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in the lessons on neutral geometry, we spent a lot of effort to gain an
understanding of polygon congruence. in particular, i think we were pretty
thorough in our investigation of triangle and quadrilateral congruence. so
i sincerely hope that you haven’t forgotten what it means for two polygons
to be congruent:

1. all their corresponding sides must be congruent, and
2. all their corresponding interior angles must be congruent.

remember as well that polygon congruence is an equivalence relation (it
is reflexive, symmetric, and transitive). it turns out that congruence is not
the only important equivalence relation between polygons, though, and
the purpose of this lesson is to investigate another: similarity.

similarity is a less demanding relation than congruence. i think of con-
gruent polygons as exactly the same, just positioned differently. i think of
similar polygons as “scaled versions” of one another– the same shape, but
possibly different sizes. that’s not really a definition, though, so let’s get
to something a little more formal.

DeF: similar PolyGons
two n-sided polygons P1P2 . . .Pn and Q1Q2 . . .Qn are similar to one
another if they meet two sets of conditions

1. corresponding interior angles are congruent:

∠Pi � ∠Qi, 1 ≤ i ≤ n.

2. corresponding side lengths differ by the same constant multiple:

|PiPi+1|= k · |QiQi+1|, 1 ≤ i ≤ n.
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i will use the notation P1P2 . . .Pn ∼Q1Q2 . . .Qn to indicate similarity. there
are a few things worth noting here. First, if polygons are congruent, they
will be similar as well– the scaling constant k will be one in this case.
second, similarity is an equivalence relation– i leave it to you to verify
that the three required conditions are met. third, when you jump from
one polygon to another similar polygon, all the corresponding segments
lengths are scaled by the same amount. that behavior echoes the work we
did in the last lesson, and for good reason: parallel projection underlies
everything that we are going to do in this lesson.

An arrangement of similar triangles.

A spiralling stack 
of similar golden 
rectangles (see the 
exercises).
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much of the time, when working with either parallel projection or simi-
larity, the actual scaling constant is just not that important. the only thing
that matters is that there is a scaling constant. Fortunately, the existence
of a scaling constant can be indicated without ever mentioning what it is.
the key to doing this is ratios. Consider a parallel projection from line �
to line ��. let A, B, a, and b be points on � and let A�, B�, a� and b� be their
respective images on ��. the main result of the last lesson was that there
is a scaling constant k so that

|A�B�|= k · |AB| & |a�b�|= k · |ab|.

the ratios i am talking about are only a step away from this pair of equa-
tions.

ratio 1: solve for k in both equa-
tions and set them equal to each
other

|A�B�|
|AB| =

|a�b�|
|ab| .

ratio 2: starting from the first ra-
tio, multiply through by |AB| and
divide through by |a�b�|

|A�B�|
|a�b�| =

|AB|
|ab| .

a

b

B

A

a

b

B

A

= =

|AB|
|ab|

|AB|
|ab|

|AB|
|AB|

|ab|
|ab|

Two invariant ratios of a parallel projection.
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triangle similarity theorems

i would now like to turn our attention to a few theorems that deal with sim-
ilarity of triangles. i like to think of these similarity theorems as degen-
erations of the triangle congruence theorems, where the strict condition
of side congruence, A�B� � AB, is replaced with the more flexible condi-
tion of constant scaling, |A�B�| = k|AB|. First up is the s·a·s similarity
theorem.

tHm: s·a·s similarity
in triangles �ABC and �A�B�C�, if ∠A � ∠A� and if there is a con-
stant k so that

|A�B�|= k · |AB| & |A�C�|= k · |AC|,

then �ABC ∼�A�B�C�.

Proof. First of all, let me point out that just as with the parallel projection,
the second condition in the s·a·s similarity theorem can be recast in terms
of ratios:

�
|A�B�|= k|AB|
|A�C�|= k|AC| ⇐⇒ |A�B�|

|AB| =
|A�C�|
|AC| ⇐⇒ |A�B�|

|A�C�| =
|AB|
|AC| .

With that said, what we need to do in this proof is to establish two more
angle congruences, that ∠B � ∠B� and ∠C � ∠C�, and one more ratio of
sides, that |B�C�|= k|BC|. two parallel projections will form the backbone
of this proof. the first will establish the two angle congrunces while the
second will calculate the ratio of the third pair of sides.
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The first parallel projection. the primary purpose of the first projection
is to build a transitional triangle which is congruent to �A�B�C� but posi-
tioned on top of �ABC. Begin by locating the point B� on AB � so that
AB� � A�B�. We cannot know the exact location of B� relative to B on this
ray– that depends upon whether A�B� is shorter or longer than AB. For
this argument, assume that A�B� is shorter than AB, which will place B�

between A and B (the other case is not substantially different). Consider
the parallel projection

Φ1 : (�AB�)−→ (�AC�)

which takes B to C. note that since A is the intersection of these two lines,
Φ1(A) =A. label C� =Φ1(B�). let’s see how the newly formed �AB�C�

compares with �A�B�C�. Compare the ratios

|AC�|
|AC|

1
=

|AB�|
|AB|

2
=

|A�B�|
|AB|

3
=

|A�C�|
|AC| .

