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We have spent a lot of time talking about triangles, and i certainly do not
want to give the impression that we are done with them, but in this lesson
i would like to broaden the focus a little bit, and to look at polygons with
more than three sides.

Definitions

Of course the first step is to get a working definition for the term polygon.
This may not be as straightforward as you think. Remember the definition
of a triangle? three non-colinear points P1, P2, and P3 defined a triangle.
the triangle itself consisted of all the points on the segments P1P2, P2P3,
and P3P1. At the very least, a definition of a polygon (as we think of them)
involves a list of points and segments connecting each point to the next in
the list, and then the last point back to the first:

The Vertices: P1, P2, P3, . . . , Pn

The Sides: P1P2, P2P3, P3P4, . . . , Pn−1Pn, PnP1.

now the one problem is this– what condition do you want to put on those
points? With triangles, we insisted that the three points be non-colinear.
What is the appropriate way to extend that beyond n = 3? this is not an
easy question to answer. to give you an idea of some of the potential
issues, let me draw a few configurations of points.

Which of these do you think should be considered octagons (polygons
with eight sides and eight vertices)?
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While you are mulling over that question, let me distract you by talking
about notation. No matter what definition of polygon you end up using,
your vertices will cycle around: P1, P2, . . . , Pn and then back to the start P1.
Because polygons do loop back around like this, sometimes you end up
crossing from Pn back to P1. for example, look at the listing of the sides of
the polygon– all but one of them can be written in the form PiPi+1, but the
last side, PnP1, doesn’t fit that pattern. A proof involving the sides would
have to go out of its way to be sure to mention that last side, and that is
just not going to be very elegant. after all, other than the notation, the last
side is not any different from the previous sides– it really should not need
its own case. fortunately, there is an easy way to sidestep this issue. What
we can do is make our subscripts cycle just like the points do. Rather than
using integer subscripts for the vertices, use integers modulo n (where n
is the number of vertices). That way, for instance, in a polygon with eight
vertices, P9 and P1 would stand for the same point since 9 ∼= 1 mod 8, and
the sides of the polygon would be PiPi+1 for 1 ≤ i ≤ 8.
Now let’s get back to the question of a definition. As I said at the start of

the lesson, i think that there is still a spectrum of opinion on how a poly-
gon should be defined. Some geometers (such as Grünbaum in Are your
polyhedra the same as my polyhedra [2]) will tell you that any ordered list-
ing of n points should define a polygon with n vertices and n sides. this
includes listings where some or even all points are colinear or coinciding
and can therefore can lead to some unexpected configurations: a six-sided
polygon that appears to have only three sides, a triangle that looks like a
line segment, a four-sided polygon that looks like a point. if you can get
past the initial strangeness, though, there is definitely something to be said
for this all-inclusive approach: for one thing, you never have to worry that
moving points around would cause (for instance) your four-sided polygon
to no longer be a four-sided polygon. This liberal definition would go
something like this:
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def: polygon (inClUsiVe VeRsion)
any ordered list of points {Pi|1 ≤ i ≤ n} defines a polygon, written
P1P2 · · ·Pn, with vertices Pi, 1 ≤ i ≤ n, and sides PiPi+1, 1 ≤ i ≤ n.

other geometers like to put a few more restrictions on their polygons. i
suspect that the most common objections to this all-inclusive definition
would be:

(1) this collapsing of the vertices down to a single point or a single line
as shown in illustrations (vii) and (viii) is unacceptable– polygons
should have a two-dimensionality to them.

(2) the edges of a polygon should not trace back over one another
as shown in illustrations (v) and (vi)– at most two edges should
intersect each other once.

(3) on the topic of intersecting edges, only consecutive edges should
meet at a vertex. Configurations such as the one shown in illustra-
tion (iv) do not define a single polygon, but rather several polygons
joined together.

i don’t know to what extent these added restrictions are historical con-
ventions and to what extent they are truly fundamental to proving results
on polygons. Let me point out though, that this all-inclusive definition
doesn’t quite work with our previous definition of a triangle: three colinear
points would define a three-sided polygon, but not a triangle. Somehow,
that just does not seem right. Were we to now to go back and liberalize
our definition of a triangle to include these remaining three-sided poly-
gons, it would cost us some theorems. for instance, neither a·s·a nor
a·a·s would work in the case when all three vertices are colinear. so for
that reason, let me also give a more restrictive definition of polygon that
addresses the three concerns listed above.

