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theorems
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this is the last lesson in neutral geometry. after this, we will allow our-
selves one more axiom dealing with parallel lines, and that is the axiom
which turns neutral geometry into euclidean geometry. Before turning
down the euclidean path, let’s spend just a little time looking at quadri-
laterals. the primary goal of this section will be to develop quadrilat-
eral congruence theorems similar to the triangle congruence theorems we
picked up in earlier lessons.

terminology

Before i start working on congruence theorems, though, let me quickly
run through the definitions of a few particular types of quadrilaterals.
One of the risks that you run when you define an object by requiring

it to have certain properties, as I have done above, is that you may define
something that cannot be– something like an equation with no solution.
The objects I have defined above are all such common shapes in everyday
life that we usually don’t question their existence. Here’s the interesting
thing though– in neutral geometry, there is no construction which guaran-
tees you can make a quadrilateral with four right angles– that is, neutral
geometry does not guarantee the existence of rectangles or squares. at
the same time, it does nothing to prohibit the existence of squares or rect-
angles either. you can make a quadrilateral with three right angles pretty
easily, but once you have done that, you have no control over the fourth
angle, and the axioms of neutral geometry are just not sufficient to prove
definitively whether or not that fourth angle is a right angle. This is one
of the fundamental differences that separates euclidean geometry from
non-euclidean geometry. in euclidean geometry, the fourth angle is a
right angle, so there are rectangles. in non-euclidean geometry, the fourth
angle cannot be a right angle, so there are no rectangles. When we eventu-
ally turn our attention to non-euclidean geometry, i want to come back to
this– i would like to begin that study with a more thorough investigation
of these quadrilaterals that try to be like rectangles, but fail.

Tr
Pa Rh

Re Sq

Sq

Trapezoid
Parallelogram
Rhombus
Rectangle
Square

Rhombuses and rectangles 
are parallelograms. A 
square is both a rhombus 
and a rectangle.

a pair of parallel sides
two pairs of parallel sides
four congruent sides
four right angles
four congruent sides and four right angles

Rh

Re

Pa

Tr
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this is the last lesson in neutral geometry. after this, we will allow our-
selves one more axiom dealing with parallel lines, and that is the axiom
which turns neutral geometry into euclidean geometry. Before turning
down the euclidean path, let’s spend just a little time looking at quadri-
laterals. the primary goal of this section will be to develop quadrilat-
eral congruence theorems similar to the triangle congruence theorems we
picked up in earlier lessons.

terminology

Before i start working on congruence theorems, though, let me quickly
run through the definitions of a few particular types of quadrilaterals.
One of the risks that you run when you define an object by requiring

it to have certain properties, as I have done above, is that you may define
something that cannot be– something like an equation with no solution.
The objects I have defined above are all such common shapes in everyday
life that we usually don’t question their existence. Here’s the interesting
thing though– in neutral geometry, there is no construction which guaran-
tees you can make a quadrilateral with four right angles– that is, neutral
geometry does not guarantee the existence of rectangles or squares. at
the same time, it does nothing to prohibit the existence of squares or rect-
angles either. you can make a quadrilateral with three right angles pretty
easily, but once you have done that, you have no control over the fourth
angle, and the axioms of neutral geometry are just not sufficient to prove
definitively whether or not that fourth angle is a right angle. This is one
of the fundamental differences that separates euclidean geometry from
non-euclidean geometry. in euclidean geometry, the fourth angle is a
right angle, so there are rectangles. in non-euclidean geometry, the fourth
angle cannot be a right angle, so there are no rectangles. When we eventu-
ally turn our attention to non-euclidean geometry, i want to come back to
this– i would like to begin that study with a more thorough investigation
of these quadrilaterals that try to be like rectangles, but fail.

