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this is the first of two lessons dealing with circles. this lesson gives some
basic definitions and some elementary theorems, the most important of
which is the inscribed angle theorem. in the next lesson, we will tackle
the important issue of circumference and see how that leads to the radian
angle measurement system.

Definitions

so you might be thinking “lesson 16 and we are just now getting to cir-
cles... what was the hold-up?” in fact, we could have given a proper
definition for the term circle as far back as lesson 3. all that you really
need for a good definition is points, segments, and congruence. But once
you give the definition, what next? Most of what i want to cover with cir-
cles is specific to euclidean geometry. i don’t know that many theorems
about circles in neutral geometry, and in the discussion thus far, the only
time i remember that the lack of circles made things awkward was when
we looked at cyclic polygons. in any case, now is the time, so

deF: circle
For any point O and positive real number r, the circle with center O
and radius r is the set of points which are a distance r from O.

a few observations.

1. a circle is a set. therefore, you should probably speak of the ele-
ments of that set as the points of the circle, but it is more common
to refer to these as points on the circle.

2. in the definition i have given, the radius is a number. we often
talk about the radius as a geometric entity though– as one of the
segments from the center to a point on the circle.

3. we tend to think of the center of a circle as a fundamental part of
it, but you should notice that the center of a circle is not actually a
point on the circle.

4. it is not that common to talk about circles as congruent or not con-
gruent. if you were to do it, though, you would say that two circles
are congruent if and only if they have the same radius.
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Before we get into anything really complicated, let’s get a few other re-
lated definitions out of the way.

deF: chord and diaMeter
a segment with both endpoints on a circle is called a chord of that
circle. a chord which passes through the center of the circle is called
a diameter of that circle.

Just like the term radius, the term diameter plays two roles, a numerical
one and geometric one. the diameter in the numerical sense is just the
length of the diameter in the geometric sense.

deF: central angle
an angle with its vertex at the center of a circle is called a central
angle of that circle.

we will see (in the next section) that a line intersects a circle at most
twice. therefore, if AB is a chord of a circle, then all the points of that
circle other than A and B are on one side or the other of � AB �. thus
� AB � separates those points into two sets. these sets are called arcs
of the circle. there are three types of arcs– semicircles, major arcs, and
minor arcs– depending upon where the chord crosses the circle.

deF: seMicircle
let AB be a diameter of a circle C. all the points of C which are
on one side of � AB�, together with the endpoints A and B, form a
semicircle.

3 diameters12 chords 4 central angles
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each diameter divides the circle into two semicircles, overlapping at the
endpoints A and B.

deF: MaJor and Minor arc
let AB be a chord of a circle C which is not a diameter, and let O be
the center of this circle. all the points of C which are on the same
side of � AB � as O, together with the endpoints A and B, form
a major arc. all the points of C which are on the opposite side of
� AB � from O, together with the endpoints A and B, form a minor
arc.

like the two semicircles defined by a diameter, the major and minor arcs
defined by a chord overlap only at the endpoints A and B. For arcs in
general, including diameters, i use the notation �AB. Most of the arcs we
look at will be minor arcs, so in the instances when i want to emphasize
that we are looking at a major arc, i will use the notation �AB.

there is a very simple, direct, and important relationship between arcs
and central angles. You may recall that in the lesson on polygons, i sug-
gested that two rays with a common endpoint define not one, but two
angles– a “proper” angle and a “reflex” angle. these proper and reflex
angles are related to the minor and major arcs as described in the next
theorem, whose proof i leave to you.

thM: central angles and arcs
let AB be a chord of a circle with center O. the points of �AB are
A, B, and all the points in the interior of the proper angle ∠AOB. the
points of �AB are A, B, and all the points in the interior of the reflex
angle ∠AOB (that is, the points exterior to the proper angle).

minor arc semicircle major arc
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intersections

circles are different from the shapes we have been studying to this point
because they are not built out of lines or line segments. circles do share
at least one characteristic with simple polygons though– they have an in-
terior and an exterior. For any circle C with center O and radius r, and for
any point P which is not C,

◦ if |OP|< r, then P is inside C;
◦ if |OP|> r, then P is outside C.

the set of points inside the circle is the interior and the set of points out-
side the circle is the exterior. Just like simple polygons, the circle separates
the interior and exterior from each other. to get a better sense of that, we
need to look at how circles intersect other basic geometric objects.

thM: a line and a circle
a line will intersect a circle in 0, 1, or 2 points.

