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My goal with all of these lessons is to provide an introduction to both
Euclidean non-Euclidean geometry. The two geometries share many fea-
tures, but they also have very fundamental and radical differences. Neutral
geometry is the part of the path they have in common and that is what we
have been studying so far, but I think we have finally come to the fork in
the path. That fork comes when you try to answer this question:

Given a line � and a point P which is not on �, how many lines pass
through P and are parallel to �?

Using just the axioms of neutral geometry, you can prove that there is
always at least one such parallel. You can also prove that if there is more
than one parallel, then there must be infinitely many. But that is the extent
of what the neutral axioms can say. The neutral axioms just aren’t enough
to determine whether there is one parallel or many. This is what separates
Euclidean and non-Euclidean geometry– a single axiom: the final axiom
of Euclidean geometry calls for exactly one parallel, the final axiom of
non-Euclidean geometry calls for more than one parallel.
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154 LESSON 13

The next several lessons are devoted to Euclidean geometry. Now you
have to remember that Euclidean geometry is several millenia old, so there
is a lot of it. All that I hope to do in these lessons is to cover the funda-
mentals, but there are many excellent books that do much more. Geometry
Revisited [1] by Coxeter and Greitzer is an excellent one.

The first order of business is to put that final axiom in place. There are
many formulations of the parallel axiom for Euclidean geometry, but the
one that I think gets right to the heart of the matter is Playfair’s Axiom,
named after the Scottish mathematician John Playfair.

PLAYFAIR’S AXIOM
Let � be a line, and let P be a point which is not on �. Then there is
exactly one line through P which is parallel to �.

In this lesson I would like to look at a small collection of theorems which
are almost immediate consequences of this axiom, and as such, are at the
very core of Euclidean geometry. The first of these is Euclid’s Fifth Pos-
tulate. This is the controversial postulate in The Elements, but also the one
that guarantees the same parallel behavior that Playfair’s Axiom provides.
In my opinion, Euclid’s postulate is a little unwieldy, particularly when
compared to Playfair’s Axiom, but it is the historical impetus for so much
of what followed. So let’s use Playfair’s Axiom to prove Euclid’s Fifth
Postulate.

EUCLID’S FIFTH POSTULATE
If lines �1 and �2 are crossed by a transversal t, and the sum of adja-
cent interior angles on one side of t measure less than 180◦, then �1
and �2 intersect on that side of t.

Euclidean parallel non-Euclidean parallels
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Proof. First, some labels. Start with lines �1
and �2 crossed by transversal t. Label P1 and
P2, the points of intersection of t with �1 and
�2 respectively. On one side of t, the two ad-
jacent interior angles should add up to less
than 180◦. Label the one at P1 as ∠1 and the
one at P2 at ∠2. Label the supplement of ∠1
as ∠3 and label the supplement of ∠2 as ∠4.

Primarily, of course, this postulate is about
the location of the intersection of �1 and �2.
But you don’t want to overlook an important
prerequisite: the postulate is also guarantee-
ing that �1 and �2 do intersect. That’s really
the first thing we need to show. Note that ∠1
and ∠4 are alternate interior angles, but they
are not congruent– if they were, their supple-
ments ∠2 and ∠3 would be too, and then

(∠1)+(∠2) = (∠1)+(∠3) = 180◦.

There is, however, another line �� through
P1 which does form an angle congruent to
∠4 (because of the Angle Construction Pos-
tulate), and by the Alternate Interior Angle
Theorem, �� must be parallel to �2. Because
of Playfair’s Axiom, �� is the only parallel to
�2 through P1. That means �1 intersects �2.

The second part of the proof is to figure
out on which side of t that �1 and �2 cross.
Let’s see what would happen if they inter-
sected at a point Q on the wrong side of t:
the side with ∠3 and ∠4. Then the trian-
gle �P1P2Q would have two interior angles,
∠3 and ∠4, which add up to more than 180◦.
This violates the Saccheri-Legendre theorem.
So �1 and �2 cannot intersect on the side of
t with ∠3 and ∠4 and that means that they
must intersect on the side with ∠1 and ∠2.
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One of the truly useful theorems of neutral geometry is the Alternate
Interior Angle Theorem. In fact, we just used it in the last proof. But you
may recall from high school geometry, that the converse of that theorem is
often even more useful. The problem is that the converse of the Alternate
Interior Angle Theorem can’t be proved using just the axioms of neutral
geometry. It depends upon Euclidean behavior of parallel lines.