Quadrilaterals with three right angles. On the left, in Euclidean geometry, the 
fourth angle is a right angle. On the right, in non-Euclidean geometry, the 
fourth angle is acute.
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quadrilateral congruence

i feel that many authors view the quadrilateral congruences as a means to
an end, and as such, tend to take a somewhat ad hoc approach to them. i
think i understand this approach– the quadrilateral congruence theorems
themselves are a bit bland compared to their application. still, i want to
be a bit more systematic in my presentation of them. in the last chapter
we looked at several classes of polygons. to recap:

{convex polygons} ⊂ {simple polygons} ⊂ {polygons}.

for what we are going to be doing in this book, we really only need
the congruence results for convex quadrilaterals, but i am going to try
to tackle the slightly broader question of congruence for simple quadri-
laterals. While the even broader question of congruence for non-simple
quadrilaterals would be interesting, i think it is just too far of a detour.
By definition, two quadrilaterals are congruent if four corresponding

sides and four corresponding interior angles are congruent– that’s a total
of eight congruences. each congruence theorem says that you can guar-
antee congruence with some subset of that list. if you recall, for triangles
you generally needed to know three of the six pieces of information. for
quadrilaterals, it seems that the magic number is five. So what I would
like to do in this lesson is to look at all the different possible combinations
of five pieces (sides and angles) of a quadrilateral and determine which
lead to valid congruence theorems. i won’t give all the proofs or all the
counterexamples (that way you can tackle some of them on your own),
but I will provide the framework for a complete classification.
The first step is some basic combinatorics. Each of these theorems has

a five letter name consisting of some mix of Ss and As. When forming this
name, there are two choices, S and A for each of the five letters, and so
there are a total of 25 = 32 possible names. two of these, s·s·s·s·s and
a·a·a·a·a, don’t make any sense in the context of quadrilateral congru-
ences, though, since a quadrilateral doesn’t have five sides or five angles.
that leaves thirty different words. now it is important to notice that not
all of these words represent fundamentally different information about the
quadrilaterals themselves. for instance, s·s·a·s·a and a·s·a·s·s both
represent the same information, just listed in reverse order. similarly,
s·s·a·s·s and s·s·s·s·a both represent the same information– four sides
and one angle. once those equivalences are taken into consideration, we
are left with ten potential quadrilateral congruences.
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S·A·S·A·S yes

A·S·A·S·A yes

A·A·S·A·S SASAA yes

S·S·S·S·A SSSAS SSASS no(∗)

SASSS ASSSS

A·S·A·A·S SAASA no

A·S·A·S·S SSASA no

A·S·S·A·S SASSA no

A·A·A·A·S AAASA AASAA no
ASAAA SAAAA

S·S·S·A·A AASSS ASSSA no
SAASS SSAAS

A·A·A·S·S SAAAS SSAAA yes
ASSAA AASSA

(∗) a valid congruence theorem for convex quadrilaterals

Table 1. Quadrilateral congruence theorems.

Word Variations
Valid 
congruence?
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s·a·s·a·s, a·s·a·s·a, and a·a·s·a·s

each of these is a valid congruence theorem for simple quadrilaterals.
the basic strategy for their proofs is to use a diagonal of the quadrilateral
to separate it into two triangles, and then to use the triangle congruence
theorems. now the fact that i am allowing both convex and non-convex
quadrilaterals in this discussion complicates things a little bit, so let’s start
by examining the nature of the diagonals of a quadrilateral. yes, i will be
leaving out a few details here (more than a few to be honest) so you should
feel free to work out any tricky details for yourself.

consider a quadrilateral ABCD (I am going to use a square symbol
to denote a simple quadrilateral). What I want to do is to look at the posi-
tion of the point D relative to the triangle ABC. each of the three lines
�AB, �BC, and �AC separate the plane into two pieces. it is not
possible, though, for any point of the plane to simultaneously be

(1) on the opposite side of AB from C
(2) on the opposite side of AC from B, and
(3) on the opposite side of BC from A.

therefore the lines of ABC divide the plane into seven (23 −1) distinct
regions.

now for each of these seven regions, we can determine whether the
diagonals AC and BD are in the interior of ABCD. let me point out
that this is always an all-or-nothing proposition– either the entire diagonal
lies in the interior (excepting of course the endpoints) or none of it does.
additionally, in each case, a diagonal lies in the interior of a quadrilateral
if and only if it lies in the interior of both the angles formed by ABCD
at its endpoints. What i mean is that if, for example, AC is in the interior
of ABCD, then AC will be in the interior of both ∠DAB and ∠BCD. if
AC isn’t in the interior of ABCD, then AC will not be in the interior of
either ∠DAB or ∠BCD.