Proof. let O be the center of a circle C of radius r, and let � be a line. it
is easy to find points on � that are very far from C, but are there any points
on � that are close to C? the easiest way to figure out how close � gets
to C is to look at the closest point on � to the center O. we saw (it was a
lemma for the proof of a·a·a·s·s in lesson 10) that the closest point to O
on � is the foot of the perpendicular– call this point Q.

Zero intersections: |OQ|> r.
all the other points of � are even farther from O, so none of the points on
� can be on C.

Q

O
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One intersection: |OQ|= r.
of course Q is an intersection, but it is the only intersection because all
the other points on � are farther away from O.

Two intersections: |OQ|< r.
the line spends time both inside and outside the circle. we just need to
find where the line crosses in, and then back out of, the circle. the idea is
to relate a point’s distance from O to its distance from Q, and we can do
that with the Pythagorean theorem. if P is any point on � other than Q,
then �OQP will be a right triangle with side lengths that are related by
the Pythagorean theorem

|OQ|2 + |QP|2 = |OP|2.

in order for P to be on the circle, |OP| must be exactly r. that means that
|PQ| must be exactly

�
r2 −|OQ|2. since |OQ| < r, this expression is a

positive real number, and so there are exactly two points on �, one on each
side of Q, that are this distance from Q.

One intersection: |OQ|= r.
of course Q is an intersection, but it is the only intersection because all
the other points on � are farther away from O.

Two intersections: |OQ|< r.
the line spends time both inside and outside the circle. we just need to
find where the line crosses in, and then back out of, the circle. the idea is
to relate a point’s distance from O to its distance from Q, and we can do
that with the Pythagorean theorem. if P is any point on � other than Q,
then �OQP will be a right triangle with side lengths that are related by
the Pythagorean theorem

|OQ|2 + |QP|2 = |OP|2.

in order for P to be on the circle, |OP| must be exactly r. that means that
|PQ| must be exactly

�
r2 −|OQ|2. since |OQ| < r, this expression is a

positive real number, and so there are exactly two points on �, one on each
side of Q, that are this distance from Q.

Q

O

Q

O
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a line that intersects a circle once (at the foot of the perpendicular) is
called a tangent line to the circle. a line that intersects a circle twice is
called a secant line of the circle. there is a important corollary that turns
this last theorem about lines into a related theorem about segments.

cor: a segMent and a circle
if point P is inside a circle, and point Q is outside it, then the segment
PQ intersects the circle.

Proof. label the center of the circle O. From the last theorem, we know
that � PQ � intersects the circle twice, and that the two intersections
are separated by F , the foot of the perpendicular to PQ through O. the
important intersection here is the one that is on the same side of the foot
of the perpendicular as Q– call this point R. according to the Pythagorean
theorem (with triangles �OFR and �OFQ),

|FQ|=
�

|OQ|2 −|OF|2 & |FR|=
�

|OR|2 −|OF|2.

since |OQ| > |OR|, |FQ| > |FR|, which places R between F and Q. we
don’t know whether P and Q are on the same side of F , though. if they
are on opposite sides of F , then P∗F ∗R∗Q, so R is between P and Q as
needed. if P and Q are on the same side of F , then we need to look at the
right triangles �OFP and �OFR. they tell us that

|FP|=
�
|OP|2 −|OF|2 & |FQ|=

�
|OQ|2 −|OF|2.

since |OP|< |OR|, |FP|< |FR|, which places P between F and R. Finally,
if P is between F and R, and R is between F and Q, then R has to be
between P and Q.

