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encecon gru

tHe aXioMs oF congruence

Cg1 The Segment Construction Axiom if A and B are distinct
points and if A is any point, then for each ray r with end-
point A, there is a unique point B on r such that AB  AB.

Cg2 Segment congruence is reflexive (every segment is congru-
ent to itself), symmetric (if AA  BB then BB  AA), and
transitive (if AA  BB and BB CC, then AA CC).

Cg3 The Segment Addition Axiom if A∗B∗C and A ∗B ∗C, and
if AB  AB and BC  BC, then AC  AC.

Cg4 The Angle Construction Axiom Given ∠BAC and any ray
AB, there is a unique ray AC on a given side of the
line �AB such that ∠BAC  ∠BAC.

Cg5 Angle congruence is reflexive (every angle is congruent to
itself), symmetric (if ∠A  ∠B, then ∠B  ∠A), and transi-
tive (if ∠A  ∠B and ∠B  ∠C, then ∠A  ∠C).

Cg6 The Side Angle Side (S·A·S) Axiom. consider two triangles:
ABC and ABC. if AB  AB, ∠B  ∠B, and BC 
BC, then ∠A  ∠A.

encecon gru
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i think this is the lesson where the geometry we are doing starts to look like
the geometry you know. i don’t think your typical high school geometry
class covers Pasch’s Lemma or the Crossbar Theorem, but I’m pretty sure
that it does cover congruence of triangles. And that is what we are going
to do in the next three lessons.

Axioms of congruence

Points, lines, segments, rays, angles, triangles– we are starting to pile up
a lot of objects here. At some point you are probably going to want to
compare them to each other. You might have two different triangles in dif-
ferent locations, different orientations, but they have essentially the same
shape, so you want to say that for practical purposes, they are equivalent.
Well, congruence is a way to do that. congruence, if you recall, is one
of the undefined terms in Hilbert’s system. Initially it describes a relation
between a pair of segments or a pair of angles, so that we can say, for in-
stance, that two segments are or are not congruent, or that two angles are
or are not congruent. Later, the term is extended so that we can talk about
congruence of triangles and other more general shapes. the notation used
to indicate that two things (segments, angles, whatever) are congruent is
. In Hilbert’s system, there are six axioms of congruence. Three deal
with congruence of segments, two deal with congruence of angles, and
one involves both segments and angles.
The first and fourth of these make it possible to construct congruent

copies of segments and angles wherever we want. They are a little remi-
niscent of Euclid’s postulates in that way. The second and fifth axioms tell
us that congruence is an equivalence relation. The third and sixth– well,
I suppose that in a way they form a pair too– both deal with three points
and the segments that have them as their endpoints. In the third axiom,
the points are colinear, while in the sixth they are not. There is a more
direct counterpart to the third axiom though, a statement which does for
angles what the Segment Addition Axiom does for segments. It is called
the Angle Addition Theorem and we will prove it in lesson 5.

I use a variety of 
symbols to mark 
segment and angle 
congruence. 
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Any time you throw something new into the mix, you probably want
to figure out how it intermingles with what has come before. How does
the new fit with the old? I realize that is a pretty vague question, but a
more precise statement really depends upon the context. In our current
situation, we have just added congruence to a system that already had
incidence and order. The axioms of congruence themselves provide some
basic connections between congruence and incidence and order. I think
the most important remaining connection between congruence, incidence,
and order is the Triangle Inequality, but that result is still a little ways
away. In the meantime, the next theorem provides one more connection.

congruence and order
suppose that A1 ∗A2 ∗A3 and that B3 is a point on
the ray B1B2 . if A1A2  B1B2 and A1A3  B1B3,
then B1 ∗B2 ∗B3.

Proof. since B3 is on B1B2 one of three things is going to happen:

(1) B2 = B3 (2) B1 ∗B3 ∗B2 (3) B1 ∗B2 ∗B3.

The last is what we want, so it is just a matter of ruling out the other two
possibilities.
(1) Why can’t B3 be equal to B2? With B2 = B3, both A1A2 and A1A3

are congruent to the same segment. therefore they are two different con-
structions of a segment starting from A1 along A1A2  and congruent to
B1B2. The Segment Construction Axiom says that there be only one.

