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1neutral geometry   

The goal of this book is to provide a pleasant but thorough introduction
to Euclidean and non-Euclidean (hyperbolic) geometry. Before I go any
further, let me clear up something that could lead to confusion on down
the road. Some mathematicians use the term non-Euclidean geometry to
mean any of a whole host of geometries which fail to be Euclidean for
any number of reasons. The kind of non-Euclidean geometry that we will
study in these lessons, and the kind that I mean when I use the term non-
Euclidean geometry, is something much more specific– it is a geometry
that satisfies all of hilbert’s axioms for euclidean geometry except the
parallel axiom.

it turns out that that parallel axiom is absolutely central to the nature
of the geometry. the euclidean geometry with the parallel axiom and the
non-Euclidean geometry without it are radically different. Even so, Eu-
clidean and non-Euclidean geometry are not polar opposites. As different
as they are in many ways, they still share many basic characteristics. Neu-
tral geometry (also known as absolute geometry in older texts) is the study
of those commonalities.





1. Our ducks in a rOw
the axioms of incidence 

and order
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From Euclid to Hilbert

You pretty much have to begin a study of Euclidean geometry with at
least some mention of euclid’s Elements, the book that got the ball rolling
over two thousand years ago. The Elements opens with a short list of
definitions. as discussed in the previous chapter, the first few of these
definitions are a little problematic. if we can push past those, we get to
euclid’s five postulates, the core accepted premises of his development of
the subject.

eUclid’s PostUlates

P1 To draw a straight line from any point to any point.
P2 to produce a finite straight line continuously in a straight

line.
P3 To describe a circle with any center and distance.
P4 That all right angles are equal to one another.
P5 That, if a straight line falling on two straight lines makes the

interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.

the first three postulates describe constructions. today we would proba-
bly reinterpret them as statements about the existence of certain objects.
the fourth provides a way to compare angles. as for the fifth, well, in all
of history, not many sentences have received as much scrutiny as that one.

1

t

2

Euclid’s Parallel Postulate

2

1

Because (∠1)+(∠2) < 180◦,
1 and 2 intersect on this side of t.
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When you look at these postulates, and euclid’s subsequent develop-
ment of the subject from them, it appears that Euclid may have been at-
tempting an axiomatic development of the subject. there is some debate,
though, about the extent to which euclid really was trying to do that. his
handling of “S·A·s,” for example, is not founded upon the postulates, and
not merely in a way that might be attributed to oversight. With a cou-
ple thousand years between us and him, we can only guess at his true
intentions. In any case, Euclidean geometry was not properly and com-
pletely axiomatized until much later, at the end of the nineteenth century
by the German mathematician david hilbert. his 1899 book, The Foun-
dations of Geometry gave an axiomatic description of what we think of as
euclidean geometry. subsequently, there have been several other axiom-
atizations, including notably ones by Birkhoff and tarski. the nice thing
about hilbert’s approach is that proofs developed in his system “feel” like
euclid’s proofs. some of the other axiomatizations, while more stream-
lined, do not retain that same feel.

neutral Geometry

it might be an obvious statement, but it needs to be said: euclid’s fifth
Postulate does not look like the other four. It is considerably longer and
more convoluted than the others. for that reason, generations of geome-
ters after euclid hoped that the fifth might actually be provable– that it
could be taken as a theorem rather than a postulate. from their efforts
(which, by the way, were unsuccessful) there arose a whole area of study.
called neutral geometry or absolute geometry, it is the study of the geom-
etry of the plane without euclid’s fifth Postulate.

so what exactly do you give up when you decide not to use euclid’s
fifth? essentially euclid’s fifth tells us something about the nature of
parallel lines. It does so in a rather indirect way, though. Nowadays it
is common to use Playfair’s axiom in place of euclid’s fifth because it
addresses the issue of parallels much more directly. Playfair’s axiom both
implies and is implied by euclid’s fifth, so the two statements can be used
interchangeably.

