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These are the first steps. They are tentative. But it is right to be cautious.
It is so difficult keeping intuition from making unjustified leaps. The two
main theorems in this lesson, Pasch’s Lemma and the Crossbar Theorem,
are good examples of this. Neither can be found in Euclid’s Elements.
They just seem so obvious that I guess it didn’t occur to him that they
needed to be proved (his framework of postulates would not allow him to
prove those results anyway). The kind of intersections that they guarantee
are essential to many future results, though, so we must not overlook them.

Angles and triangles

In the last lesson we defined ray and segment. They are the most elemen-
tary of objects, defined directly from the undefined terms. Now in this
lesson, another layer: angles and triangles, which are built from rays and
segments.

deF: angle
An angle consists of a (unordered) pair of non-opposite rays with the
same endpoint. The mutual endpoint is called the vertex of the angle.

Let’s talk notation. If the two rays are AB  and AC , then the angle
they form is written ∠BAC, with the endpoint listed in the middle spot.
There’s more than one way to indicate that angle though. For one, it does
not matter which order the rays are taken, so ∠CAB points to the same
angle as ∠BAC. And if B is on AB and C is on AC (not the endpoint
of course), then ∠BAC is the same as ∠BAC too. Frequently, it is clear in
the problem that you only care about one angle at a particular vertex. On
those occasions you can often get away with the abbreviation ∠A in place
of the full ∠BAC. Just as a line divides the plane into two sides, so too
does an angle. In this case the two parts are the interior and the exterior of
the angle.

deF: angle interior
A point lies in the interior or is an interior point of ∠BAC if it is on
the same side of � AB  as C and same side of � AC  as B. A
point which does not lie in the interior of the angle and does not lie
on either of the rays composing the angle is exterior to the angle and
is called an exterior point.
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The last definition in this section is that of the triangle. Just as an angle is
formed by joining two rays at their mutual endpoint, a triangle is formed
by joining three segments at mutual endpoints.

deF: triangle
a triangle is an (unordered) triple of non-colinear points and the
points on the segments between each of the three pairs of points.
Each of the three points is called a vertex of the triangle. Each of the
three segments is called a side or edge of the triangle.

If A, B, andC are non-colinear points then we writeABC for the triangle.
The ordering of the three vertices does not matter, so there is more than
one way to write a given triangle:

ABC =ACB =BAC =BCA =CAB =CBA.

The three sides of ABC are AB, AC, and BC. The three angles ∠ABC,
∠BCA and ∠CAB are called the interior angles ofABC. A point which
is in the interior of all the three of the interior angles is said to be inside
the triangle. Together they form the interior of the triangle. Points which
are not inside the triangle and aren’t on the triangle itself, are said to be
outside the triangle. They make the exterior of the triangle.

A

B

C
The light region is the interior. The dark the exterior.∠BAC.
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Parts of a triangle
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A Line Passes through it

The rest of this lesson is dedicated to three fundamental theorems. The
first, a result about lines crossing triangles is called Pasch’s Lemma after
Moritz Pasch, a nineteenth century German mathematician whose works
are a precursor to Hilbert’s. It is a direct consequence of the Plane Sep-
aration Axiom. The second result, the Crossbar Theorem, is a bit more
difficult. It deals with lines crossing through the vertex of an angle. The
third says that rays with a common endpoint can be ordered in a consistent
way, in the same way that points on a line can be ordered.

PASCH’s leMMa
If a line intersects a side of a triangle at a point other than a vertex,
then it must intersect another side of the triangle. If a line intersects
all three sides of a triangle, then it must intersect two of the sides at
a vertex.

Proof. Suppose that a line  intersects side AB ofABC at a point P other
than the endpoints. If  also passes through C, then that’s the other inter-
section; in this case  does pass through all three sides of of the triangle,
but it passes through two of them at a vertex. Now what if  does not pass
through C? There are only two possibilities: either C is on the same side
of  as A, or it is on the opposite side of  from A. This is where the Plane
Separation Axiom comes to the rescue. Because P is between A and B,
those two points have to be on opposite sides of . Thus, if C is on the
same side of  as A, then it is on the opposite side of  from B, and so 
intersects BC but not AC. On the other hand, if C is on the opposite side
of  from A, then it is on the same side of  as B, so  intersects AC but not
BC. Either way,  intersects two of the three sides of the triangle.