QR

O

PF
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there is another important question of intersections, and that involves
the intersection of two circles. if two circles intersect, then it is highly
likely their two centers and the point of intersection will be the vertices of
a triangle (there is a chance the three could be colinear, and we will deal
with that separately). the lengths of all three sides of that triangle will be
known (the two radii and the distance between centers). so this question
is not so much one about circles, but whether triangles can be built with
three given side lengths. we have one very relevant result– the triangle
inequality says that if a, b, and c are the lengths of the side of a triangle,
then

|a−b|< c < a+b.

what about the converse, though? if a, b, and c are any positive reals sat-
isfying the triangle inequality conditions, can we put together a triangle
with sides of those lengths? as much as a digression as it is, we need to
answer this question before moving on.

thM: BuildaBle triangles
let a, b, and c be positive real numbers. suppose that c is the largest
of them and that c < a+ b. then there is a triangle with sides of
length a, b, and c.

Proof. start off with a segment AB whose length is c. we need to place a
third point C so that it is a distance a from B and b from A. according to
s·s·s, there is only one such triangle “up to congruence”, so this may not
be too easy. what i am going to do, though, is to build this triangle out
of a couple of right triangles (so that i can use the Pythagorean theorem).
Mark D on AB � and label d = |AD|. Mark C on one of the rays with
endpoint D which is perpendicular to AB and label e = |CD|. then both
�ACD and �BCD are right triangles. Furthermore, by sliding D and C
along their respective rays, we can make d and e any positive numbers.

A

C
B

d

a

c

e

D
b

d
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we need to see if it is possible to position the two so that |AC| = b and
|BC|= a.

to get |AC|= b, we will need d2 + e2 = b2.
to get |BC|= a, we will need (c−d)2 + e2 = a2.

it’s time for a little algebra to find d and e. according to the Pythagorean
theorem,

b2 −d2 = e2 = a2 − (c−d)2

b2 −d2 = a2 − c2 +2cd −d2

b2 = a2 − c2 +2cd

(b2 −a2 + c2)/2c = d.

since we initially required c > a, this will be a positive value. now let’s
plug back in to find e.

e2 = b2 −d2 = b2 −
�

b2 −a2 + c2

2c

�2

.

here is the essential part– because we will have to take a square root to
find e, the right hand side of this equation has to be positive– otherwise
the equation has no solution and the triangle cannot be built. let’s go back
to see if the triangle inequality condition on the three sides will help:

c < a+b
c−b < a

(c−b)2 < a2

c2 −2bc+b2 < a2

c2 −a2 +b2 < 2bc

(c2 −a2 +b2)/2c < b

((c2 −a2 +b2)/2c)2 < b2

0 < b2 − ((c2 −a2 +b2)/2c)2

which is exactly what we want [of course, when i first did this calculation,
i worked in the other direction, from the answer to the condition]. as long
as c < a+b, then, a value for e can be found, and that means the triangle
can be built.
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now let’s get back to the real issue at hand– that of the intersection of two
circles.

thM: a circle and a circle
two circles intersect at 0, 1, or 2 points.

Proof. three factors come in to play here: the radius of each circle and
the distance between their centers. label

r1, r2: the radii of the two circles, and
c, the distance between the centers.

Two intersections:
when |r1 − r2|< c < r1 + r2.
there are exactly two triangles, �O1XO2
and �O1YO2, one on each side of O1O2,
with sides of the required lengths. there-
fore there are exactly two intersections of
the two circles.

One intersection:
when c = |r1 − r2| or c = r1 + r2.
in these two limiting cases, the triangle de-
volves into a line segment and the two inter-
sections merge. in the first, either O1 ∗O2 ∗
X or X ∗O1 ∗O2, depending upon which ra-
dius is larger. in the second O1 ∗X ∗O2.

Zero intersections:
when c < |r1 − r2| or c > r1 + r2.
in this case, you just cannot form the needed
triangle (it would violate the triangle in-
equality), so there cannot be any intersec-
tions. in the first case, one circles lies en-
tirely inside the other. in the second, they
are separated from one another.
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as i mentioned before, there is a one-to-
one correspondence between central an-
gles and arcs that matches the proper an-
gle ∠AOB with the minor arc �AB and
the reflex angle ∠AOB with the major arc
�AB. in the next lesson we are going to
look at the relationship between the size
of the central angle and the length of the
corresponding arc (which is the basis for
radian measure). in the meantime, i will
use the correspondence as a way to sim-
plify my illustrations– by using an arc to
indicate a central angle, i can keep the
picture from getting too crowded around
the center of the circle.