CONVERSE OF THE ALTERNATE INTERIOR ANGLE THEOREM
If �1 and �2 are parallel, then the pairs of alternate interior angles
formed by a transversal t are congruent.

Proof. Consider two parallel lines crossed by a transversal. Label adja-
cent interior angles: ∠1 and ∠2, and ∠3 and ∠4, so that ∠1 and ∠4 are
supplementary and ∠2 and ∠3 are supplementary. That means that the
pairs of alternate interior angles are ∠1 and ∠3 and ∠2 and ∠4. Now, we
just have to do a little arithmetic. From the two pairs of supplementary
angles: {

(∠1)+(∠4) = 180◦ (i)
(∠2)+(∠3) = 180◦. (ii)

Notice that if you add all four angles together, then

(∠1)+(∠2)+(∠3)+(∠4) = 360◦.

Now, here is where Euclid’s Fifth comes into play– and actually, we will
need to use the contrapositive. You see, �1 and �2 are parallel, and that
means that they do not intersect on either side of t. Therefore Euclid’s
Fifth says that on neither side of t may the sum of adjacent interior angles
be less than 180◦: {

(∠1)+(∠2)≥ 180◦

(∠3)+(∠4)≥ 180◦.

If either one of these sums was greater than 180◦, though, the sum of all
four angles would have to be more than 360◦– we saw above that is not
the case, so the inequalities are actually equalities:

{
(∠1)+(∠2) = 180◦ (iii)
(∠3)+(∠4) = 180◦. (iv)

Now you have two systems of equations with four unknowns– it is basic
algebra from here. Subtract equation (iv) from equation (i) to get (∠1) =
(∠3). Subtract equation (iii) from equation (i) to get (∠2) = (∠4). The
alternate interior angles are congruent.
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Proof. Consider two parallel lines crossed by a transversal. Label adja-
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One of the key theorems we proved in the neutral geometry section was
the Saccheri-Legendre Theorem: that the angle sum of a triangle is at most
180◦. That’s all you can say with the axioms of neutral geometry, but in
a world with Playfair’s Axiom and the converse of the Alterante Interior
Angle Theorem, there can be only one triangle angle sum.

THM
The angle sum of a triangle is 180◦.

Proof. Consider a triangle �ABC. By Playfair’s Axiom, there is a unique
line � through B which is parallel to � AC �. That line and the rays
BA� and BC� form three angles, ∠1, ∠2 and ∠3 as I have shown in the
illustration below.

By the converse of the Alternate Interior Angle Theorem, two pairs of
alternate interior angles are congruent:

∠1 � ∠A ∠3 � ∠C.

Therefore, the angle sum of �ABC is

s(�ABC) = (∠A)+(∠B)+(∠C)

= (∠1)+(∠2)+(∠3)
= 180◦.

One of the key theorems we proved in the neutral geometry section was
the Saccheri-Legendre Theorem: that the angle sum of a triangle is at most
180◦. That’s all you can say with the axioms of neutral geometry, but in
a world with Playfair’s Axiom and the converse of the Alterante Interior
Angle Theorem, there can be only one triangle angle sum.

THM
The angle sum of a triangle is 180◦.

Proof. Consider a triangle �ABC. By Playfair’s Axiom, there is a unique
line � through B which is parallel to � AC �. That line and the rays
BA� and BC� form three angles, ∠1, ∠2 and ∠3 as I have shown in the
illustration below.

By the converse of the Alternate Interior Angle Theorem, two pairs of
alternate interior angles are congruent:

∠1 � ∠A ∠3 � ∠C.

Therefore, the angle sum of �ABC is

s(�ABC) = (∠A)+(∠B)+(∠C)

= (∠1)+(∠2)+(∠3)
= 180◦.

