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Some calisthenics to start the lesson

in the course of this lesson, we are going to need to use a few facts dealing
with parallelograms. First, let me remind of the proper definition of a
parallelogram.

DeF: paralleloGraM
a parallelogram is a simple quadrilateral whose opposite sides are
parallel.

now on to the facts about parallelograms that we will need for this lesson.
None of their proofs are that difficult, but they would be a good warm-up
for this lesson.

1 prove that in a parallelogram, the two pairs of opposite sides are
congruent and the two pairs of opposite angles are congruent.

2 prove that if a convex quadrilateral has one pair of opposite sides
which are both parallel and congruent, then it is a parallelogram.

3 let ABBA be a simple quadrilateral. Verify that if AA and BB

are parallel, but AB and AB are not, then AA and BB cannot be
congruent.
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parallel projection

the purpose of this lesson is to introduce a mechanism called parallel
projection, a particular kind of mapping from points on one line to points
on another. Parallel projection is the piece of machinery that you have
to have in place to really understand similarity, which is in turn essential
for so much of what we will be doing in the next lessons. The primary
goal of this lesson is to understand how distances between points may be
distorted by the parallel projection mapping. Once that is figured out, we
will be able to turn our attention to the geometry of similarity.

DeF: parallel projection
a parallel projection from one line  to another  is a map Φ which
assigns to each point P on  a point Φ(P) on  so that all the lines
connecting a point and its image are parallel to one another.

It is easy to construct parallel projections. Any one point P on  and its
image Φ(P) on  completely determines the projection: for any other
point Q on  there is a unique line which passes through Q and is parallel
to the line � PΦ(P) . Wherever this line intersects  will have to be
Φ(Q). There are only two scenarios where this construction will not work
out: (1) if P is the intersection of  and , then the lines of projection run
parallel to  and so fail to provide a point of intersection; and (2) if Φ(P)
is the intersection of  and , then the lines of projection actually coincide
rather than being parallel.

The path from a point P on  to a point P on  defines a parallel projection
as long as neither P nor P is the intersection of  and  (as shown at right).
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tHM: parallel projection is a Bijection
A parallel projection is both one-to-one and onto.

Proof. consider a parallel projection Φ :
 → . First let’s see why Φ is one-
to-one. Suppose that it is not. That is,
suppose that P and Q are two distinct
points on  but that Φ(P) = Φ(Q). then
the two projecting lines �PΦ(P) and
�QΦ(Q), which ought to be parallel,
actually share a point. This can’t happen.
Now let’s see why Φ is onto, so take a

point Q on . We need to make sure that
there is a point Q on  so that Φ(Q) =Q.
to get a sense of how Φ is casting points
from  to , let’s consider a point P on 
and its image Φ(P) on . the projecting
line that should lead from Q to Q ought
to be parallel to �PΦ(P). now, there
is a line which passes through Q and is
parallel to � PΦ(P) . The only ques-
tion, then, is whether that line intersects
– if it does, then we have found our Q.
What if it doesn’t though? in that case,
our line is parallel to both �PΦ(P) and
. that would mean that �PΦ(P) and
 are themselves parallel. since P is on
both of these lines, we know that cannot
be the case.

Since parallel projection is a bijection, I would like to use a naming con-
vention for the rest of this lesson that i think makes things a little more
readable. i will use a prime mark  to indicate the parallel projection of a
point. so Φ(P) = P, Φ(Q) = Q, and so on.
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parallel projection, order, and congruence.

so far we have seen that parallel projection establishes a correspondence
between the points of one line and the points of another. What about
the order of those points? Can points get shuffled up in the process of a
parallel projection? Well, ... no.

tHM: parallel projection anD orDer
let Φ : →  be a parallel projection. if A, B, and C are points on 
and B is between A and C, then B is between A and C.

Proof. Because B is between A and C, A and C must be on opposite sides
of the line �BB. But:

�AA does not intersect �BB
so A has to be on the same side of
�BB as A.

�CC does not intersect �BB
so C has to be on the same side of
�BB as C.

that means A and C have to be on opposite sides of �BB, and so the
intersection of � BB  and AC, which is B, must be between A and
C.
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That’s the story of how parallel projection and order interact. What about
congruence?

tHM: parallel projection anD conGrUence
let Φ : →  be a parallel projection. if a, b, A and B are all points
on  and if ab  AB, then ab  AB.