The inscribed Angle Theorem

in this section we will prove the inscribed angle theorem, a result which
is indispensible when working with circles. i suspect that this theorem is
the most elementary result of euclidean geometry which is generally not
known to the average calculus student. Before stating the theorem, we
must define an inscribed angle, the subject of the theorem.

deF: inscriBed angle
if A, B, and C are all points on a circle, then ∠ABC is an inscribed
angle on that circle.

given any inscribed angle ∠ABC, points
A and C are the endpoints of two arcs (ei-
ther a minor and a major arc or two semi-
circles). excluding the endpoints, one
of those two arcs will be contained in
the interior of ∠ABC (a homework prob-
lem). we say, then, that ∠ABC is in-
scribed on that arc. the inscribed angle
theorem describes the close relationship
between an inscribed angle and the cen-
tral angle on the same arc.

A B

Major arc: reflex ∠AOB
Minor arc: proper ∠AOB

Two inscribed angles
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the inscriBed angle theoreM
if ∠BAC is an inscribed angle on a circle with center O, then

(∠ABC) =
1
2
(∠AOC).

Proof. this proof is a good lesson on the benefits of starting off with an
easy case. there are three parts to this proof, depending upon the location
of the vertex B relative to the lines OA and OC.

Part 1. When B is the intersection
of OC�op with the circle, or when
B is the intersection of OA �op

with the circle.

even though we are only establishing the theorem for two very particular
locations of B, this part is the key that unlocks everything else. now, while
i have given two possible locations for B, i am going to prove the result
for just the first one (where B is on OC�op). all you have to do to prove
the other part is to switch the letters A and C. label ∠AOB as ∠1 and
∠AOC as ∠2. these angles are supplementary, so

(∠1)+ (∠2) = 180◦. (i)

the angle sum of �AOB is 180◦, but in that triangle ∠A and ∠B are
opposite congruent segments, so by the isosceles triangle theorem they
are congruent. therefore

2(∠B)+ (∠1) = 180◦, (ii)

and if we subtract equation (ii) from equation (i), we get (∠2)−2(∠B) =
0, so (∠AOC) = 2(∠ABC).

B A

C

O
2

1
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Part 2. When B is in the interior of
∠AOC, or when B is in the interior
of the angle formed by OA�op and
OC�op, or when A∗O∗C.

there are three scenarios here– in
the first the central angle is reflex,
in the second it is proper, and in
the third it is a straight angle– but
the proof is the same for all of them.
in each of these scenarios, the line
� OB � splits both the inscribed
and the central angles. in order to
identify these four angles, let me
label one more point: D is the sec-
ond intersection of � OB � with
the circle (so BD is a diameter of
the circle). using angle addition in
conjunction with the previous re-
sults,

(∠AOC) = (∠AOD)+ (∠DOC)

= 2(∠ABD)+2(∠DBC)

= 2((∠ABD)+ (∠DBC))

= 2(∠ABC).

Part 3. When B is in the interior
of the angle formed by OA � and
OC �op, or when B is in the inte-
rior of the angle formed by OC �
and OA�op.

as in the last case, label D so that
BD is a diameter. the difference
this time is that we need to use an-
gle subtraction instead of angle ad-
dition. since subtraction is a little
less symmetric than addition, the
two scenarios will differ slightly (in
terms of lettering). in the first sce-
nario

(∠AOC) = (∠AOD)− (∠DOC)

= 2(∠ABD)−2(∠DBC)

= 2((∠ABD)− (∠DBC))

= 2(∠ABC).

to get the second, you just need to
switch A and C.

B

D

A

C

O

B

D

A

C

O
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there are two important and immediate corollaries to this theorem. First,
because all inscribed angles on a given arc share the same central angle,

cor 1
all inscribed angles on a given arc are congruent.

second, the special case where the central angle ∠AOC is a straight angle,
so that the inscribed ∠ABC is a right angle, is important enough to earn its
own name

thales’ theoreM
if C is a point on a circle with diameter AB (and C is neither A nor
B), then �ABC is a right triangle.

