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excenters and excircles

In the first lesson on concurrence, we saw that the bisectors of the inte-
rior angles of a triangle concur at the incenter. If you did the exercise in
the last lesson dealing with the orthic triangle then you may have noticed
something else– that the sides of the original triangle are the bisectors of
the exterior angles of the orthic triangle. I want to lead off this last les-
son on concurrence with another result that connects interior and exterior
angle bisectors.

THM: eXcenTers
The exterior angle bisectors at two vertices of a triangle and the inte-
rior angle bisector at the third vertex of that triangle intersect at one
point.
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Proof. let �B and �C be the lines bisecting the exterior angles at vertices
B and C of �ABC. They must intersect. label the point of intersection
as P. now we need to show that the interior angle bisector at A must also
cross through P, but we are going to have to label a few more points to get
there. let FA, FB, and FC be the feet of the perpendiculars through P to
each of the sides BC, AC, and AB, respectively. Then, by A·A·s,

�PFAC ��PFBC �PFAB ��PFCB.

Therefore PFA � PFB � PFC. Here you may notice a parallel with the
previous discussion of the incenter– P, like the incenter, is equidistant
from the lines containing the three sides of the triangle. By H·l right
triangle congruence, �PFCA � �PFBA. In particular, ∠PAFC � ∠PAFB
and so P is on the bisector of angle A.

There are three such points of concurrence. They are called the excen-
ters of the triangle. since each is equidistant from the three lines contain-
ing the sides of the triangle, each is the center of a circle tangent to those
three lines. Those circles are called the excircles of the triangle.
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ceva’s Theorem

By now, you should have seen enough concurrence theorems and enough
of their proofs to have some sense of how they work. Most of them ulti-
mately turn on a few hidden triangles that are congruent or similar. Take,
for example, the concurrence of the medians. The proof of that concur-
rence required a 2 : 1 ratio of triangles. What about other triples of seg-
ments that connect the vertices of a triangle to their respective opposite
sides? What we need is a computation that will discriminate between
triples of segments that do concur and triples of segments that do not.

let’s experiment. Here is a triangle �ABC with sides of length four,
five, and six.

|AB|= 4 |BC|= 5 |AC|= 6.

As an easy initial case, let’s say that one of the three segments, say Cc,
is a median (in other words, that c is the midpoint of AB). now work
backwards. say that the triple of segments in question are concurrent.
That concurrence could happen anywhere along Cc, so I have chosen five
points Pi to serve as our sample points of concurrence. once those points
of concurrence have been chosen, that determines the other two segments–
one passes through A and Pi, the other through B and Pi. I am interested in
where those segments cut the sides of �ABC. label:

bi: the intersection of BPi and AC
ai: the intersection of APi and BC
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Here are the measurements (two decimal place accuracy):

i : 1 2 3 4 5

|Abi| 1.71 3.00 4.00 4.80 5.45
|Cbi| 4.29 3.00 2.00 1.20 0.55

|Bai| 1.43 2.50 3.33 4.00 4.55
|Cai| 3.57 2.50 1.67 1.00 0.45

out of all of that it may be difficult to see a useful pattern, but compare
the ratios of the sides |Abi|/|Cbi| and |Bai|/|Cai| (after all, similarity is all
about ratios).

i : 1 2 3 4 5

|Abi|/|Cbi| 0.40 1.00 2.00 4.00 10.00
|Bai|/|Cai| 0.40 1.00 2.00 4.00 10.00

They are the same! let’s not jump the gun though– what if Cc isn’t a
median? For instance, let’s reposition c so that it is a distance of one from
A and three from B.
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i : 1 2 3 4 5

|Abi| 1.26 2.40 3.43 4.36 5.22
|Cbi| 4.74 3.60 2.57 1.64 0.78

|Bai| 2.22 3.33 4.00 4.45 4.76
|Cai| 2.78 1.67 1.00 0.55 0.24

|Abi|/|Cbi| 0.27 0.67 1.33 2.67 6.67
|Bai|/|Cai| 0.80 2.00 4.00 8.02 20.12

The ratios are not the same. look carefully, though– the ratios |Bai|/|Cai|
are always three times the corresponding ratios |Abi|/|Cbi| (other than a
bit of round-off error). Interestingly, that is the same as the ratio |Bc|/|Ac|.
let’s do one more example, with |Ac|= 1.5 and |Bc|= 2.5.

i : 1 2 3 4 5

|Abi| 1.45 2.67 3.69 4.57 5.33
|Cbi| 4.55 3.33 2.31 1.43 0.67

|Bai| 1.74 2.86 3.64 4.21 4.65
|Cai| 3.26 2.14 1.36 0.79 0.35

|Abi|/|Cbi| 0.32 0.80 1.60 3.20 8.00
|Bai|/|Cai| 0.53 1.33 2.66 5.34 13.33
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once again, the ratios |Abi|/|Cbi| all hover about 1.67, right at the ratio
|Bc|/|Ac|. What we have stumbled across is called ceva’s Theorem, but it
is typically given a bit more symmetrical presentation.

ceVA’s THeoreM
Three segments Aa, Bb, and Cc, that connect the vertices of �ABC
to their respective opposite sides, are concurrent if and only if

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| = 1.