With the diagonals now properly sorted, we can address the congruence
theorems directly. perhaps the most useful of them all is s·a·s·a·s.

s·a·s·a·s quadrilateral conGruence
if ABCD and ABCD are simple quadrilaterals and

AB  AB ∠B  ∠B BC  BC ∠C  ∠C CD CD

then ABCD ABCD.The seven “sides” of a triangle.

A

B

C

I

II

IV

V

VI

VII

III
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s·a·s·a·s, a·s·a·s·a, and a·a·s·a·s

each of these is a valid congruence theorem for simple quadrilaterals.
the basic strategy for their proofs is to use a diagonal of the quadrilateral
to separate it into two triangles, and then to use the triangle congruence
theorems. now the fact that i am allowing both convex and non-convex
quadrilaterals in this discussion complicates things a little bit, so let’s start
by examining the nature of the diagonals of a quadrilateral. yes, i will be
leaving out a few details here (more than a few to be honest) so you should
feel free to work out any tricky details for yourself.

consider a quadrilateral ABCD (I am going to use a square symbol
to denote a simple quadrilateral). What I want to do is to look at the posi-
tion of the point D relative to the triangle ABC. each of the three lines
�AB, �BC, and �AC separate the plane into two pieces. it is not
possible, though, for any point of the plane to simultaneously be

(1) on the opposite side of AB from C
(2) on the opposite side of AC from B, and
(3) on the opposite side of BC from A.

therefore the lines of ABC divide the plane into seven (23 −1) distinct
regions.

now for each of these seven regions, we can determine whether the
diagonals AC and BD are in the interior of ABCD. let me point out
that this is always an all-or-nothing proposition– either the entire diagonal
lies in the interior (excepting of course the endpoints) or none of it does.
additionally, in each case, a diagonal lies in the interior of a quadrilateral
if and only if it lies in the interior of both the angles formed by ABCD
at its endpoints. What i mean is that if, for example, AC is in the interior
of ABCD, then AC will be in the interior of both ∠DAB and ∠BCD. if
AC isn’t in the interior of ABCD, then AC will not be in the interior of
either ∠DAB or ∠BCD.

With the diagonals now properly sorted, we can address the congruence
theorems directly. perhaps the most useful of them all is s·a·s·a·s.

s·a·s·a·s quadrilateral conGruence
if ABCD and ABCD are simple quadrilaterals and

AB  AB ∠B  ∠B BC  BC ∠C  ∠C CD CD

then ABCD ABCD.

D is in is ABCD D is on the reflex interior
region simple? same side of : angle diagonal:

BC as A AC as B AB as C AC BD

I   A 

II   B 

III   C 

IV   – – –

V    none  

VI   – – –

VII     D 

Table 2. The diagonals of a quadrilateral
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Proof. the diagonals AC and AC are the keys to turning this into a prob-
lem of triangle congruence. unfortunately, we do not know whether or not
those diagonals are in the interiors of their respective quadrilaterals. that
means we have to tread somewhat carefully at first. Because of S·a·s,
ABC ABC. you need to pay attention to what is happening at ver-
tex C. if AC is in the interior of the quadrilateral, then it is in the interior of
∠BCD and that means (∠BCA)< (∠BCD). then, since ∠BCA ∠BCA
and ∠BCD  ∠BCD, (∠BCA) < (∠BCD). therefore AC must be
in the interior of ∠BCD and in the interior of ABCD. With the same
reasoning, we can argue that if AC is not in the interior of ABCD, then
AC cannot be in the interior of ABCD. so there are two cases, and
the assembly of the quadrilateral from the triangles depends upon the case.
My diagram of the chase through the congruences is below. i have split it,
when necessary, to address the differences in the two cases.

using essentially this same approach, you should be able to verify both
the a·s·a·s·a and a·a·s·a·s quadrilateral congruences.