A C

B

2 3

3

1

1



159THE PARALLEL AXIOM

In the last lesson on quadrilaterals I talked a little bit about the uncertain
status of rectangles in neutral geometry– that it is pretty easy to make a
convex quadrilateral with three right angles, but that once you have done
that, there is no guarantee that the fourth angle will be a right angle. Here
it is now in the Euclidean context:

RECTANGLES EXIST
Let ∠ABC be a right angle. Let rA and rB be rays so that: rA has
endpoint A, is on the same side of �AB� as C, and is perpendicular
to � AB �; rC has endpoint C, is on the same side of � BC � as A,
and is perpendicular to � BC �. Then rA and rC intersect at a point
D, and the angle fomed at this intersection, ∠ADC, is a right angle.
Therefore �ABCD is a rectangle.

Proof. The first bit of business is to make sure that rA and rC intersect. Let
�A and �C be the lines containing rA and rC respectively. By the Alternate
Interior Angle Theorem, the right angles at A and B mean that �A and
�BC� are parallel. So �BC� is the one line parallel to �A through C, and
that means that �C cannot be parallel to �A: it has to intersect �A. Let’s call
that point of intersection D. Now in the statement of the theorem, I claim
that it is the rays, not the lines, that intersect. That means that we need
to rule out the possibility that the intersection of �A and �C might happen
on one (or both) of the opposite rays. Observe that since �A is parallel to
�BC�, all of the points of �A are on the same side of �BC� as A. None of
the points of rop

C are on that side of BC, so D cannot be on rop
C . Likewise,

all the points of �C are on the same side of �AB� as C. None of the points
of rop

A are on that side of AB, so D cannot be on rop
A .

So now we have a quadrilateral �ABCD with three right angles, ∠A,
∠B, and ∠C. It is actually a convex quadrilateral too (I leave it to you
to figure out why), so the diagonal AC divides �ABCD into two triangles
�ABC and �ADC. Then, since the angle sum of a triangle is 180◦,

s(�ABC)+ s(�ADC) = 180◦+180◦

(∠CAB)+(∠B)+(∠ACB)+(∠CAD)+(∠D)+(∠ACD) = 360◦

(∠A)+(∠B)+(∠C)+(∠D) = 360◦

90◦+90◦+90◦+(∠D) = 360◦

(∠D) = 90◦.
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That means that, yes, rectangles do exist in Euclidean geometry. In the
next lemma, I have listed some basic properties of a rectangle. I will leave
it to you to prove these (they aren’t hard).

LEM: PROPERTIES OF RECTANGLES
Let �ABCD be a rectangle. Then
1. �AB� is parallel to �CD� and �AD� is parallel to �BC�
2. AB �CD and AD � BC and AC � BD.
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For the last result of this section, I would like to get back to parallel
lines. One of the things that we will see when we study non-Euclidean ge-
ometry is that parallel lines tend to diverge from each other. That doesn’t
happen in non-Euclidean geometry. It is one of the key differences be-
tween the two geometries. Let me make this more precise. Suppose that
P is a point which is not on a line �. Define the distance from P to � to be
the minimum distance from P to a point on �:

d(P, �) = min
{
|PQ|

∣∣∣Q is on �
}
.

That minimum actually occurs when Q is the foot of the perpendicular to
� through P. To see why, let Q′ be any other point on �. In �PQQ′, the
right angle at Q is the largest angle. By the Scalene Triangle Theorem,
that means that the opposite side PQ′ has to be the longest side, and so
|PQ′|> |PQ|.
Now, for a given pair of parallel lines, that distance as measured along
perpendiculars does not change.

THM: PARALLEL LINES ARE EVERYWHERE EQUIDISTANT
If � and �′ are parallel lines, then the distance from a point on � to �′

is constant. In other words, if P and Q are points on �, then

d(P, �′) = d(Q, �′).

Proof. Let P′ and Q′ be the feet of the perpendiculars on �′ from P and Q
respectively. That way,

d(P, �′) = |PP′| d(Q, �′) = |QQ′|.

Then ∠PP′Q′ and ∠QQ′P′ are right angles. By the converse of the Al-
ternate Interior Angle Theorem, ∠P and ∠Q are right angles too– so
�PQQ′P′ is a rectangle. Using the previous lemma on rectangles, PP′

and QQ′, which are the opposite sides of a rectangle, are congruent.
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For the last result of this section, I would like to get back to parallel
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Exercises

1. Suppose that �1, �2 and �3 are three distinct lines such that: �1 and �2
are parallel, and �2 and �3 are parallel. Prove then that �1 and �3 are
parallel.

