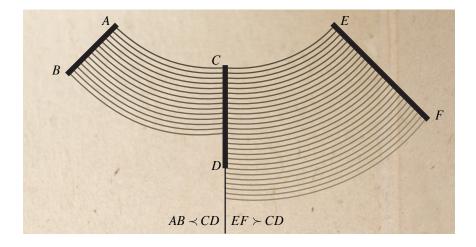
6. READER'S SOLO SHORTER AND LONGER The purpose of this short section is to develop a system of comparison for segments that aren't congruent. I am going to let you provide all the proofs in this section. It will give you the opportunity to work with order and congruence on your own.

DEF: SHORTER AND LONGER Given segments AB and CD, label E on $CD \rightarrow$ so that $CE \simeq AB$. If C * E * D, then AB is shorter than CD, written $AB \prec CD$. If C * D * E, then AB is longer than CD, written $AB \succ CD$.



Note that if you replace *CD* in this definition with *DC*, things will change slightly: calculations will be done on the ray $DC \rightarrow$ rather than $CD \rightarrow$. That would seem like it could be problem, since *CD* and *DC* are actually the same segment, so your first task in this chapter is to make sure that \prec and \succ are defined the same way, whether you are using *CD* or *DC*.

THM: \prec AND \succ ARE WELL DEFINED Given segments *AB* and *CD*, label: *E*: the unique point on $CD \rightarrow$ so that $AB \simeq CE$ and *F*: the unique point on $DC \rightarrow$ so that $AB \simeq DF$. Then C * E * D if and only if D * F * C. Here are a bunch of the properties of \prec for you to verify. There are, of course, corresponding properties for \succ , but I have left them out to cut down on some of the tedium.

THM: TRANSITIVITY OF \prec If $AB \prec CD$, and $CD \prec EF$, then $AB \prec EF$. If $AB \prec CD$, and $CD \simeq EF$, then $AB \prec EF$. If $AB \simeq CD$, and $CD \prec EF$, then $AB \prec EF$.

THM: SYMMETRY BETWEEN \prec AND \succ For any two segments *AB* and *CD*, *AB* \prec *CD* if and only if *CD* \succ *AB*.

THM: ORDER (FOUR POINTS) AND \prec If A * B * C * D, then $BC \prec AD$.

THM: ADDITIVITY OF \prec Suppose that A * B * C and A' * B' * C'. If $AB \prec A'B'$ and $BC \prec B'C'$, then $AC \prec A'C'$.