i ii iii iv v vi vii viii

exclusivesimple
inclusive
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def: polygon (eXClUsiVe VeRsion)
any ordered list of points {Pi|1 ≤ i ≤ n} which satisfies the condi-
tions

(1) no three consecutive points Pi, Pi+1, and Pi+2 are colinear;
(2) if i = j, then PiPi+1 and PjPj+1 share at most one point;
(3) if Pi = Pj, then i = j;

defines a polygon, written P1P2 · · ·Pn, with vertices Pi, 1 ≤ i ≤ n, and
sides PiPi+1, 1 ≤ i ≤ n.

The crux of it is this: too liberal a definition and you are going to have to
make exceptions and exclude degenerate cases; too conservative a defini-
tion and you end up short-changing your results by not expressing them at
their fullest generality. after all of that, though, i have to say that i’m just
not that worried about it, because for the most part, the polygons that we
usually study are more specialized than either of those definitions– they
are what are called simple polygons. you see, even in the more “exclu-
sive” definition, the segments of a polygon are permitted to criss-cross
one another. in a simple polygon, that type of behavior is not tolerated.

def: simple polygon
any ordered list of points {Pi|1 ≤ i ≤ n} which satisfies the condi-
tions

(1) no three consecutive points Pi, Pi+1, and Pi+2 are colinear;
(2) if i = j and PiPi+1 intersects PjPj+1 then either i = j + 1 and
the intersection is at Pi = Pj+1 or j = i+ 1 and the intersection is at
Pi+1 = Pj;

defines a simple polygon, written P1P2 · · ·Pn, with vertices Pi, 1 ≤ i ≤
n, and sides PiPi+1, 1 ≤ i ≤ n.

i ii iii iv v vi vii viii

exclusivesimple
inclusive
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No matter how you choose to define a polygon, the definition of one im-
portant invariant of a polygon does not change:

def: peRimeteR
the perimeter P of a polygon is the sum of the lengths of its sides:

P =
n

∑
i=1

|PiPi+1|.

Counting polygons

two polygons are the same if they have the same vertices and the same
edges. that means that the order that you list the vertices generally does
matter– different orders can lead to different sets of sides. not all rear-
rangements of the list lead to new polygons though. for instance, the
listings P1P2P3P4 and P3P4P1P2 and P4P3P2P1 all define the same polygon:
one with sides P1P2, P2P3, P3P4 and P4P1. more generally, any two listings
which differ either by a cycling of the vertices or by a reversal of the order
of one of those cyclings will describe the same polygon.

Names of polygons based upon the number of sides (and vertices).
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so how many possible polygons are there on n points? that depends
upon what definition of polygon you are using. The most inclusive def-
inition of polygon leads to the easiest calculation, for in that case, any
configuration on n points results in a polygon. as you probably know
from either probability or group theory, there are n! possible orderings
of n distinct elements. however for each such list there are n cyclings
of the entries and n reversals of those cyclings, leading to a total of 2n
listings which all correspond to the same polygon. therefore, there are
n!/(2n) = (n− 1)!/2 possible polygons that can be built on n vertices.
notice that when n = 3, there is only one possibility, and that is why none
of this was an issue when we were dealing with triangles.

The 24 permutations of 1, 2, 3, 4 and the corresponding polygons on four points.
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The 12 polygons on a configuration of five points. In this illustration, segments 
connect two polygons which differ by a swap of two adjacent vertices.
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If instead you are using the more exclusive definition of a polygon, then
things are a bit more complicated. if the vertices are in “general position”
so that any combination of segments PiPj satisfies the requirements out-
lined in that definition, then there are just as many exclusive polygons as
inclusive polygons: (n−1)!/2. probabilistically, it is most likely that any
n points will be in such a general position, but it is also true that as n
grows, the number of conditions required to attain this general position
increases quite rapidly. even less understood is the situation for simple
polygons. the condition of simplicity throws the problem from the rela-
tively comfortable world of combinatorics into a much murkier geometric
realm.