SAS : ACD
a ∠DAC

AC s
∠ACD a

CD s
a ∠CDA
s DA

SAS : ABC
a ∠CAB

AB s
∠ABC a

BC s
a ∠BCA
s CA

a
s
a
s
a
s

a
s
a
s
a
s

Given :
AB

∠ABC
BC

∠BCD
CD

∠BCA
∠BCD

∠ACD

Angle Sub n Angle Sub n

∠DAC
∠CAB

∠DAB

Angle Sub n
∠BCD
∠BCA

∠ACD

Angle Add n
∠DAC
∠CAB

∠DAB

AB

DC

A

B

D

C
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Proof. the diagonals AC and AC are the keys to turning this into a prob-
lem of triangle congruence. unfortunately, we do not know whether or not
those diagonals are in the interiors of their respective quadrilaterals. that
means we have to tread somewhat carefully at first. Because of S·a·s,
ABC ABC. you need to pay attention to what is happening at ver-
tex C. if AC is in the interior of the quadrilateral, then it is in the interior of
∠BCD and that means (∠BCA)< (∠BCD). then, since ∠BCA ∠BCA
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AC cannot be in the interior of ABCD. so there are two cases, and
the assembly of the quadrilateral from the triangles depends upon the case.
My diagram of the chase through the congruences is below. i have split it,
when necessary, to address the differences in the two cases.

using essentially this same approach, you should be able to verify both
the a·s·a·s·a and a·a·s·a·s quadrilateral congruences.
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s·s·s·s·a

the s·s·s·s·a condition is almost enough to guarantee quadrilateral con-
gruence. suppose that you know the lengths of all four sides of ABCD,
and you also know ∠A. then BAD is completely determined (S·a·S)
and from that BCD is completely determined (S·s·S). That still does
not mean that ABCD is completely determined, though, because there
are potentially two ways to assemble BAD and BCD (as illustrated).
one assembly creates a convex quadrilateral, the other a non-convex one.
now, there will be times when you know the quadrilaterals in question
are all convex, and in those situations, s·s·s·s·a can be used to show that
convex quadrilaterals are congruent.

a·s·a·a·s, a·s·a·s·s, a·s·s·a·s, a·a·a·a·s, and s·s·s·a·a

None of these provide sufficient information to guarantee congruence and
counterexamples can be found in euclidean geometry. i will just do one
of them– s·s·s·a·a, and leave the rest for you to puzzle out. in the illus-
tration below ABCD and ABCD have correponding s·s·s·a·a but
are not congruent.

s·s·s·s·a

the s·s·s·s·a condition is almost enough to guarantee quadrilateral con-
gruence. suppose that you know the lengths of all four sides of ABCD,
and you also know ∠A. then BAD is completely determined (S·a·S)
and from that BCD is completely determined (S·s·S). That still does
not mean that ABCD is completely determined, though, because there
are potentially two ways to assemble BAD and BCD (as illustrated).
one assembly creates a convex quadrilateral, the other a non-convex one.
now, there will be times when you know the quadrilaterals in question
are all convex, and in those situations, s·s·s·s·a can be used to show that
convex quadrilaterals are congruent.

a·s·a·a·s, a·s·a·s·s, a·s·s·a·s, a·a·a·a·s, and s·s·s·a·a

None of these provide sufficient information to guarantee congruence and
counterexamples can be found in euclidean geometry. i will just do one
of them– s·s·s·a·a, and leave the rest for you to puzzle out. in the illus-
tration below ABCD and ABCD have correponding s·s·s·a·a but
are not congruent.

A

B

D

C

Non-congruent 
quadrilaterals with 
matching SSSAA. 

C

D

A

B

D

CCNon-congruent 
quadrilaterals with 
matching SSSSA. 
One is convex; the 
other is not.
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a·a·a·s·s

this is the intriguing one. the idea of splitting the quadrilateral into tri-
angles along the diagonal just doesn’t work. you fail to get enough infor-
mation about either triangle. Yet, (as we will see) in Euclidean geometry,
the angle sum of a quadrilateral has to be 360◦. since three of the an-
gles are given, that means that in the euclidean realm the fourth angle
is determined as well. in that case, this set of congruences is essentially
equivalent to the a·s·a·s·A (which is a valid congruence theorem). The
problem is that in neutral geometry the angle sum of a quadrilateral does
not have to be 360◦. Because of the saccheri-legendre theorem, the an-
gle sum of a quadrilateral cannot be more than 360◦, but that is all we can
say. it turns out that this is a valid congruence theorem in neutral geom-
etry. The proof is a little difficult though. The argument that I want to
use requires us to “drop a perpendicular”. i have described this process in
some of the previous exercises, but let me reiterate here.

leM 1
for any line  and point P not on , there is a unique line through P
which is perpendicular to .