2. Find the angle sum of a convex n-gon as a function of n.

3. Prove that the opposite sides and the opposite angles of a parallelogram
are congruent.

4. Consider a convex quadrilateral �ABCD. Prove that the two diagonals
of �ABCD bisect each other if and only if �ABCD is a parallelogram.

5. Show that a parallelogram �ABCD is a rectangle if and only if AC �
BD.

6. Suppose that the diagonals of a convex quadrilateral �ABCD intersect
one another at a point P and that

AP � BP �CP � DP.

Prove that �ABCD is a rectangle.

7. Suppose that the diagonals of a convex quadilateral bisect one another
at right angles. Prove that the quadrilateral must be a rhombus.

8. Consider a triangle �ABC and three additional points A′, B′ and C′.
Prove that if AA′, BB′ and CC′ are all congruent and parallel to one
another then �ABC ��A′B′C′.

9. Verify that the Cartesian model (as developed through the exercises in
lessons 1 and 3) satisfies Playfair’s Axiom.

References
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Some calisthenics to start the lesson

In the course of this lesson, we are going to need to use a few facts dealing
with parallelograms. First, let me remind of the proper definition of a
parallelogram.

DEF: PARALLELOGRAM
A parallelogram is a simple quadrilateral whose opposite sides are
parallel.

Now on to the facts about parallelograms that we will need for this lesson.
None of their proofs are that difficult, but they would be a good warm-up
for this lesson.

1 Prove that in a parallelogram, the two pairs of opposite sides are
congruent and the two pairs of opposite angles are congruent.

2 Prove that if a convex quadrilateral has one pair of opposite sides
which are both parallel and congruent, then it is a parallelogram.

3 Let �ABB′A′ be a simple quadrilateral. Verify that if AA′ and BB′

are parallel, but AB and A′B′ are not, then AA′ and BB′ cannot be
congruent.
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Parallel projection

The purpose of this lesson is to introduce a mechanism called parallel
projection, a particular kind of mapping from points on one line to points
on another. Parallel projection is the piece of machinery that you have
to have in place to really understand similarity, which is in turn essential
for so much of what we will be doing in the next lessons. The primary
goal of this lesson is to understand how distances between points may be
distorted by the parallel projection mapping. Once that is figured out, we
will be able to turn our attention to the geometry of similarity.

DEF: PARALLEL PROJECTION
A parallel projection from one line � to another �′ is a map Φ which
assigns to each point P on � a point Φ(P) on �′ so that all the lines
connecting a point and its image are parallel to one another.

It is easy to construct parallel projections. Any one point P on � and its
image Φ(P) on �′ completely determines the projection: for any other
point Q on � there is a unique line which passes through Q and is parallel
to the line � PΦ(P) �. Wherever this line intersects �′ will have to be
Φ(Q). There are only two scenarios where this construction will not work
out: (1) if P is the intersection of � and �′, then the lines of projection run
parallel to �′ and so fail to provide a point of intersection; and (2) if Φ(P)
is the intersection of � and �′, then the lines of projection actually coincide
rather than being parallel.

The path from a point P on  to a point P on  defines a parallel projection
as long as neither P nor P is the intersection of  and  (as shown at right).
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THM: PARALLEL PROJECTION IS A BIJECTION
A parallel projection is both one-to-one and onto.

Proof. Consider a parallel projection Φ :
� → �′. First let’s see why Φ is one-
to-one. Suppose that it is not. That is,
suppose that P and Q are two distinct
points on � but that Φ(P) = Φ(Q). Then
the two projecting lines �PΦ(P)� and
�QΦ(Q)�, which ought to be parallel,
actually share a point. This can’t happen.

Now let’s see why Φ is onto, so take a
point Q′ on �′. We need to make sure that
there is a point Q on � so that Φ(Q) =Q′.
To get a sense of how Φ is casting points
from � to �′, let’s consider a point P on �
and its image Φ(P) on �′. The projecting
line that should lead from Q to Q′ ought
to be parallel to �PΦ(P)�. Now, there
is a line which passes through Q′ and is
parallel to � PΦ(P) �. The only ques-
tion, then, is whether that line intersects
�– if it does, then we have found our Q.
What if it doesn’t though? In that case,
our line is parallel to both �PΦ(P)� and
�. That would mean that �PΦ(P)� and
� are themselves parallel. Since P is on
both of these lines, we know that cannot
be the case.