Proof. There are actually several scenarios here, depending upon the po-
sitions of the segments ab and AB relative to . They could lie on the
same side of , or they could lie on opposite sides of , or one or both
could straddle , or one or both could have an endpoint on . You have
to handle each of those scenarios slightly differently, but I am only going
to address what i feel is the most iconic situation– the one where both
segments are on the same side of .

case 1:  and  are parallel.
First let’s warm up with a simple case which i think helps illuminate the
more general case– it is the case where  and  are themselves parallel.
notice all the parallel line segments:
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A A A

B
B

BB
B

B

AAA

There are three positions for A and B  relative to the image line– both on the 
same side, one on the image line, or one on each side. Likewise, there are three 
positions for a and b. Therefore, in all, there are nine scenarios.
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aa is parallel to bb and ab is par-
allel to ab so aabb is a paral-
lelogram;

AA is parallel to BB and AB is
parallel to AB so AABB is also
a parallelogram.

Because the opposite sides of a parallelogram are congruent (exercise 1
at the start of the lesson), ab  ab and AB  AB. since ab  AB, that
means ab  AB.

That’s the story of how parallel projection and order interact. What about
congruence?
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Case 1: when the two lines are parallel.
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case 2:  and  are not parallel.
This is the far more likely scenario. In this case the two quadrilaterals
aabb and AABB will not be parallelograms. i want to use the same
approach here as in case 1 though, so to do that we will need to build
some parallelograms into the problem. Because  and  are not parallel,
the segments aa and bb cannot be the same length (exercise 3 at the start
of this lesson), and the segments AA and BB cannot be the same length.
let’s assume that aa is shorter than bb and that AA is shorter than BB.
if this is not the case, then it is just a matter of switching some labels to
make it so.
then
◦ there is a point c between b and b so that bc  aa, and
◦ there is a point C between B and B so that BC  AA.

this creates four shapes of interest– the two quadrilaterals aabc and
AABC which are actually parallelograms (exercise 2), and the two trian-
gles abc and ABC. The key here is to prove thatabc ABC.
i want to use a·a·s to do that.
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◦ there is a point C between B and B so that BC  AA.
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[a] ∠b  ∠B.
the lines cb and CB are parallel (they are two of the projecting
lines) and they are crossed by the tranversal . By the converse
of the alternate interior angle theorem, that means ∠abc and
∠ABC are congruent.

[a] ∠c  ∠C.
The opposite angles of the two parallelograms are congruent. There-
fore ∠acb ∠aab and ∠AAB ∠ACB. But aa and AA are par-
allel lines cut by the transversal , so ∠aab  ∠AAB. that means
that ∠acb  ∠ACB, and so their supplements ∠acb and ∠ACB

are also congruent.

[s] ac  AC.
the opposite sides of the two parallelograms are congruent too.
therefore ac  ab and AB  AC, and since ab  AB, that means
ac  AC.

By A·a·s, then, abc ABC. the corresponding sides ab and AB

have to be congruent.
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parallel projection and distance

That brings us to the question at the very heart of parallel projection. If
Φ is a parallel projection and A and B are two points on , how do the
lengths |AB| and |AB| compare? in case 1 of the last proof, the segments
AB and AB ended up being congruent, but that was because  and  were
parallel. in general, AB and AB do not have to be congruent. But (and this
is the key) in the process of parallel projecting from one line to another,
all distances are scaled by a constant multiple.

tHM: parallel projection anD Distance
if Φ :  →  is a parallel projection, then there is a constant k such
that

|AB|= k|AB|

for all points A and B on .

i want to talk about a few things before diving in after the formal proof.
The first is that the previous theorem on congruence gives us a way to
narrow the scope of the problem. Fix a point O on  and let r be one of the
two rays along  with O as its endpoint. the segment construction axiom
says that every segment AB on  is congruent to a segment OP where P is
some point on r. We have just seen that parallel projection maps congruent
segments to congruent segments. so if Φ scales all segments of the form
OP by a factor of k, then it must scale all the segments of  by that same
factor.

30
º

30
º

30
º

30
º

30º
60º 90º 120º

k =
√

3 2 k =
√

3k = 1
√

3 k = 2
√

3
Some parallel projections and their scaling constants.
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The second deals with parallel projecting end-to-end congruent copies
of a segment. For this, let me introduce another convenient notation con-
vention: for the rest of this argument, when i write a point with a subscript
Pd , the subscript d is the distance from that point to O. Now, pick a par-
ticular positive real value x, and let

k = |OP
x|/|OPx|,

so that Φ scales the segment OPx by a factor of k. Of course, eventually we
will have to show that Φ scales all segments by that same factor, but for
now let’s restrict our attention to the segments OPnx, where n is a positive
integer. Between O and Pnx are Px, P2x, . . . P(n−1)x in order:

O∗Px ∗P2x ∗ · · · ∗P(n−1)x ∗Pnx.