the intersection of  and the perpendicular line is often called the foot
of the perpendicular. The process of finding this foot is called dropping
a perpendicular. i have already proven the existence part of this– the
phrasing was a little different then, but my proof of the existence of right
angles (in the lesson on angle comparison) constructs this perpendicular
line. as for uniqueness part, i will leave that to you.

leM 2
let  be a line, P a point not on , and Q the foot of the perpendicular
to  through P. then P is closer to Q than it is to any other point on
.

again, i am going to pass off the proof to you. i would suggest, though,
that you think about the scalene triangle theorem. now on to the main
theorem.
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C

B
A

DD C

B
A

B
A

The setup for the proof of AAASS for convex quadrilaterals.

a·a·a·s·s quadrilateral conGruence
if ABCD and ABCD are simple quadrilaterals, and

∠A  ∠A ∠B  ∠B ∠C  ∠C CD CD DA  DA

then ABCD ABCD.

Proof. i will use a proof by contradiction of this somewhat tricky theo-
rem. suppose that ABCD and ABCD have the corresponding con-
gruent pieces as described in the statement of the theorem, but suppose
that ABCD and ABCD are not themselves congruent.

Part One, in which we establish parallel lines.
i want to construct a new quadrilateral: ABCD will overlap ABCD
as much as possible, but will be congruent to ABCD. Here is the con-
struction. locate B on CB so that CB CB. note that BC and BC

cannot be congruent– if they were the two quadrilaterals would be con-
gruent by a·a·s·a·s. as a result, in the construction, B = B. the other
point to place is A. it needs to be positioned so that:

1. it is on the same side of �BC as A,
2. ∠ABC  ∠ABC, and
3. AB  AB.

the angle and segment construction axioms guarantee that there is one and
only one point that satisfies these conditions. That finishes the copying–
by s·a·s·a·s, ABCD and ABCD are congruent. there is one
important thing to note about this construction. since

∠ABC  ∠ABC  ∠ABC,

the alternate interior angle theorem guarantees that �AB and �AB
will be parallel.

a·a·a·s·s quadrilateral conGruence
if ABCD and ABCD are simple quadrilaterals, and

∠A  ∠A ∠B  ∠B ∠C  ∠C CD CD DA  DA

then ABCD ABCD.

Proof. i will use a proof by contradiction of this somewhat tricky theo-
rem. suppose that ABCD and ABCD have the corresponding con-
gruent pieces as described in the statement of the theorem, but suppose
that ABCD and ABCD are not themselves congruent.

Part One, in which we establish parallel lines.
i want to construct a new quadrilateral: ABCD will overlap ABCD
as much as possible, but will be congruent to ABCD. Here is the con-
struction. locate B on CB so that CB CB. note that BC and BC

cannot be congruent– if they were the two quadrilaterals would be con-
gruent by a·a·s·a·s. as a result, in the construction, B = B. the other
point to place is A. it needs to be positioned so that:

1. it is on the same side of �BC as A,
2. ∠ABC  ∠ABC, and
3. AB  AB.

the angle and segment construction axioms guarantee that there is one and
only one point that satisfies these conditions. That finishes the copying–
by s·a·s·a·s, ABCD and ABCD are congruent. there is one
important thing to note about this construction. since

∠ABC  ∠ABC  ∠ABC,

the alternate interior angle theorem guarantees that �AB and �AB
will be parallel.

a·a·a·s·s quadrilateral conGruence
if ABCD and ABCD are simple quadrilaterals, and
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then ABCD ABCD.

Proof. i will use a proof by contradiction of this somewhat tricky theo-
rem. suppose that ABCD and ABCD have the corresponding con-
gruent pieces as described in the statement of the theorem, but suppose
that ABCD and ABCD are not themselves congruent.