Interiors and exteriors

one characteristic of the triangle is that it chops the rest of the plane into
two sets, an interior and an exterior. it isn’t so clear how to do that with
a polygon (this is particularly true if you are using the inclusive definition
of the tem, but to a lesser extent is still true with the exclusive definition).
simple polygons, though, do separate the plane into interior and exterior.
this is in fact a special case of the celebrated Jordan Curve theorem,
which states that every simple closed curve in the plane separates the plane
into an interior and an exterior. the Jordan Curve theorem is one of those
notorious results that seems like you could knock out in an afternoon, but
is actually brutally difficult. In the special case of simple polygons, our
case, there are simpler proofs. i am going to describe the idea behind one
such proof from What is Mathematics? by Courant and Robbins [1].

Thirteen of the sixty polygons on this configuration of six points are simple.
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thm: polygonal plane sepaRation
every simple polygon separates the remaining points of the plane
into two connected regions.

Proof. let P be a simple polygon, and let p be a point which is not on
P . now let’s look at a ray Rp whose endpoint is p. as long as Rp does not
run exactly along an edge, it will intersect the edges of P a finite number
of times (perhaps none). You want to think of each such intersection as a
crossing of Rp into or out of P .
Since there are only finitely many intersections, they are all within a

finite distance of P. that means that eventually Rp will pass beyond all
the points of P . This is the essence of this argument: eventually the ray
is outside of the polygon, so by counting back the intersections crossing
into and out of the polygon, we can figure out whether the beginning of
the ray, P is inside or outside of P . the one situation where we have to
be a little careful is when Rp intersects a vertex of P . here is the way to
count those intersections:


once if Rp separates the two neighboring edges;
twice if Rp does not separate them.

5 1

3

3

Rays from a point. The 
number of intersections 
with a polygon (in black) 
depends upon which ray is 
chosen, but the parity 
(even or odd) does not.

2 4

2
4

Procedure for counting 
intersections at a vertex.

+1 +2
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now when you count intesections this way, the number of intersections
depends not just upon the point p, but also upon the of direction of Rp.
the key, though, is that there is one thing which does not depend upon the
direction– whether the number of intersections is odd or even, the “par-
ity” of p. to see why, you have to look at what happens as you move
the ray Rp around, and in particular what causes the number of intersec-
tions to change. Without giving overly detailed explanation, changes can
only happen when Rp crosses one of the vertices of P . each such vertex
crossing corresponds to either an increase in 2 in the number of crossings,
a decrease by 2 in the number of crossings, or no change in the number of
crossings. in each case, the parity is not changed. therefore P separates
the remaining points of the plane into two sets– those with even parity and
those with odd parity. furthermore, each of those sets is connected in the
sense that by tracing just to one side of the edges of P , it is possible to lay
out a path of line segments connecting any two points with even parity, or
any two points with odd parity.

def: polygon inteRioR and eXteRioR
for any simple polygon P , the set of points with odd parity (as de-
scribed in the last proof) is called the interior of P . the set of points
with even parity is called the exterior of P .

I will leave it to you to prove the intuitively clear result: that a polygon’s
interior is always a bounded region and that its exterior is always an un-
bounded region.

now when you count intesections this way, the number of intersections
depends not just upon the point p, but also upon the of direction of Rp.
the key, though, is that there is one thing which does not depend upon the
direction– whether the number of intersections is odd or even, the “par-
ity” of p. to see why, you have to look at what happens as you move
the ray Rp around, and in particular what causes the number of intersec-
tions to change. Without giving overly detailed explanation, changes can
only happen when Rp crosses one of the vertices of P . each such vertex
crossing corresponds to either an increase in 2 in the number of crossings,
a decrease by 2 in the number of crossings, or no change in the number of
crossings. in each case, the parity is not changed. therefore P separates
the remaining points of the plane into two sets– those with even parity and
those with odd parity. furthermore, each of those sets is connected in the
sense that by tracing just to one side of the edges of P , it is possible to lay
out a path of line segments connecting any two points with even parity, or
any two points with odd parity.

def: polygon inteRioR and eXteRioR
for any simple polygon P , the set of points with odd parity (as de-
scribed in the last proof) is called the interior of P . the set of points
with even parity is called the exterior of P .

I will leave it to you to prove the intuitively clear result: that a polygon’s
interior is always a bounded region and that its exterior is always an un-
bounded region.

As the ray shifts across a vertex, the intersection count changes by +2, -2, or 0, 
all even numbers.