PlaYfair’s axiom
for any line  and for any point P which is not on , there is exactly
one line through P which is parallel to .
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even without Playfair’s axiom, it is relatively easy to show that there
must be at least one parallel through P, so what Playfair’s axiom is re-
ally telling us is that in Euclidean geometry there cannot be more than
one parallel. the existence of a unique parallel is crucial to many of the
proofs of Euclidean geometry. Without it, neutral geometry is quite lim-
ited. Still, neutral geometry is the common ground between Euclidean and
non-Euclidean geometries, and it is where we begin our study.

in the first part of this book, we are going to develop neutral geometry
following the approach of hilbert. in hilbert’s system there are five unde-
fined terms: point, line, on, between, and congruent. fifteen of his axioms
are needed to develop neutral plane geometry. Generally the axioms are
grouped into categories to make it a bit easier to keep track of them: the
axioms of incidence, the axioms of order, the axioms of congruence, and
the axioms of continuity. We will investigate them in that order over the
next several chapters.

incidence

hilbert’s first set of axioms, the axioms of incidence, describe the inter-
action between points and lines provided by the term on. On is a binary
relationship between points and lines so, for instance, you can say that a
point P is (or is not) on a line . in situations where you want to express
the line’s relationship to a point, rather than saying that a line  is on a
point P (which is technically correct), it is much more common to say that
 passes through P.

the axioms of incidence

In 1 There is a unique line on any two distinct points.
In 2 There are at least two points on any line.
In 3 there exist at least three points that do not all lie on the same

line.

Incidence

1 Two points on a line. 
2 A line on two points.
3 And there’s more.

1
2

3 Incidence

1 Two points on a line
2 A line on two points
3 And there’s more.
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By themselves, the axioms of incidence do not afford a great wealth of
theorems. some notation and a few definitions are all we get. first, the
notation. Because of the first axiom, there is only one line through any
two distinct points. Therefore, for any two distinct points A and B, we
use the notation � AB  to denote the line through A and B. As you
are probably all aware, this is not exactly the standard notation for a line.
conventionally, the line symbol is placed above the points. i just don’t
like that notation in print– unless you have lots of room between lines of
text, the symbol crowds the line above it.

now the definitions. any two distinct points lie on one line. three or
more points may or may not all lie on the same line.

def: colinearitY
Three or more points are colinear if they are all on the same line and
are non-colinear if they are not.

according to the first axiom, two lines can share at most one point. how-
ever, they may not share any points at all.

def: Parallel and intersectinG
Two lines intersect if there is a point P which is on both of them. In
this case, P is the intersection or point of intersection of them. Two
lines which do not share a point are parallel.

Lines 1 and 2 intersect. Both are parallel to line 3. Because there are two 
lines through P parallel to line 3, this is not a Euclidean geometry.

1
2

3 P

Lines 1 and 2 intersect. Both are parallel to line 3. Because there appear to be 
two lines through P parallel to line 3, this does not look like Euclidean geometry.
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Order

the axioms of order describe the undefined term between. Between is a
relation between a point and a pair of points. We say that a point B is, or
is not, between two points A and C and we use the notation A ∗B ∗C to
indicate that B is between A and C. closely related to this “between-ness”
is the idea that a line separates the plane. this behavior, which is explained
in the last of the order axioms, depends upon the following definition.

def: same side
Let  be a line and let A and B be two points which are not on .
Points A and B are on the same side of  if either  and �AB do not
intersect at all, or if do they intersect but the point of intersection is
not between A and B.

so now, without further delay, the axioms of order describing the prop-
erties of between.

the axioms of order

Or 1 If A ∗ B ∗C, then the points A, B, C are distinct colinear
points, and C ∗B∗A.

Or 2 for any two points B and D, there are points A, C, and E,
such that A∗B∗D, B∗C ∗D and B∗D∗E.

Or 3 of any three distinct points on a line, exactly one lies be-
tween the other two.

Or 4 The Plane Separation Axiom. for any line  and points A,
B, and C which are not on : (i) If A and B are on the same
side of  and A and C are on the same side of , then B and C
are on the same side of . (ii) If A and B are not on the same
side of  and A and C are not on the same side of , then B
and C are on the same side of .