A

B

CP P PC C

B B

A A

 passes through AC  passes through C  passes through BC



27angles and triangles

As I mentioned at the start of the section, the proof of the Crossbar Theo-
rem is more challenging. I think it is helpful to separate out one small part
into the following lemma.

leMMa
If A is a point on line , and B is a point which is not on , then all
the points of AB  (and therefore all the points of AB) except A are
on the same side of  as B.

Proof. If C is any point on AB  other than A or B, then C has to be on
the same side of A as B, and so either A ∗B ∗C or A ∗C ∗B. Either way,
� AC  and  intersect at the point A, but that point of intersection does
not lie between B andC. Hence B andC are on the same side of .

THE CROSSBAR THEOREM
If D is an interior point of angle ∠BAC, then the ray AD intersects
the segment BC.

Proof. If you take a couple minutes to try to prove this for yourself, you
will probably find yourself thinking– hey, this seems awfully similar to
Pasch’s Lemma– we could use ABC for the triangle and � AD  for
the line. The problem is that one pesky condition in Pasch’s Lemma: the
given intersection of the line and the triangle can’t be at a vertex. In the
situation we have here, the ray in question AD  does pass through the
vertex. Still, the basic idea is sound. The actual proof does use Pasch’s
Lemma, we just have to bump the triangle a little bit so that AD doesn’t
cross through the vertex.

As I mentioned at the start of the section, the proof of the Crossbar Theo-
rem is more challenging. I think it is helpful to separate out one small part
into the following lemma.

leMMa
If A is a point on line , and B is a point which is not on , then all
the points of AB  (and therefore all the points of AB) except A are
on the same side of  as B.

Proof. If C is any point on AB  other than A or B, then C has to be on
the same side of A as B, and so either A ∗B ∗C or A ∗C ∗B. Either way,
� AC  and  intersect at the point A, but that point of intersection does
not lie between B andC. Hence B andC are on the same side of .

THE CROSSBAR THEOREM
If D is an interior point of angle ∠BAC, then the ray AD intersects
the segment BC.

Proof. If you take a couple minutes to try to prove this for yourself, you
will probably find yourself thinking– hey, this seems awfully similar to
Pasch’s Lemma– we could use ABC for the triangle and � AD  for
the line. The problem is that one pesky condition in Pasch’s Lemma: the
given intersection of the line and the triangle can’t be at a vertex. In the
situation we have here, the ray in question AD  does pass through the
vertex. Still, the basic idea is sound. The actual proof does use Pasch’s
Lemma, we just have to bump the triangle a little bit so that AD doesn’t
cross through the vertex.

(l) The lemma says that 
a ray cannot recross a 
line like this. (r) The 
Crossbar Theorem 
guarantees the 
existence of the point P.
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C
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According to the second axiom of order, there are points on the opposite
side of A from C. Let A be one of them. Now �AD intersects the side
AC of the triangle ABC. By Pasch’s Lemma, � AD  must intersect
one of the other two sides of triangle, either AB or BC. There are two
scenarios to cause concern. First, what if � AD  crosses AB instead of
BC? And second, what if �AD does cross BC, but the intersection is on
(AD)op instead of AD itself?
I think it is easier to rule out the second scenario first so let’s start there.

(1)If D is any point on (AD)op, then it is on the opposite side of A from
D. Therefore D and D are on opposite sides of �AC. (2)Since D is an
interior point, it is on the same side of �AC as B, and so D and B are
on opposite sides of AC. (3)By the previous lemma, all the points of AB
and of BC are on the same side of �AC as B. (4)Therefore they are on
the opposite side of �AC  fom D, so no point of (AD)op may lie on
either AB or BC.
With the opposite ray ruled out entirely, we now just need to make sure

that AD does not intersect AB. (5)Points A and C are on opposite sides
of �AB. (6)Because D is an interior point, D andC are on the same side
of�AB. (7)Therefore A and D are on opposite sides of�AB. (8)Using
the preceding lemma, all the points of AB are on opposite sides of �AB
from all the points of AD . This means that AD  cannot intersect AB,
so it must intersect BC.

According to the second axiom of order, there are points on the opposite
side of A from C. Let A be one of them. Now �AD intersects the side
AC of the triangle ABC. By Pasch’s Lemma, � AD  must intersect
one of the other two sides of triangle, either AB or BC. There are two
scenarios to cause concern. First, what if � AD  crosses AB instead of
BC? And second, what if �AD does cross BC, but the intersection is on
(AD)op instead of AD itself?
I think it is easier to rule out the second scenario first so let’s start there.