A1

A1

A2

A2

B3
B1

B2

A3

A3

The case against case I
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(2) Why can’t B3 be between B1 and B2? By the Segment Construction
Axiom, there is a point B4 on the opposite side of B2 from B1 so that
B2B4  A2A3. now look:

B1B2  A1A2 & B2B4  A2A3

so by the Segment Addition Axiom, B1B4  A1A3. this creates the same
problem we ran into last time– two different segments B1B3 and B1B4,
both starting from B1 and going out along the same ray, yet both are sup-
posed to be congruent to A1A3.

Triangle congruence

Congruence of segments and angles is undefined, subject only to the ax-
ioms of congruence. but congruence of triangles is defined. It is defined
in terms of the congruences of the segments and angles that make up the
triangles.

deF: triangle congruence
two triangles ABC and ABC are congruent if all of their corre-
sponding sides and angles are congruent:

AB  AB BC  BC CA CA

∠A  ∠A ∠B  ∠B ∠C  ∠C.

A1

A1

A2

A2

B3 B2 B4
B1

A3

A3

The case against case II
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Now that definition suggests that you have to match up six different things
to say that two triangles are congruent. in actuality, triangles aren’t really
that flexible. Usually you only have to match up about half that many
things. For example, the next result we will prove, the S·a·s triangle
Congruence Theorem, says that you only have to match up two sides of
the triangles, and the angles between those sides, to show that the triangles
are congruent. In this lesson, we begin the investigation of those minimum
conditions.

before we start studying these results, i would like to point out another
way to view these theorems, this time in terms of construction. the tri-
angle congruence theorems are set up to compare two triangles. another
way to think of them, though, is as a restriction on the way that a single
triangle can be formed. To take an example, the S·a·S theorem below says
that, modulo congruence, there is really only one triangle with a given pair
of sides and a given intervening angle. Therefore, if you are building a tri-
angle, and have decided upon two sides and an intervening angle, well,
the triangle is decided– you don’t get to choose the remaining side or the
other two angles.

s·a·s triangle congruence
in triangles ABC and ABC, if

AB  AB ∠B  ∠B BC  BC,

then ABC ABC.

Proof. To show that two triangles are congruent, you have to show that
three pairs of sides and three pairs of angles are congruent. Fortunately,
two of the side congruences are given, and one of the angle congruences
is given. The S·a·S axiom guarantees a second angle congruence, ∠A 
∠A. So that just leaves one angle congruence and one side congruence.
Let’s do the angle first. You know, working abstractly creates a lot

of challenges. On the few occasions when the abstraction makes things
easier, it is a good idea to take advantage of it. This is one of those times.
the s·a·S lemma tells us about ∠A in ABC. But let’s not be misled
by lettering. Because ABC =CBA and ABC =CBA, we can
reorder the given congruences:

CB CB ∠B  ∠B BA  BA.

then the s·a·s lemma says that ∠C  ∠C. Sneaky isn’t it? It is a com-
pletely legitimate use of the s·a·S axiom though.
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That just leaves the sides AC and AC. We are going to construct a
congruent copy of ABC on top of ABC (Euclid’s flawed proof of
s·a·s in The Elements used a similar argument but without the axioms to
back it up). Thanks to the Segment Construction Axiom, there is a unique
point C on AC so that AC  AC. Now if we can just show that C =C
we will be done. Look:

BA  BA ∠A  ∠A AC  ∠AC.

by the s·a·S axiom then, ∠ABC  ∠ABC. that in turn means that
∠ABC  ∠ABC. But wait– both of those angles are constructed on the
same side of BA . According to the Angle Construction Axiom, that
means they must be the same. That is, BC= BC. both C and C are
the intersection of this ray and the line AC. since a ray can only intersect
a line once, C and C do have to be the same.

Two orderings of the 
list of congruences 
for the SAS lemma.
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B C B C
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B
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C

C
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A To show the last 
sides are congruent, 
construct a third 
triangle from parts 
of the original two. 
The key to the 
location of C is the 
angle at B.
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One of the things that I really appreciate about the triangle congruence
theorems is how transparent they are: their names tell us when to use
them. For instance, you use s·a·s when you know congruences for two
sides and the angle between them. And you use A·s·a when...

a·s·a triangle congruence
in triangles ABC and ABC, if

∠A  ∠A AB  AB ∠B  ∠B,

then ABC ABC.