1
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AB C

B
B

C
P

C

D E

2 3 4i 4ii

Order

1 Points in order 
2 Between and beyond
3 But no circularity

PSA

A line separates 
the plane. A point 
separates a line.
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the last of these, the Plane separation axiom (PSA), is a bit more to digest
than the previous axioms. it is pretty critical though– it is the axiom which
limits plane geometry to two dimensions. let’s take a closer look. let 
be a line and let P be a point which is not on . We’re going to define two
sets of points.

S1: P itself and all points on the same side of  as P.
S2: all points which are not on  nor on the same side of  as P

By the second axiom of order both S1 and S2 are nonempty sets. the first
part of PSA tells us is that all the points of S1 are on the same side; the
second part tells us that all the points of S2 are on the same side. hence
there are two and only two sides to a line. Because of this, we can refer to
points which are not on the same side of a line as being on opposite sides.

Just as a line separates the remaining points of the plane, a point on a
line separates the remaining points on that line. If P is between A and B,
then A and B are on opposite sides of P. otherwise, A and B are on the
same side of P. You might call this separation of a line by a point “line
separation”. It is a direct descendent of plane separation via the following
simple correspondence. for three distinct points A, B, and P on a line ,

A, B on the same side of P ⇐⇒ A, B are on the same side of
any line through P other than 

A, B on opposite sides of P ⇐⇒ A, B are on opposite sides of
any line through P other than 

Because of this, there is a counterpart to the Plane separation axiom for
lines. Suppose that A, B, C and P are all on a line. (1) If A and B are on
the same side of P and A and C are on the same side of P, then B and C
are on the same side of P. (2) If A and B are on opposite sides of P and A
and C are on opposite sides of P, then B and C are on the same side of P.
As a result, a point divides a line into two sides.

1
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Order

1 Points in order 
2 Between and beyond
3 But no circularity

PSA

A line separates 
the plane. A point 
separates a line.
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With between, we can now introduce some a few of the main characters
in this subject.

def: line seGment
for any two points A and B, the line segment between A and B is the
set of points P such that A∗P∗B, together with A and B themselves.
The points A and B are called the endpoints of the segment.

def: raY
for two distinct points A and B, the ray from A through B consists of
the point A together with all the points on � AB  which are on the
same side of A as B. The point A is called the endpoint of the ray.

The notation for the line segment between A and B is AB. for rays, i write
AB for the ray with endpoint A through the point B. As with my notation
for lines, this is a break from the standard notation which places the ray
symbol above the letters.

def: oPPosite raY
for any ray AB, the opposite ray (AB)op consists of the point A
together with all the points of �AB which are on the opposite side
of A from B.

Putting Points in Order

the order axioms describe how to put three points in order. sometimes,
though, three is not enough. It would be nice to know that more than three
points on a line can be ordered in a consistent way. thankfully, the axioms
of order make this possible as well.

thm: orderinG Points
Given n ≥ 3 colinear points, there is a labeling of them P1, P2, . . . , Pn
so that if 1 ≤ i < j < k ≤ n, then Pi ∗Pj ∗Pk. In that case, we write

P1 ∗P2 ∗ · · · ∗Pn.
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Proof. This is a proof by induction. The initial case, when there are just
three points to put in order, is an immediate consequence of the axioms
of order. now let’s assume that any set of n colinear points can be put in
order, and let’s suppose we want to put a set of n + 1 colinear points in
order. i think the natural way to do this is to isolate the first point (call it
Q), put the remaining points in order, and then stick Q back on the front.
the problem with this approach is that figuring out which point is the first
point essentially presupposes that you can put the points in order. Getting
around this is a little delicate, but here’s how it works. choose n of the
n+1 points. Put them in order and label them so that p1 ∗ p2 ∗ · · ·∗ pn. Let
q be the one remaining point. Now, one of the following three things must
happen:

q∗ p1 ∗ p2 or p1 ∗q∗ p2 or p1 ∗ p2 ∗q.

in the first case, let Q = q and let P1 = p1, P2 = p2, . . . , Pn = pn. In the
second and third cases, let Q = p1.Then put the remaining points p1, . . . ,
pn and q in order and label them P1, P2, . . . ,Pn. having done this, we have
two pieces of an ordering

Q∗P1 ∗P2 and P1 ∗P2 ∗ · · · ∗Pn.
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The proof is not yet complete, though, because we still need to show that
Q is ordered properly with respect to the remaining P’s. that is, we need
to show Q∗Pi ∗Pj when 1 ≤ i < j ≤ n. let’s do that (in several cases).