Part One, in which we establish parallel lines.
i want to construct a new quadrilateral: ABCD will overlap ABCD
as much as possible, but will be congruent to ABCD. Here is the con-
struction. locate B on CB so that CB CB. note that BC and BC

cannot be congruent– if they were the two quadrilaterals would be con-
gruent by a·a·s·a·s. as a result, in the construction, B = B. the other
point to place is A. it needs to be positioned so that:

1. it is on the same side of �BC as A,
2. ∠ABC  ∠ABC, and
3. AB  AB.

the angle and segment construction axioms guarantee that there is one and
only one point that satisfies these conditions. That finishes the copying–
by s·a·s·a·s, ABCD and ABCD are congruent. there is one
important thing to note about this construction. since

∠ABC  ∠ABC  ∠ABC,

the alternate interior angle theorem guarantees that �AB and �AB
will be parallel.
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Part two, in which we determine the position of D relative to those lines.
the two parallel lines � AB  and � AB  carve the plane into three
regions as shown in the illustration below. the reason i mention this is
that my proof will not work if D is in region 2, the region between the
two parallel lines. now it is pretty easy to show that D will not fall in
region 2 if we know the two quadrilaterals are convex. if we don’t know
that, though, the situation gets a little more delicate, and we will have to
look for possible reflex angles in the two quadrilaterals. The key thing to
keep in mind is that the angle sum of a simple quadrilateral is at most 360◦
(a consequence of the Saccheri-Legendre Theorem), and the measure of
a reflex angle is more than 180◦– therefore, a simple quadrilateral will
support at most one reflex angle.

suppose that D did lie in region 2. note that, based upon our construc-
tion, either C∗B∗B or C∗B ∗B, and so that means that C is not in region
2. Therefore, one of the two lines (either �AB or �AB) comes be-
tween C and D while the other does not. the two cases are equivalent, so
in the interest of keeping the notation reasonable, let’s assume for the rest
of this proof that �AB  separates C and D, but that �AB does not.
What are the implications of this? let me refer you back to table 2 which
characterizes the possible positions of a fourth vertex of a quadrilateral in
relation to the previous three.

a·a·a·s·s quadrilateral conGruence
if ABCD and ABCD are simple quadrilaterals, and
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gruent by a·a·s·a·s. as a result, in the construction, B = B. the other
point to place is A. it needs to be positioned so that:

1. it is on the same side of �BC as A,
2. ∠ABC  ∠ABC, and
3. AB  AB.

the angle and segment construction axioms guarantee that there is one and
only one point that satisfies these conditions. That finishes the copying–
by s·a·s·a·s, ABCD and ABCD are congruent. there is one
important thing to note about this construction. since

∠ABC  ∠ABC  ∠ABC,

the alternate interior angle theorem guarantees that �AB and �AB
will be parallel.

Part two, in which we determine the position of D relative to those lines.
the two parallel lines � AB  and � AB  carve the plane into three
regions as shown in the illustration below. the reason i mention this is
that my proof will not work if D is in region 2, the region between the
two parallel lines. now it is pretty easy to show that D will not fall in
region 2 if we know the two quadrilaterals are convex. if we don’t know
that, though, the situation gets a little more delicate, and we will have to
look for possible reflex angles in the two quadrilaterals. The key thing to
keep in mind is that the angle sum of a simple quadrilateral is at most 360◦
(a consequence of the Saccheri-Legendre Theorem), and the measure of
a reflex angle is more than 180◦– therefore, a simple quadrilateral will
support at most one reflex angle.

suppose that D did lie in region 2. note that, based upon our construc-
tion, either C∗B∗B or C∗B ∗B, and so that means that C is not in region
2. Therefore, one of the two lines (either �AB or �AB) comes be-
tween C and D while the other does not. the two cases are equivalent, so
in the interest of keeping the notation reasonable, let’s assume for the rest
of this proof that �AB  separates C and D, but that �AB does not.
What are the implications of this? let me refer you back to table 2 which
characterizes the possible positions of a fourth vertex of a quadrilateral in
relation to the previous three.
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Part two, in which we determine the position of D relative to those lines.
the two parallel lines � AB  and � AB  carve the plane into three
regions as shown in the illustration below. the reason i mention this is
that my proof will not work if D is in region 2, the region between the
two parallel lines. now it is pretty easy to show that D will not fall in
region 2 if we know the two quadrilaterals are convex. if we don’t know
that, though, the situation gets a little more delicate, and we will have to
look for possible reflex angles in the two quadrilaterals. The key thing to
keep in mind is that the angle sum of a simple quadrilateral is at most 360◦
(a consequence of the Saccheri-Legendre Theorem), and the measure of
a reflex angle is more than 180◦– therefore, a simple quadrilateral will
support at most one reflex angle.