Proof. This time, it is a little easier–if we can just get one more side con-
gruence, then s·a·S will provide the rest. You will probably notice some
similarities between this argument and the last part of the S·a·s proof.
Because of the Segment Construction Axiom, there is a point C on AC
so that AC  AC. of course, the hope is that C = C, and that is what
we need to show. To do that, observe that

BA  BA ∠A  ∠A AC  ∠AC.

by s·a·s, ABC ABC. in particular, look at what is happening at
vertex B:

∠ABC  ∠ABC  ∠ABC.

there is only one way to make that angle on that side of BA , and that
means BC = BC . Since both C and C are where this ray intersects
�AC, C =C.

C

B

A
C

C

B

A

B

A

Does this look 
familiar?
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that’s the hard work. all that is left is to wrap up the argument. since
C =C, AC = AC, and that means AC  AC. then

BA  BA ∠A  ∠A AC  AC

so by S·a·s, ABC ABC.

Let’s take a look at how the triangle congruence theorems can be put to
work. This next theorem is the angle equivalent of the theorem at the start
of this lesson relating congruence and the order of points.

tHM: congruence and angle interiors
suppose that ∠ABC ∠ABC. suppose that D is in
the interior of ∠ABC. and suppose that D is located
on the same side of � AB  as C so that ∠ABD 
∠ABD. then D is in the interior of ∠ABC.

Proof. Because there is some flexibility in which points you choose to
represent an angle, there is a good chance that our points are not orga-
nized in a very useful way. While we can’t change the rays or the angles
themselves, we can choose other points to represent them. So the first step
is to reposition our points in the most convenient way possible. Let A be
the point on BA so that BA  BA. let C be the point on BC so that
BC  BC. since D is in the interior of ∠ABC, the Crossbar Theorem
guarantees that BD intersects AC. let’s call this intersection E. then

AB  AB ∠ABC  ABC BC  BC

so by S·a·s, ABC ABC.

that’s the hard work. all that is left is to wrap up the argument. since
C =C, AC = AC, and that means AC  AC. then

BA  BA ∠A  ∠A AC  AC

so by S·a·s, ABC ABC.

Let’s take a look at how the triangle congruence theorems can be put to
work. This next theorem is the angle equivalent of the theorem at the start
of this lesson relating congruence and the order of points.

tHM: congruence and angle interiors
suppose that ∠ABC ∠ABC. suppose that D is in
the interior of ∠ABC. and suppose that D is located
on the same side of � AB  as C so that ∠ABD 
∠ABD. then D is in the interior of ∠ABC.

Proof. Because there is some flexibility in which points you choose to
represent an angle, there is a good chance that our points are not orga-
nized in a very useful way. While we can’t change the rays or the angles
themselves, we can choose other points to represent them. So the first step
is to reposition our points in the most convenient way possible. Let A be
the point on BA so that BA  BA. let C be the point on BC so that
BC  BC. since D is in the interior of ∠ABC, the Crossbar Theorem
guarantees that BD intersects AC. let’s call this intersection E. then

AB  AB ∠ABC  ABC BC  BC

so by S·a·s, ABC ABC.

After repositioning 
points, the first use 
of SAS.
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Okay, now let’s turn our attention to the second configuration of points–
the ones with the  marks. According to the Segment Construction Axiom,
there is a point E  on AC so that AE  AE. Furthermore, thanks to the
earlier theorem relating congruence and order, since E is between A and
C, E  must be between A and C, and so it is in the interior of ∠ABC.
now look:

BA  BA ∠BAE  ∠BAE  AE  AE 

so by S·a·s, BAE BAE .
in particular, this means that ∠ABE  ∠ABE . but we were origi-

nally told that ∠ABE  ∠ABD. Since angle congruence is transitive
this must mean that ∠ABD  ∠ABE . Well, thanks to the angle con-
struction Axiom, this means that the two rays BD and BE  must be
the same. since E  is in the interior of ∠ABC, D must be as well.

symmetry in Triangles

i don’t think it comes as a great surprise that in some triangles, two or
even all three sides or angles may be congruent. Thanks to the triangle
congruence theorems, we can show that these triangles are congruent to
themselves in non-trivial ways. These non-trivial congruences reveal the
internal symmetries of those triangles.

deF: isosceles, eQuilateral, scalene
if all three sides of a triangle are congruent, the triangle is equilat-
eral. If exactly two sides of a triangle are congruent, the triangle is
isosceles. if no pair of sides of the triangle is congruent, the triangle
is scalene.