Since parallel projection is a bijection, I would like to use a naming con-
vention for the rest of this lesson that I think makes things a little more
readable. I will use a prime mark ′ to indicate the parallel projection of a
point. So Φ(P) = P′, Φ(Q) = Q′, and so on.

THM: PARALLEL PROJECTION IS A BIJECTION
A parallel projection is both one-to-one and onto.

Proof. Consider a parallel projection Φ :
� → �′. First let’s see why Φ is one-
to-one. Suppose that it is not. That is,
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points on � but that Φ(P) = Φ(Q). Then
the two projecting lines �PΦ(P)� and
�QΦ(Q)�, which ought to be parallel,
actually share a point. This can’t happen.

Now let’s see why Φ is onto, so take a
point Q′ on �′. We need to make sure that
there is a point Q on � so that Φ(Q) =Q′.
To get a sense of how Φ is casting points
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� are themselves parallel. Since P is on
both of these lines, we know that cannot
be the case.

Since parallel projection is a bijection, I would like to use a naming con-
vention for the rest of this lesson that I think makes things a little more
readable. I will use a prime mark ′ to indicate the parallel projection of a
point. So Φ(P) = P′, Φ(Q) = Q′, and so on.

THM: PARALLEL PROJECTION IS A BIJECTION
A parallel projection is both one-to-one and onto.

Proof. Consider a parallel projection Φ :
� → �′. First let’s see why Φ is one-
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there is a point Q on � so that Φ(Q) =Q′.
To get a sense of how Φ is casting points
from � to �′, let’s consider a point P on �
and its image Φ(P) on �′. The projecting
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� are themselves parallel. Since P is on
both of these lines, we know that cannot
be the case.

Since parallel projection is a bijection, I would like to use a naming con-
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Parallel projection, order, and congruence.

So far we have seen that parallel projection establishes a correspondence
between the points of one line and the points of another. What about
the order of those points? Can points get shuffled up in the process of a
parallel projection? Well, ... no.

THM: PARALLEL PROJECTION AND ORDER
Let Φ : �→ �′ be a parallel projection. If A, B, and C are points on �
and B is between A and C, then B′ is between A′ and C′.

Proof. Because B is between A and C, A and C must be on opposite sides
of the line �BB′�. But:

�AA′� does not intersect �BB′�
so A′ has to be on the same side of
�BB′� as A.

�CC′� does not intersect �BB′�
so C′ has to be on the same side of
�BB′� as C.

That means A′ and C′ have to be on opposite sides of �BB′�, and so the
intersection of � BB′ � and A′C′, which is B′, must be between A′ and
C′.

C

B

A

CB
A
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That’s the story of how parallel projection and order interact. What about
congruence?

THM: PARALLEL PROJECTION AND CONGRUENCE
Let Φ : �→ �′ be a parallel projection. If a, b, A and B are all points
on � and if ab � AB, then a′b′ � A′B′.

Proof. There are actually several scenarios here, depending upon the po-
sitions of the segments ab and AB relative to �′. They could lie on the
same side of �′, or they could lie on opposite sides of �′, or one or both
could straddle �′, or one or both could have an endpoint on �′. You have
to handle each of those scenarios slightly differently, but I am only going
to address what I feel is the most iconic situation– the one where both
segments are on the same side of �′.

Case 1: � and �′ are parallel.
First let’s warm up with a simple case which I think helps illuminate the
more general case– it is the case where � and �′ are themselves parallel.
Notice all the parallel line segments:

That’s the story of how parallel projection and order interact. What about
congruence?
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Let Φ : �→ �′ be a parallel projection. If a, b, A and B are all points
on � and if ab � AB, then a′b′ � A′B′.