(1)If D is any point on (AD)op, then it is on the opposite side of A from
D. Therefore D and D are on opposite sides of �AC. (2)Since D is an
interior point, it is on the same side of �AC as B, and so D and B are
on opposite sides of AC. (3)By the previous lemma, all the points of AB
and of BC are on the same side of �AC as B. (4)Therefore they are on
the opposite side of �AC  fom D, so no point of (AD)op may lie on
either AB or BC.
With the opposite ray ruled out entirely, we now just need to make sure

that AD does not intersect AB. (5)Points A and C are on opposite sides
of �AB. (6)Because D is an interior point, D andC are on the same side
of�AB. (7)Therefore A and D are on opposite sides of�AB. (8)Using
the preceding lemma, all the points of AB are on opposite sides of �AB
from all the points of AD . This means that AD  cannot intersect AB,
so it must intersect BC.
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The Crossbar Theorem provides a essential conduit between the notion
of between for points and interior for angles. I would like to use that con-
duit in the next theorem, which is the angle interior analog to the ordering
of points theorem in the last lesson. First let me state a useful lemma.

leMMa 2
Consider an angle ∠ABC and a ray r whose endpoint is B. Either all
the points of r other than B lie in the interior of ∠ABC, or none of
them do.

I am going to leave the proof of this lemma to you, the reader. It is a
relatively straightforward proof, and lemma 1 should provide some useful
clues. Now on to the theorem.

THM: ordering raYs
Consider n ≥ 2 rays with a common basepoint B which are all on the
same side of a line �AB through B. There is an ordering of them:

r1, r2, . . . ,rn

so that if i < j then ri is in the interior of the angle formed by BA
and r j.

The Crossbar Theorem provides a essential conduit between the notion
of between for points and interior for angles. I would like to use that con-
duit in the next theorem, which is the angle interior analog to the ordering
of points theorem in the last lesson. First let me state a useful lemma.

leMMa 2
Consider an angle ∠ABC and a ray r whose endpoint is B. Either all
the points of r other than B lie in the interior of ∠ABC, or none of
them do.

I am going to leave the proof of this lemma to you, the reader. It is a
relatively straightforward proof, and lemma 1 should provide some useful
clues. Now on to the theorem.

THM: ordering raYs
Consider n ≥ 2 rays with a common basepoint B which are all on the
same side of a line �AB through B. There is an ordering of them:

r1, r2, . . . ,rn

so that if i < j then ri is in the interior of the angle formed by BA
and r j.

Lemma 2. Rays cannot do this.

B

C

A r

B A
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An ordering of five rays and five 
angles so that each ray is in the 
interior of all of the subsequent 
angles.
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Proof. I am going to use a proof by induction. First consider the case of
just n = 2 rays, r1 and r2. If r1 lies in the interior of the angle formed by
BA and r2, then we’ve got it. Let’s suppose, though, that r1 does not lie
in the interior of that angle. There are two requirements for r1 to lie in the
interior: (1) it has to be on the same side of � AB  as r2 and (2) it has
to be the same side of r2 as A. From the very statement of the theorem,
we can see that r1 has to satisfy the first requirement, so if r1 is not in
the interior, the problem has got to be with the second requirement. That
means that any point C1 on r1 has to be on the opposite side of r2 from
A– that is, the line containing r2 must intersect AC1. Actually we can be a
little more specific about where this intersection occurs: you see, AC1 and
rop

2 are on opposite sides of �AB so they cannot intersect. Therefore the
intersection is not on rop

2 – it has to be on r2 itself. Call this intersection
point C2. Then A∗C2 ∗C1 so C2 is on the same side of r1 as A. Therefore
r2 is on the same side of r1 as A, and so r2 is in the interior of the angle
formed by BA and r1. Then it is just a matter of switching the labeling
of r1 and r2 to get the desired result.
Now let’s tackle the inductive step. Assume that any n rays can be put

in order and consider a set of n+1 rays all sharing a common endpoint B
and on the same side of the line �AB. Take n of those rays and put them
in order as r1, r2, . . . , rn. That leaves just one more ray– call it s. What I
would like to do is to compare s to what is currently the ”outermost” ray,
rn. One of two things can happen: either [1] s lies in the interior of the
angle formed by BA and rn, or [2] it doesn’t, and in this case, as we saw
in the proof of the base case, that means that rn lies in the interior of the
angle formed by BA and s. Our path splits now, as we consider the two
cases.