Okay, now let’s turn our attention to the second configuration of points–
the ones with the  marks. According to the Segment Construction Axiom,
there is a point E  on AC so that AE  AE. Furthermore, thanks to the
earlier theorem relating congruence and order, since E is between A and
C, E  must be between A and C, and so it is in the interior of ∠ABC.
now look:

BA  BA ∠BAE  ∠BAE  AE  AE 

so by S·a·s, BAE BAE .
in particular, this means that ∠ABE  ∠ABE . but we were origi-

nally told that ∠ABE  ∠ABD. Since angle congruence is transitive
this must mean that ∠ABD  ∠ABE . Well, thanks to the angle con-
struction Axiom, this means that the two rays BD and BE  must be
the same. since E  is in the interior of ∠ABC, D must be as well.

symmetry in Triangles

i don’t think it comes as a great surprise that in some triangles, two or
even all three sides or angles may be congruent. Thanks to the triangle
congruence theorems, we can show that these triangles are congruent to
themselves in non-trivial ways. These non-trivial congruences reveal the
internal symmetries of those triangles.

deF: isosceles, eQuilateral, scalene
if all three sides of a triangle are congruent, the triangle is equilat-
eral. If exactly two sides of a triangle are congruent, the triangle is
isosceles. if no pair of sides of the triangle is congruent, the triangle
is scalene.

The second use of 
SAS: E' and D' are 
on the same ray.C
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Here is one of those internal symmetry results. i put the others in the
exercises.

tHe isosceles triangle tHeoreM
in an isosceles triangle, the angles opposite the congruent sides are
congruent.

Proof. suppose ABC is isosceles, with AB  AC. then

AB  AC ∠A  ∠A AC  AB,

so by S·a·s, ABC  ACB (there’s the non-trivial congruence of the
triangle with itself). comparing corresponding angles, ∠B  ∠C.

Two orderings of the 
list of congruences 
for the SAS lemma.

B C

A
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exercises

1. Given any point P and any segment AB, prove that there are infinitely
many points Q so that PQ  AB.

2. verify that triangle congruence is an equivalent relation– that it is re-
flexive, symmetric, and transitive.

3. Prove the converse of the Isosceles Triangle Theorem: that if two in-
terior angles of a triangle are congruent, then the sides opposite them
must also be congruent.

4. Prove that all three interior angles of an equilateral triangle are congru-
ent.

5. Prove that no two interior angles of a scalene triangle can be congruent.

6. In the exercises in Lesson 1, I introduced the Cartesian model and de-
scribed how point, line, on and between are interpreted in that model.
Let me extend that model now to include congruence. In the Carte-
sian model, segment congruence is defined in terms of the length of
the segment, which, in turn, is defined using the distance function. If
(xa,ya) and (xb,yb) are the coordinates of A and B, then the length of
the segment AB, written |AB|, is

|AB|=


(xa − xb)2 +(ya − yb)2.

two segments are congruent if and only if they are the same length.
With this intepretation, verify the first three axioms of congruence.

7. Angle congruence is the most difficult to interpret in the Cartesian
model. Like segment congruence, angle congruence is defined via
measure– in this case angle measure. You may remember from calcu-
lus that the dot product provides a way to measure the angle between
two vectors: that for any two vectors v and w,

v ·w = |v||w|cosθ ,

where θ is the angle between v and w. That is the key here. Given
an angle ∠ABC, its measure, written (∠ABC), is computed as follows.
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let (xa,ya), (xb,yb) and (xc,yc) be the coordinates for points A, B, and
C, then define vectors

v = xa − xb,ya − yb w = xc − xb,yc − yb.

and measure
(∠ABC) = cos−1


v ·w
|v||w|


.

Two angles are congruent if and only if they have the same angle mea-
sure. With this interpretation, verify the last three axioms of congru-
ence.




