
Methods of Integration
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Integration by parts is useful when the integrand is
a product of two different kinds of pieces. For in-
stance, an exponential term times a trigonometric term,
or a logarithmic term times an algebraic term.

Note that it may be necessary to do the procedure
more than once.

If after a few iterations you end up back at the start-
ing integral, you may be able to solve the integral by
gathering the occurrences of that integral on one side
of the equation.

Integration 
by Parts
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Example:

u = x3 dv = ex dx

du = 3x2 dx v = ex

u = x2 dv = ex dx

du = 2xdx v = ex

u = x dv = ex dx
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Rule of Thumb for choosing u (expressions at the top 
of the list tend to make better choices of u):

	 Inverse trigonometric
	 Logarithmic
	 Algebraic
	 Trigonometric
	 Exponential expression



If n is odd, use the identity

sin2 x+ cos2 x = 1,

to convert all but one cosine terms to sine. Then sub-
stitute u = sinx. Similarly, if m is odd, convert the
sine terms to cosine, leaving one sine term, and sub-
stitute u = cosx.
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If both powers are even, then you must use a com-
bination of “double angle” identities to simplify the
integrand. Begin with:

sin(x)cos(x) =
1
2

sin(2x)

Then use:

sin2(x) =
1
2
[1− cos(2x)]

cos2(x) =
1
2
[1+ cos(2x)]


sin4 xcos4 xdx


sin4 xcos4 xdx =

 
1
2

sin(2x)
4

dx

=
1
16


sin4(2x)dx

=
1
16

 
1
2
[1− cos(2x)]

2

dx

=
1
64

 �
1−2cos(2x)+ cos2(2x)


dx

=
1
64


x− sin(2x)+

1
2


(1+ cos(4x))dx



=
1
64


x− sin(2x)+

1
2


x+

sin(4x)
4


+C

=
1
64


3
2

x− sin(2x)+
1
8

sin(4x)

+C

Trigonometric 
Integrals


sinm xcosn xdx

u = cosx

du =−sinxdx

Examples:



If n is even, use the identity

sec2 x = 1+ tan2 x

to convert all but two of the secants into tangents.
Then substitute u = tanx. If m is odd, convert all but
one of the tangents into secant, and substitute u =
secx.

Similar strategies work for combinations of powers
of cotangent and cosecant.


tan3 xsec2 xdx


tan3 xsec2 xdx =


tanx(sec2 x−1)sec2 xdx
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u = secx

du = secx tanxdx


sin(mx)sin(nx)dx


cos(mx)cos(nx)dx


sin(mx)cos(nx)dx

Use the identities (derived from addition formulas for
sine and cosine):

sinAsinB =
1
2
[sin(A−B)− cos(A+B)]

cosAcosB =
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2
[cos(A−B)+ cos(A+B)]

sinAcosB =
1
2
[sin(A−B)+ sin(A+B)]


tanm xsecn xdx

multiple angles

Example:



Trigonometric substitution is useful when the inte-
grand has a term of the form x2 + a2, x2 − a2, or
a2−x2. This term is often (but not always) inside of a
square root or in the denominator of a fraction. There
are essentially three cases, all involving replacing al-
gebraic expressions with trigonometric expressions.

Note that it may be necessary to complete the square.
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Trigonometric 
Substitution
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Examples:



If the degree of the numerator is higher than the de-
gree of the denominator, before beginning the partial
fractions procedure, you must perform polynomial
long division.

The first step in determining the partial fractions de-
composition is to factor the denominator. While in
practice this may be very difficult, in theory it is
possible to factor the denominator into the following
types of forms:

x+a

x2 +ax+b

(x+a)n

(x2 +ax+b)n

The corresponding terms in the partial fraction de-
composition:

A
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Use linear algebra to find the values of the coeffi-
cients in the numerators of these fractions.
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Partial 
Fractions

u = x2 +1
du = 2xdx

Example:
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