Proof. I am going to use a proof by induction. First consider the case of
just n = 2 rays, r1 and r2. If r1 lies in the interior of the angle formed by
BA and r2, then we’ve got it. Let’s suppose, though, that r1 does not lie
in the interior of that angle. There are two requirements for r1 to lie in the
interior: (1) it has to be on the same side of � AB  as r2 and (2) it has
to be the same side of r2 as A. From the very statement of the theorem,
we can see that r1 has to satisfy the first requirement, so if r1 is not in
the interior, the problem has got to be with the second requirement. That
means that any point C1 on r1 has to be on the opposite side of r2 from
A– that is, the line containing r2 must intersect AC1. Actually we can be a
little more specific about where this intersection occurs: you see, AC1 and
rop

2 are on opposite sides of �AB so they cannot intersect. Therefore the
intersection is not on rop

2 – it has to be on r2 itself. Call this intersection
point C2. Then A∗C2 ∗C1 so C2 is on the same side of r1 as A. Therefore
r2 is on the same side of r1 as A, and so r2 is in the interior of the angle
formed by BA and r1. Then it is just a matter of switching the labeling
of r1 and r2 to get the desired result.
Now let’s tackle the inductive step. Assume that any n rays can be put

in order and consider a set of n+1 rays all sharing a common endpoint B
and on the same side of the line �AB. Take n of those rays and put them
in order as r1, r2, . . . , rn. That leaves just one more ray– call it s. What I
would like to do is to compare s to what is currently the ”outermost” ray,
rn. One of two things can happen: either [1] s lies in the interior of the
angle formed by BA and rn, or [2] it doesn’t, and in this case, as we saw
in the proof of the base case, that means that rn lies in the interior of the
angle formed by BA and s. Our path splits now, as we consider the two
cases.

The base case: what happens if r1 is
not in the interior of the angle formed
by BA and r2?

B
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r2
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[1] Here rn is the outermost ray,
so let’s relabel it as Rn+1. The re-
maining rays r1, r2, . . . , rn−1 and
s are all in the interior of the angle
formed by BA and Rn+1. There-
fore, if Cn+1 is any point on Rn+1
(other than B) then each of r1, r2,
. . . , rn−1 and s intersect the seg-
ment ACn+1 (this is the Crossbar
Theorem in action). We can put
all of those intersection points in
order

A∗C1 ∗C2 ∗ · · · ∗Cn ∗Cn+1.

[2] In this case, we will eventually
see that s is the outermost ray, but
all we know at the outset is that it
is farther out than rn. Let’s relabel
s as Rn+1 and let Cn+1 be a point
on this ray. Since rn is in the inte-
rior of the angle formed by BA 
and Rn+1, by the Crossbar Theo-
rem, rn must intersect ACn+1. Let
Cn be this intersection point. But
we know that r1, r2, . . . , rn−1 lie in
the interior of the angle formed by
BA  and Rn, so ACn must inter-
sect each of r1, r2, . . . , rn. We can
put all of those intersection points
in order

A∗C1 ∗C2 ∗ · · · ∗Cn ∗Cn+1.

With the rays sorted and the intersections marked, the two strands of the
proofs merge. Label the ray with point Ci as Ri. Then, for any i < j, Ci is
on the same side ofCj as A, and so Ri is in the interior of the angle formed
by BA andCj. This is the ordering that we want.

Once the outermost ray is identified, a 
line connecting that ray to A intersects 
all the other rays (because of the 
Crossbar Theorem).
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exercises

1. Prove that there are points in the interior of any angle. Similarly, prove
that there are points in the interior of any triangle.

2. Suppose that a line  intersects a triangle at two points P and Q. Prove
that all the points on the segment PQ other than the endpoints P and Q
are in the interior of the triangle.

3. We have assumed Plane Separation as an axiom and used it to prove
Pasch’s Lemma. Try to reverse that– in other words, assume Pasch’s
Lemma and prove the Plane Separation Axiom.

4. Let P be a point in the interior of ∠BAC. Prove that all of the points of
AP other than A are also in the interior of ∠BAC. Prove that none of
the points of (AP)op are in the interior of ∠BAC.

5. Prove Lemma 2.

6. A model for a non-neutral geometry: Q2. We alter the standard Eu-
clidean model R2 so that the only points are those with rational coor-
dinates. The only lines are those that pass through at least two rational
points. Incidence and order are as in the Euclidean model. Demon-
strate that this models a geometry which satisfies all the axioms of
incidence and order except the Plane Separation Axiom. Show that
Pasch’s Lemma and the Crossbar Theorem do not hold in this geome-
try.
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