+2 –2 +0
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Interior angles: two dilemmas

now i want to talk a little bit about the interior angles of a simple poly-
gon. if you would, please look at the three marked angles in the polygons
above. The first, ∠1 is the interior angle of a triangle. you can see that the
entire interior of the triangle is contained in the interior of the angle, and
that seems proper, that close connection between the interiors of the inte-
rior angles and the interior of the triangle. now look at ∠2, and you can
see that for a general simple polygon, things do not work quite as well:
the entire polygon does not lie in the interior of this angle. But at least the
part of the polygon interior which is closest to that vertex is in the interior
of that angle. finally look at ∠3: the interior of ∠3 encompasses exactly
none of the interior of the polygon– it is actually pointing away from the
polygon.

let me address the issue surrounding ∠3 first. We have said that two
non-opposite rays define a single angle, and later established a measure for
that angle– some number between 0 and 180◦. But really, two rays like this
divide the plane into two regions, and correspondingly, they should form
two angles. one is the proper angle which we have already dealt with. the
other angle is what is called a reflex angle. together, the measures of the
proper angle and the reflex angle formed by any two rays should add up to
360◦. there does not seem to be a standard bit of terminology to describe
this relationship between angles; i have seen the term “conjugate” as well
as the term “explementary”. so the problem with ∠3 is that the interior
angle isn’t the proper angle, but instead, that it is its explement.
Now as long as the polygon is fairly simple (no pun intended) this is all

fairly clear, but suppose that we were looking at an angle ∠Pi in a much
more elaborate polygon. should the interior angle at Pi be the proper angle
∠Pi−1PiPi+1 or its conjugate? Well, to answer that question, you need to
look at the segment Pi−1Pi+1. it may cross into and out of the interior of
the polygon, but if the interior angle is the proper angle, then the first and
last points of Pi−1Pi+1 (the ones closest to Pi−1 and Pi+1) will be in the
interior of the polygon. If the interior angle is the reflex angle, then the
first and last points of Pi−1Pi+1 won’t be in the interior of the polygon.

With the interior angles of a polygon now properly accounted for, we
can define what it means for two polygons to be congruent.

Angle interiors and polygon interiors.

1 2 3

(proper) angleReflex angle

A pair of explementary angles.
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def: polygon CongRUenCe
two polygons P = P1P2 · · ·Pn and Q = Q1Q2 · · ·Qn are congruent,
written P Q if all corresponding sides and interior angles are con-
gruent:

PiPi+1  QiQi+1 & ∠Pi  ∠Qi, for all i.

now let’s take a look at ∠2, where not all of the interior of the polygon lies
in the interior of the angle. the problem here is a little bit more intrinsic–
I don’t think you are going to be able to get around this one by fiddling
with definitions (well, not at least without making a lot of questionable
compromises). There is, though, a class of simple polygon for which the
polygon interior always lies in the interior of each interior angle. these
are the convex polygons.

Interior angles: two dilemmas

now i want to talk a little bit about the interior angles of a simple poly-
gon. if you would, please look at the three marked angles in the polygons
above. The first, ∠1 is the interior angle of a triangle. you can see that the
entire interior of the triangle is contained in the interior of the angle, and
that seems proper, that close connection between the interiors of the inte-
rior angles and the interior of the triangle. now look at ∠2, and you can
see that for a general simple polygon, things do not work quite as well:
the entire polygon does not lie in the interior of this angle. But at least the
part of the polygon interior which is closest to that vertex is in the interior
of that angle. finally look at ∠3: the interior of ∠3 encompasses exactly
none of the interior of the polygon– it is actually pointing away from the
polygon.

let me address the issue surrounding ∠3 first. We have said that two
non-opposite rays define a single angle, and later established a measure for
that angle– some number between 0 and 180◦. But really, two rays like this
divide the plane into two regions, and correspondingly, they should form
two angles. one is the proper angle which we have already dealt with. the
other angle is what is called a reflex angle. together, the measures of the
proper angle and the reflex angle formed by any two rays should add up to
360◦. there does not seem to be a standard bit of terminology to describe
this relationship between angles; i have seen the term “conjugate” as well
as the term “explementary”. so the problem with ∠3 is that the interior
angle isn’t the proper angle, but instead, that it is its explement.
Now as long as the polygon is fairly simple (no pun intended) this is all

fairly clear, but suppose that we were looking at an angle ∠Pi in a much
more elaborate polygon. should the interior angle at Pi be the proper angle
∠Pi−1PiPi+1 or its conjugate? Well, to answer that question, you need to
look at the segment Pi−1Pi+1. it may cross into and out of the interior of
the polygon, but if the interior angle is the proper angle, then the first and
last points of Pi−1Pi+1 (the ones closest to Pi−1 and Pi+1) will be in the
interior of the polygon. If the interior angle is the reflex angle, then the
first and last points of Pi−1Pi+1 won’t be in the interior of the polygon.