Applications of the inscribed Angle Theorem

using the inscribed angle theorem, we can establish several nice rela-
tionships between chords, secants, and tangents associated with a circle. i
will look at two of these results to end this lesson and put some more in
the exercises.

there are two important and immediate corollaries to this theorem. First,
because all inscribed angles on a given arc share the same central angle,

cor 1
all inscribed angles on a given arc are congruent.

second, the special case where the central angle ∠AOC is a straight angle,
so that the inscribed ∠ABC is a right angle, is important enough to earn its
own name

thales’ theoreM
if C is a point on a circle with diameter AB (and C is neither A nor
B), then �ABC is a right triangle.

Applications of the inscribed Angle Theorem

using the inscribed angle theorem, we can establish several nice rela-
tionships between chords, secants, and tangents associated with a circle. i
will look at two of these results to end this lesson and put some more in
the exercises.

Five congruent angles inscribed on 
the same arc.

A right angle inscribed on a 
semicircle.
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the chord-chord ForMula
let C be a circle with center O. suppose that AC and BD are chords
of this circle, and suppose further that they intersect at a point P.
label the angle of intersection, θ =∠APD � ∠BPC. then

(θ) =
(∠AOD)+ (∠BOC)

2
.

Proof. the angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on the arc �CD
and ∠D is inscribed on the arc �AB. according to the inscribed angle
theorem, they are half the size of the corresponding central angles, so

(θ) = 180◦ − 1
2(∠COD)− 1

2(∠AOB)
= 1

2 (360◦ − (∠COD)− (∠AOB)).

this is some progress, for at least now θ is related to central angles, but
alas, these are not the central angles in the formula. if we add all four
central angles around O, though,

(∠AOB)+ (∠BOC)+ (∠COD)+ (∠DOA)= 360◦

(∠BOC)+ (∠DOA) = 360◦ − (∠COD)− (∠AOB).

now just substitute in, and you have the formula.

the chord-chord ForMula
let C be a circle with center O. suppose that AC and BD are chords
of this circle, and suppose further that they intersect at a point P.
label the angle of intersection, θ =∠APD � ∠BPC. then

(θ) =
(∠AOD)+ (∠BOC)

2
.

Proof. the angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on the arc �CD
and ∠D is inscribed on the arc �AB. according to the inscribed angle
theorem, they are half the size of the corresponding central angles, so

(θ) = 180◦ − 1
2(∠COD)− 1

2(∠AOB)
= 1

2 (360◦ − (∠COD)− (∠AOB)).

this is some progress, for at least now θ is related to central angles, but
alas, these are not the central angles in the formula. if we add all four
central angles around O, though,

(∠AOB)+ (∠BOC)+ (∠COD)+ (∠DOA)= 360◦
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now just substitute in, and you have the formula.

A

P

B
C

D
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according to the chord-chord formula, as long as the intersection point
P is inside the circle, θ can be computed as the average of two central
angles. what would happen if P moved outside the circle? of course
then we would not be talking about chords, since chords stop at the circle
boundary, but rather the secant lines containing them.

the secant-secant ForMula
suppose that A, B, C, and D are points on a circle, arranged so that
�ABCD is a simple quadrilateral, and that the secant lines AB and
CD intersect at a point P which is outside the circle. label the angle
of intersection, ∠APD, as θ . if P occurs on the same side of AD as B
and C, then

(θ) =
(∠AOD)− (∠BOC)

2
.

if P occurs on the same side of BC as A and D, then

(θ) =
(∠BOC)− (∠AOD)

2
.

Proof. there is obviously a great deal of symmetry between the two cases,
so let me just address the first. the same principles apply here as in the
last proof. angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on arc � BD
and ∠D is inscribed on arc � AC. we need to use the inscribed angle
theorem to relate these angles to central angles, and in this case, those
central angles overlap a bit, so we will need to break them down further,
but the rest is straightforward.