1. parallel projection
2. constructed congruence

3. given

if you look at the first and last entries in that string of equalities you will
see that |AC�| = |A�C�|. Put that together with what we already knew,
that AB� � A�B� and ∠A � ∠A�, and by s·a·s, we see that �A�B�C� and
�AB�C� are congruent. in particular, that means ∠B� � ∠B� and ∠C� �
∠C�. now let’s turn back to see how �AB�C� relates to �ABC. in order
to locate C�, we used a projection which was parallel to �BC�. that of
course means � B�C� � and � BC � are parallel to one another, and so,
by the converse of the alternate interior angle theorem, ∠B� � ∠B and
∠C� � ∠C. since angle congruence is transitive, we now have the two
required angle congruences, ∠B � ∠B� and ∠C � ∠C�.

C

B
B

C

AA

B

C
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The second parallel projection. Consider the parallel projection

Φ2 : (�AC�)−→ (�BC�)

which maps A to B. again, since C is the intersection of those two lines,
Φ2(C) =C. the other point of interest this time is C�. Define P=Φ2(C�).
in doing so, we have effectively carved out a parallelogram BB�C�P. re-
call that the opposite sides of a parallelogram are congruent– in particular,
B�C� � BP. now consider the ratios that Φ2 provides

|B�C�|
|BC|

1
=

|B�C�|
|BC|

2
=

|BP|
|BC|

3
=

|AC�|
|AC|

4
=

|A�C�|
|AC| = k.

1. triangle congruence established above
2. opposite sides of a parallelogram

3. parallel projection
4. triangle congruence established above

thus, |B�C�|= k|BC|, as needed.

The first parallel projection. the primary purpose of the first projection
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1. parallel projection
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3. given

if you look at the first and last entries in that string of equalities you will
see that |AC�| = |A�C�|. Put that together with what we already knew,
that AB� � A�B� and ∠A � ∠A�, and by s·a·s, we see that �A�B�C� and
�AB�C� are congruent. in particular, that means ∠B� � ∠B� and ∠C� �
∠C�. now let’s turn back to see how �AB�C� relates to �ABC. in order
to locate C�, we used a projection which was parallel to �BC�. that of
course means � B�C� � and � BC � are parallel to one another, and so,
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C
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B
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P
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Back in the neutral geometry lessons, after s·a·s we next encountered
a·s·a and a·a·s. Unlike s·a·s, both of those theorems reference only
one pair of sides in the triangles. let’s take a look at what happens when
you try to modify those congruence conditions into similarity conditions.

a·s·a Congruence a·s·a similarity (?)

∠A � ∠A� ∠A � ∠A�

AB � A�B� |A�B�|= k · |AB|
∠B � ∠B� ∠B � ∠B�

a·a·s Congruence a·a·s similarity (?)

∠A � ∠A� ∠A � ∠A�

∠B � ∠B� ∠B � ∠B�

BC � B�C� |B�C�|= k · |BC|

in each of these conversions, the condition on the one side is automati-
cally satisfied– there will always be a real value of k that makes the equa-
tion true. that is a hint that it may take only two angle congruences to
guarantee similarity.

tHm: a · a similarity
in triangles �ABC and �A�B�C�, if ∠A � ∠A� and ∠B � ∠B�, then
�ABC ∼�A�B�C�.

Proof. We have plenty of information about the angles, so what we need
here is some information about ratios of sides. in particular, i want to
show that

|A�B�|
|AB| =

|A�C�|
|AC| .

along with the given congruence ∠A � ∠A�, that will be enough to use
s·a·s similarity. as in the s·a·s similarity proof, i want to construct a
transition triangle: one that is positioned on top of �ABC but is congruent
to �A�B�C�. to do that, locate B� on AB� so that AB� � A�B�, and C� on
AC� so that AC� � A�C�. By s·a·s, �AB�C� and �A�B�C� are congruent.
now take a look at all the congruent angles

∠B� � ∠B� � ∠B.

according to the alternate interior angle theorem, �B�C�� and �BC�
must be parallel. therefore the parallel projection from �AB� to �AC�
which maps B to C and A to itself will also map B� to C�. that gives us
some ratios

|A�B�|
|AB|

1
=

|AB�|
|AB|

2
=

|AC�|
|AC|

3
=

|A�C�|
|AC| .

1. constructed congruence
2. parallel projection

3. constructed congruence

the first and last terms in that list of equalities give the ratio we need.
that, together with the known congruence ∠A�∠A�, is enough for s·a·s
similarity, so �ABC ∼�A�B�C�.