suppose that D did lie in region 2. note that, based upon our construc-
tion, either C∗B∗B or C∗B ∗B, and so that means that C is not in region
2. Therefore, one of the two lines (either �AB or �AB) comes be-
tween C and D while the other does not. the two cases are equivalent, so
in the interest of keeping the notation reasonable, let’s assume for the rest
of this proof that �AB  separates C and D, but that �AB does not.
What are the implications of this? let me refer you back to table 2 which
characterizes the possible positions of a fourth vertex of a quadrilateral in
relation to the previous three.

since C and D are on the same side
of � AB , D has to be in region
iii, iv, or v with respect to ABC
(note that if D is in region vi, then
ABCD is not simple). If D is in
region iii, then ABCD has a re-
flex angle atC. if D is in region v,
then ABCD is convex and does
not have a reflex angle. And if D
is in region vii, then ABCD has
a reflex angle at D.

since C and D are on opposite sides
� AB , D has to be in region
I or II (if D is in region iv, then
ABCD is not simple. if D is in
region i, then ABCD has a re-
flex angle at A. if D is in region
ii, then ABCD has a reflex an-
gle at B.

A quadrilateral can only have one reflex angle, so in ABCD neither ∠A
nor ∠B is reflex. In ABCD one of ∠A or ∠B is reflex. Remember
though that ∠A ∠A and ∠B ∠B. this is a contradiction– obviously
two angles cannot be congruent if one has a measure over 180◦ while the
other has a measure less than that. so now we know that D cannot lie
between �AB and �AB and so all the points of �AB are on the
opposite side of �AB from D.

Part Three, in which we measure the distance from D to those lines.
I would like to divide the rest of the proof into two cases. The first case
deals with the situation when ∠A and ∠A (which are congruent) are right
angles. the second deals with the situation where they are not.

case 1. (∠A) = (∠A) = 90◦.
since D and A are on opposite sides of �AB, there is a point P between
A and D which is on �AB. then

|DP|< |DA|= |DA|.

But that can’t happen, since A is the closest point on �AB to D.
case 2. (∠A) = (∠A) = 90◦.
the approach here is quite similar to the one in case 1. the difference is
that we are going to have to make the right angles first. Locate E and E,
the feet of the perpendiculars from D to �AB and �AB, respectively.
please turn your attention to triangles DAE and DAE. in them,

AD  AD ∠A  ∠A ∠E  ∠E.

By a·a·s, they are congruent, and that means that DE  DE. But that
creates essentially the same problem that we saw in the first case. Since D
and E are on opposite sides of �AB, there is a point P between D and
E which is on �AE. then

|DP|< |DE|= |DE|.

again, this cannot happen, as E should be the closest point to D on
�AE.

in either case, we have reached a contradiction. the initial assumption,
that ABCD and ABCD are not congruent, must be false.
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Case 2: the angle at A is not a right angle.
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Case 1: the angle at A is a right angle.
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By a·a·s, they are congruent, and that means that DE  DE. But that
creates essentially the same problem that we saw in the first case. Since D
and E are on opposite sides of �AB, there is a point P between D and
E which is on �AE. then

|DP|< |DE|= |DE|.

again, this cannot happen, as E should be the closest point to D on
�AE.

in either case, we have reached a contradiction. the initial assumption,
that ABCD and ABCD are not congruent, must be false.
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Part Three, in which we measure the distance from D to those lines.
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and E are on opposite sides of �AB, there is a point P between D and
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that ABCD and ABCD are not congruent, must be false.
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exercises

1. a convex quadrilateral with two pairs of congruent adjacent sides is
called a kite. prove that the diagonals of a kite are perpendicular to one
another.

2. prove the a·s·a·s·a, and a·a·s·a·s quadrilateral congruence theo-
rems.

3. prove the s·s·s·s·a quadrilateral congruence theorem for convex quadri-
laterals.

4. provide euclidean counterexamples for each of a·s·a·a·s, a·s·a·s·s,
a·s·s·a·s, and a·a·a·a·s.

5. Here is another way that you could count words: there are four angles
and four sides, a total of eight pieces of information, and you need to
choose five of them. That means there are


8
5


=

8!
5!(8−5)!

= 56

possibilities. that’s quite a few more than the 25 = 32 possibilities
that i discussed. resolve this discrepancy and make sure that i haven’t
missed any congruence theorems.




