delta>0$ so that if

$$
|x-a|<\delta
$$

then

$$
|f(x)-L|<\epsilon
$$

Example: give a delta-epsilon proof that:

$$
\lim _{x \rightarrow 3} x^{2}+x=12
$$

Work backwards:

$$
\begin{aligned}
& \left|x^{2}+x-12\right|<\epsilon \\
& |(x+4)(x-3)|<\epsilon \\
& |x+4| \cdot|x-3|<\epsilon \\
& |x-3|<\frac{\epsilon}{|x+4|}
\end{aligned}
$$

Restrict δ to be at most 1. In this case, $2 \leq$ $x \leq 4$, and so

$$
\frac{\epsilon}{8} \leq \frac{\epsilon}{x+4} \leq \frac{\epsilon}{6} .
$$

Based on these calculations, we should set

$$
\delta=\min \{1, \epsilon / 8\} .
$$

Verification: If $|x-3|<\min \{1, \epsilon / 8\}$, then $2 \leq x \leq 4$ and so

$$
\begin{aligned}
\left|\left(x^{2}+x\right)-12\right| & =|(x+4)(x-3)| \\
& =|x+4||x-3| \\
& <8 \cdot \epsilon / 8 \\
& =\epsilon .
\end{aligned}
$$