B

C

A

B

C

A
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note that while a·a·a was not enough to guarantee congruence, thanks to
the result above, we now know that it is (more than) enough to guarantee
similarity. Finally, the last of the triangle similarity theorems is s·s·s
similarity (s·s·a, which just misses as a congruence theorem, is done in
again by the same counterexample).

tHm: s·s·s similarity
in triangles �ABC and �A�B�C�, if there is a constant k so that

|A�B�|= k · |AB| |B�C�|= k · |BC| & |C�A�|= k · |CA|,

then �ABC ∼�A�B�C�.

i am going to leave the proof of this last similarity theorem as an exercise
for you.

note that while a·a·a was not enough to guarantee congruence, thanks to
the result above, we now know that it is (more than) enough to guarantee
similarity. Finally, the last of the triangle similarity theorems is s·s·s
similarity (s·s·a, which just misses as a congruence theorem, is done in
again by the same counterexample).

tHm: s·s·s similarity
in triangles �ABC and �A�B�C�, if there is a constant k so that

|A�B�|= k · |AB| |B�C�|= k · |BC| & |C�A�|= k · |CA|,

then �ABC ∼�A�B�C�.

i am going to leave the proof of this last similarity theorem as an exercise
for you.

the Pythagorean theorem

Before we close this lesson, though, let’s meet one of the real celebrities
of the subject.

tHm: tHe PytHaGorean tHeorem
let �ABC be a right triangle whose right angle is at the vertex C.
identify the lengths of each side as

a = |BC| b = |AC| c = |AB|.

then c2 = a2 +b2.

B

C

A

B

C

A

k
k

k
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Proof. there are many, many proofs of this theorem. the one that i am
going to give involves dividing the triangle into two smaller triangles,
showing each of those is similar to the initial triangle, and then work-
ing with ratios. let D be the foot of the perpendicular to AB through C.
the segment CD divides �ABC into two smaller triangles: �ACD and
�BCD. let’s go ahead and label the lengths of the newly created sides of
those two triangles:

c1 = |AD| c2 = |BD| d = |CD|

and note that c = c1 + c2. now �ADC shares ∠A with �ACB, and they
both have a right angle, so by the a·a similarity theorem, �ADC ∼
�ACB. similarly, �BDC shares ∠B with �ACB, and they both have a
right angle as well, so again by a·a similarity, �BDC ∼ �ACB. From
these similarities, there are many ratios, but the two that we need are

a
c
=

c2

a
=⇒ a2 = c · c2 &

b
c
=

c1

b
=⇒ b2 = c · c1.

now all you have to do is add those two equations together and simplify
to get the Pythagorean theorem

a2 +b2 = c · c2 + c · c1 = c(c2 + c1) = c2.

D

A
b

c
a

B

C

c d1

c2

A proof of the Pythagorean Theorem via similarity.
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Exercises

1. Prove that similarity of polygons is an equivalence relation.

2. Prove the s·s·s triangle similarity theorem.

3. state and prove the s·a·s·a·s and a·s·a·s·a similarity theorems for
convex quadrilaterals.

the six trigonometric functions can be defined, for values of θ between
0 and 90◦, as ratios of pairs of sides of a right triangle with an interior
angle θ . if the length of the hypotenuse is h, the length of the leg
adjacent to θ is a, and the length of the leg opposite θ is o, then these
functions are defined as

sine: sin(θ) = o/h
cosine: cos(θ) = a/h
tangent: tan(θ) = o/a
cotangent: cot(θ) = a/o
secant: sec(θ) = h/a
cosecant: csc(θ) = h/o.

4. verify that the six trigonometric functions are well-defined. that is,
show that it does not matter which right triangle with interior angle θ
you choose– these six ratios will not change.

5. verify the Pythagorean identities (for values of θ between 0 and 90◦).

sin2 θ + cos2 θ = 1
1+ tan2θ = sec2θ

1+ cot2θ = csc2θ
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6. verify the cofunction identities (for values of θ between 0 and 90◦).

sin(90◦ −θ) = cosθ
cos(90◦ −θ) = sinθ
tan(90◦ −θ) = cotθ
cot(90◦ −θ) = tanθ
sec(90◦ −θ) = cscθ
csc(90◦ −θ) = secθ

7. the geometric mean of two numbers a and b is defined to be
√

ab. let
�ABC be a right triangle with right angle at C and let D be the point
on AB so that CD is perpendicular to AB (the same setup as in the proof
of the Pythagorean theorem). verify that |CD| is the geometric mean
of |CA| and |CB|.

8. Consider a rectangle �ABCD with |AB|< |BC|, and suppose that this
rectangle has the following special property: if a square �ABEF is
constructed inside �ABCD, then the remaining rectangle �ECDF is
similar to the original �ABCD. a rectangle with this property is called
a golden rectangle. Find the value of |BC|/|AB|, a value known as the
golden ratio.
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