Proof. There are actually several scenarios here, depending upon the po-
sitions of the segments ab and AB relative to �′. They could lie on the
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A A A

B
B

BB
B

B

AAA

There are three positions for A and B  relative to the image line– both on the 
same side, one on the image line, or one on each side. Likewise, there are three 
positions for a and b. Therefore, in all, there are nine scenarios.
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aa′ is parallel to bb′ and ab is par-
allel to a′b′ so �aa′b′b is a paral-
lelogram;

AA′ is parallel to BB′ and AB is
parallel to A′B′ so �AA′B′B is also
a parallelogram.

Because the opposite sides of a parallelogram are congruent (exercise 1
at the start of the lesson), a′b′ � ab and AB � A′B′. Since ab � AB, that
means a′b′ � A′B′.

That’s the story of how parallel projection and order interact. What about
congruence?

THM: PARALLEL PROJECTION AND CONGRUENCE
Let Φ : �→ �′ be a parallel projection. If a, b, A and B are all points
on � and if ab � AB, then a′b′ � A′B′.

Proof. There are actually several scenarios here, depending upon the po-
sitions of the segments ab and AB relative to �′. They could lie on the
same side of �′, or they could lie on opposite sides of �′, or one or both
could straddle �′, or one or both could have an endpoint on �′. You have
to handle each of those scenarios slightly differently, but I am only going
to address what I feel is the most iconic situation– the one where both
segments are on the same side of �′.

Case 1: � and �′ are parallel.
First let’s warm up with a simple case which I think helps illuminate the
more general case– it is the case where � and �′ are themselves parallel.
Notice all the parallel line segments:

Case 1: when the two lines are parallel.

B

A

a

b

B

A

a

b
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Case 2: � and �′ are not parallel.
This is the far more likely scenario. In this case the two quadrilaterals
�aa′b′b and �AA′B′B will not be parallelograms. I want to use the same
approach here as in Case 1 though, so to do that we will need to build
some parallelograms into the problem. Because � and �′ are not parallel,
the segments aa′ and bb′ cannot be the same length (exercise 3 at the start
of this lesson), and the segments AA′ and BB′ cannot be the same length.
Let’s assume that aa′ is shorter than bb′ and that AA′ is shorter than BB′.
If this is not the case, then it is just a matter of switching some labels to
make it so.
Then
◦ there is a point c between b and b′ so that bc � aa′, and
◦ there is a point C between B and B′ so that BC � AA′.

This creates four shapes of interest– the two quadrilaterals �a′abc and
�A′ABC which are actually parallelograms (exercise 2), and the two trian-
gles �a′b′c and �A′B′C. The key here is to prove that �a′b′c ��A′B′C.
I want to use A·A·S to do that.

Case 2: � and �′ are not parallel.
This is the far more likely scenario. In this case the two quadrilaterals
�aa′b′b and �AA′B′B will not be parallelograms. I want to use the same
approach here as in Case 1 though, so to do that we will need to build
some parallelograms into the problem. Because � and �′ are not parallel,
the segments aa′ and bb′ cannot be the same length (exercise 3 at the start
of this lesson), and the segments AA′ and BB′ cannot be the same length.
Let’s assume that aa′ is shorter than bb′ and that AA′ is shorter than BB′.
If this is not the case, then it is just a matter of switching some labels to
make it so.
Then
◦ there is a point c between b and b′ so that bc � aa′, and
◦ there is a point C between B and B′ so that BC � AA′.

This creates four shapes of interest– the two quadrilaterals �a′abc and
�A′ABC which are actually parallelograms (exercise 2), and the two trian-
gles �a′b′c and �A′B′C. The key here is to prove that �a′b′c ��A′B′C.
I want to use A·A·S to do that.
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[A] ∠b′ � ∠B′.
The lines cb′ and CB′ are parallel (they are two of the projecting
lines) and they are crossed by the tranversal �′. By the converse
of the Alternate Interior Angle Theorem, that means ∠a′b′c and
∠A′B′C are congruent.

[A] ∠c � ∠C.
The opposite angles of the two parallelograms are congruent. There-
fore ∠a′cb �∠a′ab and ∠A′AB �∠A′CB. But aa′ and AA′ are par-
allel lines cut by the transversal �, so ∠a′ab � ∠A′AB. That means
that ∠a′cb � ∠A′CB, and so their supplements ∠a′cb′ and ∠A′CB′

are also congruent.