Case 1: i = 1.
The result is given when j = 2, so let’s
suppose that j > 2. Then:
1. Q∗P1 ∗P2 so Q and P1 are on the

same side of P2.
2. P1 ∗P2 ∗Pj so P1 and Pj are on op-

posite sides of P2.
3. Therefore Q and Pj are on oppo-

site sides of P1, so Q∗P1 ∗Pj.

Case 2: i = 2.
1. Q∗P1 ∗P2 so Q and P1 are on the

same side of P2.
2. P1 ∗P2 ∗Pj so P1 and Pj are on op-

posite sides of P2.
3. Therefore Q and Pj are on oppo-

site sides of P2, so Q∗P2 ∗Pj.

Case 3: i > 2.
1. P1 ∗P2 ∗Pi so P1 and Pi are on op-

posite sides of P2.
2. Q∗P1 ∗P2 so Q and P1 are on the

same side of P2.
3. Therefore Q and Pi are on oppo-

site sides of P2, so Q∗P2 ∗Pi.
4. consequently, Q and P2 are on the

same side of Pi.
5. meanwhile, P2 ∗Pi ∗Pj so P2 and

Pj are on opposite sides of Pi.
6. Therefore, Q and Pj are on oppo-

site sides of Pi, so Q∗Pi ∗Pj.

Q P1 P2 Pj

Q P1 P2 Pj

Q P1 P2 Pi Pj
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Exercises

1. Prove that if A∗B∗C then AB ⊂ AC and AB⊂ AC.

2. Prove that if A∗B∗C ∗D then AC∪BD = AD and AC∩BD = BD.

3. Prove that the points which are on both AB and BA are the points
of AB.

4. Use the axioms of order to show that there are infinitely many points
on any line and that there are infinitely many lines through a point.

5. the familiar model for euclidean geometry is the “cartesian model.”
In that model, points are interepreted as coordinate pairs of real num-
bers (x,y). Lines are loosely interpreted as equations of the form

Ax+By = C

but technically, there is a little bit more to it than that. first, A and B
cannot both simultaneously be zero. second, if A = kA, B = kB, and
C = kC for some nonzero constant k, then the equations Ax + By = C
and Ax + By = C both represent the same line [in truth then, a line
is represented by an equivalence class of equations]. In this model, a
point (x,y) is on a line Ax+By =C if its coordinates make the equation
true. With this interpretation, verify the axioms of incidence.

6. in the cartesian model, a point (x2,y2) is between two other points
(x1,y1) and (x3,y3) if:
1. the three points are distinct and on the same line, and
2. x2 is between x1 and x3 (either x1 ≤ x2 ≤ x3 or x1 ≥ x2 ≥ x3), and
3. y2 is between y1 and y3 (either y1 ≤ y2 ≤ y3 or y1 ≥ y2 ≥ y3).
With this interpretation, verify the axioms of order.
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Further reading

for these first few“moves”, we are pretty constricted, with few results to
build from and very little flexibility about where we can go next. since
we have adopted the axioms of hilbert, our initial steps (in this and the
next few lessons) follow fairly closely those of hilbert in his Foundations
of Geometry [2].

In addition, let me refer you to a few more contemporary books which
examine the first steps in the development of the subject. moise’s Elemen-
tary Geometry from an Advanced Standpoint [3] is one of my favorites. I
have taught from both Wallace and West’s Roads to Geometry [4], and
Greenberg’s Euclidean and Non-Euclidean Geometries [1].
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