With the interior angles of a polygon now properly accounted for, we
can define what it means for two polygons to be congruent.

The dark region shows the 
polygon interior around a 
vertex. In (1), the connecting 
segment begins in the interior, 
so the interior angle is the 
proper angle. In (2), the 
connecting segment begins in 
the exterior, so the interior 
angle is the reflex angle.(1) (2)
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def: ConVeX polygon
a polygon P is convex if, for any two points p and q in the interior
of P , the entire line segment pq is in the interior of P .

Convexity is a big word in geometry and it comes up in a wide variety of
contexts. our treatment here will be very elementary, and just touch on
the most basic properties of a convex polygon.

thm: ConVeXity 1
if P = P1P2 · · ·Pn is a convex polygon, then all the points of the
interior of P lie on the same side of each of the lines PiPi+1.

Proof. the fundamental mechanism that makes this proof work is the way
that we defined the interior and exterior of a polygon by drawing a ray out
and counting how many times it intersects the sides of P . suppose that
P and Q lie on opposite sides of a segment PiPi+1, so that PQ intersects
PiPi+1. suppose further that PQ intersects no other sides of the polygon.
then the ray PQ will intersect P one more time than the ray (QP)op.
therefore P and Q will have different parities, and so one of P and Q will
be an interior point and the other an exterior point.

A (1) convex and (2) a non- 
convex polygon. In the second, 
a segment joins two points in 
the interior, but passes outside 
of the polygon.

(1) (2)

A single side of the polygon comes between P and Q– one must be outside and 
one must be inside.

QP
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now on to the proof, a proof by contradiction. suppose that both P and
Q are in the interior of a convex polygon, but that they are on the opposite
sides of �PiPi+1. after the previous discussion, it is tempting to draw a
picture that looks like

in that case, only one of R1, R2 can be in the interior of P and so
P can’t be convex and we have our contradiction. But that misses an
important (and indeed likely) scenario– the one in which PQ intersects
the line �PiPi+1  but not the segment PiPi+1. to deal with that scenario,
we are going to have to maneuver the intersection so that it does occur on
the segment, which requires a bit more delicate argument.

Choose a point X which is between Pi and Pi+1. We will relay the
interior/exterior information from P and Q back to points which are in
close proximity to X . Choose points R1, R2, S1 and S2 so that

P∗R1 ∗X ∗R2 Q∗S1 ∗X ∗S2.

in addition, we want to make sure that these points are so close together
that none of the other sides of P get in the way, so we will require (1)
R1S1 does intersect the side PiPi+1, but that (2) none of the edges other
than PiPi+1 comes between any two of these points. a polygon only has
finitely many edges, so yes, it is possible to do this. Then R1 and R2 lie
on different sides of the segment PiPi+1, so one is in the interior and one
is in the exterior. suppose that R2 is the interior point. then, since P is
convex, and R1 is between two interior points P and R2, R1 must also be an
interior point. since R1 and R2 cannot both be interior points, that means
that R1 is the interior point. applying a similar argument to Q, S1 and S2,
you can show that S1 must also be an interior point. But now R1 and S1 are
on opposite sides of PiPi+1, so they cannot both be interior points. this is
the contradiction.

there are a couple immediate corollaries of this– i am going to leave the
proofs of both of these to you.

thm: ConVeXity 2
if P is a convex polygon, then the interior of P lies in the interior
of each interior angle ∠Pi.

thm: ConVeXity 3
if P is a convex polygon, then each of its interior angles is a proper
angle, not a reflex angle.