Proof. =⇒ similar triangles anchor this proof. To get to those similar
triangles, though, we need to extend the illustration a bit. Assume that Aa,
Bb, and Cc concur at a point P. Draw out the line which passes through
C and is parallel to AB; then extend Aa and Bb so that they intersect this
line. Mark those intersection points as a� and b� respectively. We need to
look at four pairs of similar triangles.
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3.�BcP ∼�b�CP

|CP|
|cP| =

|b�C|
|Bc|

4.�ABb ∼�Cb�b

|b�C|
|AB| =

|bC|
|Ab|

|b�C|= |AB| · |bC|
|Ab|

1.�AcP ∼�a�CP

|CP|
|cP| =

|a�C|
|Ac|

2.�ABa ∼�a�Ca

|a�C|
|AB| =

|aC|
|aB|

|a�C|= |AB| · |aC|
|aB|

They are:

Plug the second equation into the first

|CP|
|cP| =

|AB| · |aC|
|aB| · |Ac|

and the fourth into the third
|CP|
|cP| =

|AB| · |bC|
|Ab| · |BC|

set these two equations equal and simplify

|AB| · |aC|
|aB| · |Ac| =

|AB| · |bC|
|Ab| · |BC| =⇒ |Ab|

|bC| ·
|Ca|
|aB| ·

|Bc|
|cA| = 1.
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4.�ABb ∼�Cb�b

|b�C|
|AB| =

|bC|
|Ab|

|b�C|= |AB| · |bC|
|Ab|

1.�AcP ∼�a�CP

|CP|
|cP| =

|a�C|
|Ac|

2.�ABa ∼�a�Ca

|a�C|
|AB| =

|aC|
|aB|

|a�C|= |AB| · |aC|
|aB|

3.�BcQ ∼�b�CQ

|CQ|
|cQ| =

|b�C|
|Bc|

⇐= A similar tactic works for the other direction. For this part, we are
going to assume the equation

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| = 1,

and show that Aa, Bb, and Cc are concurrent. label

P: the intersection of Aa and Cc
Q: the intersection of Bb and Cc.

In order for all three segments to concur, P and Q will actually have to
be the same point. We can show that they are by computing the ratios
|AP|/|aP| and |AQ|/|aQ| and seeing that they are equal. That will mean
that P and Q have to be the same distance down the segment Aa from A,
and thus guarantee that they are the same. Again with the similar triangles:
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Signed distance from P. The sign is determined by a choice of direction.

Plug the second equation into the first

|CP|
|cP| =

|aC| · |AB|
|aB| · |Ac|

and the fourth equation into the third

|CQ|
|cQ| =

|AB| · |bC|
|Ab| · |Bc|

now divide and simplify

|CP|
|cP|

�
|CQ|
|cQ| =

|aC| · |AB| · |Ab| · |Bc|
|aB| · |Ac| · |AB| · |bC| =

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| = 1.

Therefore |AP|/|aP|= |AQ|/|aQ|, so P = Q.

ceva’s Theorem is great for concurrences inside the triangle, but we have
seen that concurrences can happen outside the triangle as well (such as
the orthocenter of an obtuse triangle). Will this calculation still tell us
about those concurrences? Well, not quite. If the three lines concur, then
the calculation will still be one, but now the calculation can mislead– it is
possible to calculate one when the lines do not concur. If you look back
at the proof, you can see the problem. If P and Q are on the opposite
side of a, then the ratios |AP|/|aP| and |AQ|/|aQ| could be the same even
though P �= Q. There is a way to repair this, though. The key is “signed
distance”. We assign to each of the three lines containing a side of the
triangle a direction (saying this way is positive, this way is negative). For
two points A and B on one of those lines, the signed distance is defined as

[AB] =

�
|AB| if the ray AB� points in the positive direction
−|AB| if the ray AB� points in the negative direction.



11concurrence III

B C

b

a

c

A

+

+

+

This simple modification is all that is needed to extend ceva’s Theorem

ceVA’s THeoreM (eXTenDeD VersIon)
Three lines Aa, Bb, and Cc, that connect the vertices of �ABC to the
lines containing their respective opposite sides, are concurrent if and
only if

[Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

= 1.

Menelaus’s Theorem

ceva’s Theorem is one of a pair– the other half is its projective dual,
Menelaus’s Theorem. We are not going to look at projective geometry
in this book, but one of its key underlying concepts is that at the level
of incidence, there is a duality between points and lines. For some very
fundamental results, this duality allows the roles of the two to be inter-
changed.

MenelAus’s THeoreM
For a triangle �ABC, and points a on �BC�, b on �AC�, and c on
�AB�, a, b, and c are colinear if and only if

[Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

=−1.