We have seen that parallel projection preserves the order of points, so

O ∗P
x ∗P

2x ∗ · · · ∗P
(n−1)x ∗P

nx.

each segment PixP(i+1)x is congruent to OPx and consequently each paral-
lel projection P

ixP
(i+1)x is congruent to OP

x. just add them all together

|OP
nx|= |OP

x|+ |P
xP

2x|+ |P
2xP

3x|+ · · ·+ |P
(n−1)xP

nx|

= kx+ kx+ kx+ · · ·+ kx (n times)
= k ·nx

and so Φ scales OPnx by a factor of k.

distance 
from O

distance 
from O´

0
kx

2kx
3kx

4kx

0
x

2x
3x

4x

O
P

2x

P
3x

P
4xPx

P2x
P3x

P4x

P
x

O
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Sadly, no matter what x is, the points Pnx account for an essentially
inconsequential portion of the set of all points of r. However, if OPx and
OPy were to have two different scaling factors we could use this end-to-
end copying to magnify the difference between them. The third thing I
would like to do, then, is to look at an example to see how this actually
works, and how this ultmately prevents there from being two different
scaling factors. in this example, let’s suppose that |OP

1| = 2, so that all
integer length segments on  are scaled by a factor of 2, and let’s take a
look at what this means for P3.45. let k be the scaling factor for OP3.45 and
let’s see what the first few end-to-end copies of OP3.45 tell us about k.

2 2.41.6 1.8 2.2

3 < 3.45 < 4
O∗P3 ∗P3.45 ∗P4

O ∗P
3 ∗P

3.45 ∗P
4

6 < 3.45k < 8
1.74 < k < 2.32

6 < 6.9 < 7
O∗P6 ∗P6.9 ∗P7

O ∗P
6 ∗P

6.9 ∗P
7

12 < 6.9k < 14
1.74 < k < 2.0310 < 10.35 < 11

O∗P10 ∗P10.35 ∗P11

O ∗P
10 ∗P

10.35 ∗P
11

20 < 10.35k < 22
1.93 < k < 2.13

13 < 13.8 < 14
O∗P13 ∗P13.8 ∗P14

O ∗P
13 ∗P

13.8 ∗P
14

26 < 13.8k < 28
1.88 < k < 2.0317 < 17.25 < 18

O∗P17 ∗P17.25 ∗P18

O ∗P
17 ∗P

17.25 ∗P
18

34 < 17.25k < 36
1.97 < k < 2.09 20 < 20.7 < 21

O∗P20 ∗P20.7 ∗P21

O ∗P
20 ∗P

20.7 ∗P
21

40 < 20.7k < 42
1.93 < k < 2.03

1

3

5

2

4

6
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Proof. It is finally time to prove that parallel projection scales distance.
let k = |OP

1| so that k is the scaling factor for the segment of length one
(and consequently all integer length segments). Now take some arbitrary
point Px on  and let k be the scaling factor for the segment OPx. We want
to show that k = k and to do that, I want to follow the same basic strategy
as in the example above– capture k in an increasingly narrow band around
k by looking at the parallel projection of Pnx as n increases.

nx< nx < nx
O∗Pnx ∗Pnx ∗Pnx

O ∗P
nx ∗P

nx ∗P
nx

knx< knx < knx

k(nx−1)< knx< knx < knx< k(nx+1)

k(nx−1)< knx < k(nx+1)
k · (nx−1)/(nx)< k < k · (nx+1)/(nx)

as n increases, the two ratios (nx− 1)/(nx) and (nx+ 1)/(nx) both ap-
proach 1. in the limit as n goes to infinity, they are one. Since the above
inequalities have to be true for all n, the only possible value for k , then,
is k.

The floor function, f (x) = x, assigns to each real num-
ber x the largest integer which is less than or equal to it.

the ceiling function, f (x) = x, assigns to each real
number x the smallest integer which is greater than or
equal to it.

notation

* In this step, I have replaced one set of inequalities with another, less precise, 
set. The new inequalities are easier to manipulate mathematically though, and  
are still accurate enough to get the desired result.

*
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exercises

1. investigate the other possible cases in the proof that parallel projection
preserves order.

2. suppose that Φ is a parallel projection from  to . if  and  intersect,
and that point of intersection is P, prove that Φ(P) = P.

3. prove that if  and  are parallel, then the scaling factor of any parallel
projection between them must be one, but that if  and  are not paral-
lel, then there is a parallel projection with every possible scaling factor
k where 0 < k < ∞.

4. in the lesson 7, we constructed a distance function, and one of the
keys to that construction was locating the points on a ray which were a
distance of m/2n from its endpoint. In Euclidean geometry, there is a
construction which locates all the points on a ray which are any rational
distance m/n from its endpoint. Take two (non-opposite) rays r and r
with a common endpoint O. along r, lay out m congruent copies of
a segment of length one, ending at the point Pm. along r, lay out n
congruent copies of a segment of length one, ending at the point Qn.
Mark the point Q1 on r which is a distance one from O. Verify that
the line which passes through Q1 and is parallel to PmQn intersects r a
distance of m/n from O.