QP R1 R2

Pi

Pi+1

Q
Q

P P

Pi

Pi+1

X
R1

R2S2

S1
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in that case, only one of R1, R2 can be in the interior of P and so
P can’t be convex and we have our contradiction. But that misses an
important (and indeed likely) scenario– the one in which PQ intersects
the line �PiPi+1  but not the segment PiPi+1. to deal with that scenario,
we are going to have to maneuver the intersection so that it does occur on
the segment, which requires a bit more delicate argument.

Choose a point X which is between Pi and Pi+1. We will relay the
interior/exterior information from P and Q back to points which are in
close proximity to X . Choose points R1, R2, S1 and S2 so that

P∗R1 ∗X ∗R2 Q∗S1 ∗X ∗S2.

in addition, we want to make sure that these points are so close together
that none of the other sides of P get in the way, so we will require (1)
R1S1 does intersect the side PiPi+1, but that (2) none of the edges other
than PiPi+1 comes between any two of these points. a polygon only has
finitely many edges, so yes, it is possible to do this. Then R1 and R2 lie
on different sides of the segment PiPi+1, so one is in the interior and one
is in the exterior. suppose that R2 is the interior point. then, since P is
convex, and R1 is between two interior points P and R2, R1 must also be an
interior point. since R1 and R2 cannot both be interior points, that means
that R1 is the interior point. applying a similar argument to Q, S1 and S2,
you can show that S1 must also be an interior point. But now R1 and S1 are
on opposite sides of PiPi+1, so they cannot both be interior points. this is
the contradiction.

there are a couple immediate corollaries of this– i am going to leave the
proofs of both of these to you.

thm: ConVeXity 2
if P is a convex polygon, then the interior of P lies in the interior
of each interior angle ∠Pi.

thm: ConVeXity 3
if P is a convex polygon, then each of its interior angles is a proper
angle, not a reflex angle.

Polygons of note

To finish this chapter, I want to mention a few particularly well-behaved
types of polygons.

types of polygons
an equilateral polygon is one in which all sides are congruent. a
cyclic polygon is one in which all vertices are equidistant from a
fixed point (hence, all vertices lie on a circle, to be discussed later).
a regular polygon is one in which all sides are congruent and all
angles are congruent.

E: equilateral  
C: cyclic  
R: regular

E C R
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the third of these types is actually a combination of the previous two types
as the next theorem shows.

thm: eQUilateRal + CyCliC
a polygon P which is both equilateral and cyclic is regular.

Proof. We need to show that the interior angles of P are all congruent.
let C be the point which is equidistant from all points of P . divide
P into a set of triangles by constructing segments from each vertex to
C. for any of these triangles, we wish to distinguish the angle at C, the
central angle, from the other two angles in the triangle. note that the
two constructed sides of these triangles are congruent. By the isosceles
triangle theorem, the two non-central angles are congruent. as well, by
s·s·s, all of these triangles are congruent to each other. in particular, all
non-central angles of all the triangles are congruent. since adjacent pairs
of such angles comprise an interior angle of P , the interior angles of P
are congruent.

While we normally think of regular polygons as i have shown them
above, there is nothing in the definition that requires a regular polygon to
be simple. in fact, there are non-simple regular polygons– such a polygon
is called a star polygon.

Because of S-S-S and the 
Isosceles Triangle 
Theorem, polygons 
which  are equilateral 
and cyclic are regular.

C

There is a regular star n-gon for each integer p between 1 and n/2 that is 
relatively prime to n. Shown here: n=15. The {n/p} notation is called the 
Schläfli symbol.

{15/1} {15/2} {15/4} {15/7}
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Exercises

1. Verify that a triangle is a convex polygon.

2. a diagonal of a polygon is a segment connecting nonadjacent vertices.
how many diagonals does an n-gon have?

3. prove theorems 2 and 3 on convexity.

4. Prove that a regular convex polygon is cyclic (to find that equidistant
point, you may have to consider the odd and even cases separately).

5. prove that if a polygon is convex, then all of its diagonals lie entirely
in the interior of the polygon (except for the endpoints).

6. prove that if a polygon is not convex, then at least one of its diagonals
does not lie entirely in the interior of the polygon.

7. Verify that the perimeter of any polygon is more than twice the length
of its longest side.

8. prove that the sum of the interior angles of a convex n-gon is at most
180◦(n−2).

9. prove that if a polygon P is convex, then there are no other simple
polygons on that configuration of vertices.
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