12 lesson 21

B C

b

a

c

P

A

B C

b

a

c

P

A

Proof. =⇒ suppose that a, b, and c all lie along a line �. The requirement
that a, b, and c all be distinct prohibits any of the three intersections from
occurring at a vertex. According to Pasch’s lemma, then, � will intersect
two sides of the triangle, or it will miss all three sides entirely. either way,
it has to miss one of the sides. let’s say that missed side is BC. There are
two ways this can happen:

1. � intersects line BC on the opposite side of B from C
2. � intersects line BC on the opposite side of C from B

The two scenarios will play out very similarly, so let’s just look at the
second one. Draw the line through C parallel to �. label its intersection
with AB as P. That sets up some useful parallel projections.

From AB to AC:

A �→ A c �→ b P �→C.

comparing ratios,

|cP|
|bC| =

|Ac|
|Ab|

and so

|cP|= |Ac|
|Ab| · |bC|.

From AB to BC:

B �→ B c �→ a P �→C.

comparing ratios,

|cP|
|aC| =

|Bc|
|Ba|

and so

|cP|= |Bc|
|Ba| · |aC|.
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Just divide the second |cP| by the first |cP| to get

1 =
|cP|
|cP| =

|Ab| · |aC| · |Bc|
|Ac| · |bC| · |Ba| =

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| .

That’s close, but we are after an equation that calls for signed distance. so
orient the three lines of the triangle so that AC�, CB�, and BA� all point
in the positive direction (any other orientation will flip pairs of signs that
will cancel each other out). With this orientation, if � intersects two sides
of the triangle, then all the signed distances involved are positive except
[Ca] = −|Ca|. If � misses all three sides of the triangle, then three of the
signed distances are positive, but three are not:

[Ab] =−|Ab| [Ca] =−|Ca| [cA] =−|cA|.

either way, an odd number of signs are changed, so

[Ab]
[bC]

[Ca]
[aB]

[Bc]
[cA]

=−1.

⇐= let’s turn the argument around to prove the converse. suppose that

[Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

=−1.
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Draw the line from C that is paral-
lel to bc and label its intersection
with AB as P. There is a parallel
projection from AB to AC so that

A �→ A c �→ b P �→C

and therefore

|cP|
|Ac| =

|Cb|
|bA| .

Draw the line from C that is paral-
lel to ac, and label its intersection
with AB as Q. There is a parallel
projection from AB to BC so that

B �→ B c �→ a Q �→C

and therefore

|cQ|
|cB| =

|Ca|
|Ba|

now solve those equations for |cP| and |cQ|, and divide to get

[cQ]

[cP]
=

[bA] · [Ca] · [cB]
[Cb] · [Ac] · [Ba]

=− [Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

=−(−1) = 1.

Both P and Q are the same distance from c along cC. That means they
must be the same.
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The nagel point

Back to excircles for one more concurrence, and this time we will use
ceva’s Theorem to prove it.

THe nAGel PoInT
If CA, CB, and CC are the three excircles of a triangle �ABC so that
CA is in the interior of ∠A, CB is in the interior of ∠B, and CC is in
the interior of ∠C; and if FA is the intersection of CA with BC, FB is
the intersection of CB with AC, and FC is the intersection of CC with
AB; then the three segments AFA, BFB, and CFC are concurrent. This
point of concurrence is called the nagel point.

Proof. This is actually pretty easy thanks to ceva’s Theorem. The key
is similar triangles. label PA, the center of excircle CA, PB, the center of
excircle CB, and PC, the center of excircles, CC. By A·A triangle similarity,

�PAFAC ∼�PBFBC
�PBFBA ∼�PCFCA
�PCFCB ∼�PAFAB.
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ceva’s Theorem promises concurrence if we can show that

|AFC|
|FCB| ·

|BFA|
|FAC| ·

|CFB|
|FBA| = 1.

Those triangle similarities give some useful ratios to that end:

|AFC|
|AFB| =

|PCFC|
|PBFB|

|BFA|
|BFC| =

|PAFA|
|PCFC|

|CFB|
|CFA| =

|PBFB|
|PAFA| .

so

|AFC|
|FCB|

|BFA|
|FAC|

|CFB|
|FBA| =

|AFC|
|AFB|

|BFA|
|BFC|

|CFB|
|CFA|

=
|PCFC|
|PBFB|

|PAFA|
|PCFC|

|PBFB|
|PAFA|

= 1.

By ceva’s Theorem, the three segments are concurrent.
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exercises

1. use ceva’s Theorem to prove that the medians of a triangle are con-
current.

2. use ceva’s Theorem to prove that the orthocenters of a triangle are
concurrent.

3. Give a compass and straight-edge construction of the three excircles
and the nine-point circle of a given triangle. If your construction is
accurate enough, you should notice that the excircles are all tangent to
the nine-point circle (a result commonly called Feuerbach’s Theorem).