(θ) = 180◦ − 1
2(∠BOD)− 1

2(∠AOC)

= 1
2 (360◦ − (∠BOD)− (∠AOC))

= 1
2 (360◦ − (∠BOC)− (∠COD)− (∠AOB)− (∠BOC))

= 1
2 ([360◦ − (∠AOB)− (∠BOC)− (∠COD)]− (∠BOC))

= 1
2 ((∠AOD)− (∠BOC)).

according to the chord-chord formula, as long as the intersection point
P is inside the circle, θ can be computed as the average of two central
angles. what would happen if P moved outside the circle? of course
then we would not be talking about chords, since chords stop at the circle
boundary, but rather the secant lines containing them.

the secant-secant ForMula
suppose that A, B, C, and D are points on a circle, arranged so that
�ABCD is a simple quadrilateral, and that the secant lines AB and
CD intersect at a point P which is outside the circle. label the angle
of intersection, ∠APD, as θ . if P occurs on the same side of AD as B
and C, then

(θ) =
(∠AOD)− (∠BOC)

2
.

if P occurs on the same side of BC as A and D, then

(θ) =
(∠BOC)− (∠AOD)

2
.

Proof. there is obviously a great deal of symmetry between the two cases,
so let me just address the first. the same principles apply here as in the
last proof. angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on arc � BD
and ∠D is inscribed on arc � AC. we need to use the inscribed angle
theorem to relate these angles to central angles, and in this case, those
central angles overlap a bit, so we will need to break them down further,
but the rest is straightforward.

(θ) = 180◦ − 1
2(∠BOD)− 1

2(∠AOC)

= 1
2 (360◦ − (∠BOD)− (∠AOC))

= 1
2 (360◦ − (∠BOC)− (∠COD)− (∠AOB)− (∠BOC))

= 1
2 ([360◦ − (∠AOB)− (∠BOC)− (∠COD)]− (∠BOC))

= 1
2 ((∠AOD)− (∠BOC)).

A

PC

B
D
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exercises
1. Verify that the length of a diameter of a circle is twice the radius.

2. Prove that no line is entirely contained in any circle.

3. Prove that a circle is convex. that is, prove that if points P and Q are
inside a circle, then all the points on the segment PQ are inside the
circle.

4. Prove that for any circle there is a triangle entirely contained in it (all
the points of the triangle are inside the circle).

5. Prove that for any circle there is a triangle which entirely contains it
(all the points of the circle are in the interior of the triangle).

6. in the proof that two circles intersect at most twice, i have called both
(1) |a−b|< c < a+b, and (2) c ≥ a,b and c < a+b

the triangle inequality conditions. Verify that the two statements are
equivalent for any three positive real numbers.

7. let ∠ABC be an inscribed angle on a circle. Prove that, excluding
the endpoints, exactly one of the two arcs �AC lies in the interior of
∠ABC.

8. Prove the converse of thales’ theorem: if �ABC is a right triangle with
right angle at C, then C is on the circle with diameter AB.

9. consider a simple quadrilateral which is inscribed on a circle (that is,
all four vertices are on the circle). Prove that the opposite angles of
this quadrilateral are supplementary.

10. let C be a circle and P be a point outside of it. Prove that there are
exactly two lines which pass through P and are tangent to C. let Q and
R be the points of tangency for the two lines. Prove that PQ and PR are
congruent.

11. the “tangent-tangent” formula. let P be a point which is outside of
a circle C . consider the two tangent lines to C which pass through P
and let A and B be the points of tangency between those lines and the
circle. Prove that

(∠APB) =
(∠1)− (∠2)

2
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where ∠1 is the reflex central angle corresponding to the major arc
� AB and ∠2 is the proper central angle corresponding to the minor
arc �AB.

12. let AC and BD be two chords of a circle which intersect at a point P
inside that circle. Prove that

|AP| · |CP|= |BP| · |DP|.

references

i learned of the chord-chord, secant-secant, and tangent-tangent for-
mulas in the wallace and west book Roads to Geometry[1]. they use
the names two-chord angle theorem, two-secant angle theorem, and
two-tangent angle theorem.

[1] edward c. wallace and stephen F. west. Roads to Geometry. Pearson
education, inc., upper saddle river, new Jersey, 3rd edition, 2004.