[S] a′c � A′C.
The opposite sides of the two parallelograms are congruent too.
Therefore a′c � ab and AB � A′C, and since ab � AB, that means
a′c � A′C.

By A·A·S, then, �a′b′c ��A′B′C. The corresponding sides a′b′ and A′B′

have to be congruent.
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Parallel projection and distance

That brings us to the question at the very heart of parallel projection. If
Φ is a parallel projection and A and B are two points on �, how do the
lengths |AB| and |A′B′| compare? In Case 1 of the last proof, the segments
AB and A′B′ ended up being congruent, but that was because � and �′ were
parallel. In general, AB and A′B′ do not have to be congruent. But (and this
is the key) in the process of parallel projecting from one line to another,
all distances are scaled by a constant multiple.

THM: PARALLEL PROJECTION AND DISTANCE
If Φ : � → �′ is a parallel projection, then there is a constant k such
that

|A′B′|= k|AB|

for all points A and B on �.

I want to talk about a few things before diving in after the formal proof.
The first is that the previous theorem on congruence gives us a way to
narrow the scope of the problem. Fix a point O on � and let r be one of the
two rays along � with O as its endpoint. The Segment Construction Axiom
says that every segment AB on � is congruent to a segment OP where P is
some point on r. We have just seen that parallel projection maps congruent
segments to congruent segments. So if Φ scales all segments of the form
OP by a factor of k, then it must scale all the segments of � by that same
factor.

30
º

30
º

30
º

30
º

30º
60º 90º 120º

k =
√

3 2 k =
√

3k = 1
√

3 k = 2
√

3
Some parallel projections and their scaling constants.
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The second deals with parallel projecting end-to-end congruent copies
of a segment. For this, let me introduce another convenient notation con-
vention: for the rest of this argument, when I write a point with a subscript
Pd , the subscript d is the distance from that point to O. Now, pick a par-
ticular positive real value x, and let

k = |O′P′
x|/|OPx|,

so that Φ scales the segment OPx by a factor of k. Of course, eventually we
will have to show that Φ scales all segments by that same factor, but for
now let’s restrict our attention to the segments OPnx, where n is a positive
integer. Between O and Pnx are Px, P2x, . . . P(n−1)x in order:

O∗Px ∗P2x ∗ · · · ∗P(n−1)x ∗Pnx.

We have seen that parallel projection preserves the order of points, so

O′ ∗P′
x ∗P′

2x ∗ · · · ∗P′
(n−1)x ∗P′

nx.

Each segment PixP(i+1)x is congruent to OPx and consequently each paral-
lel projection P′

ixP′
(i+1)x is congruent to O′P′

x. Just add them all together

|O′P′
nx|= |O′P′

x|+ |P′
xP′

2x|+ |P′
2xP′

3x|+ · · ·+ |P′
(n−1)xP′

nx|

= kx+ kx+ kx+ · · ·+ kx (n times)
= k ·nx

and so Φ scales OPnx by a factor of k.

distance 
from O

distance 
from O´

0
kx

2kx
3kx

4kx

0
x

2x
3x

4x

O
P

2x

P
3x

P
4xPx

P2x
P3x

P4x

P
x

O
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Sadly, no matter what x is, the points Pnx account for an essentially
inconsequential portion of the set of all points of r. However, if OPx and
OPy were to have two different scaling factors we could use this end-to-
end copying to magnify the difference between them. The third thing I
would like to do, then, is to look at an example to see how this actually
works, and how this ultmately prevents there from being two different
scaling factors. In this example, let’s suppose that |O′P′

1| = 2, so that all
integer length segments on � are scaled by a factor of 2, and let’s take a
look at what this means for P3.45. Let k be the scaling factor for OP3.45 and
let’s see what the first few end-to-end copies of OP3.45 tell us about k.

2 2.41.6 1.8 2.2

3 < 3.45 < 4
O∗P3 ∗P3.45 ∗P4

O ∗P
3 ∗P

3.45 ∗P
4

6 < 3.45k < 8
1.74 < k < 2.32

6 < 6.9 < 7
O∗P6 ∗P6.9 ∗P7

O ∗P
6 ∗P

6.9 ∗P
7

12 < 6.9k < 14
1.74 < k < 2.0310 < 10.35 < 11

O∗P10 ∗P10.35 ∗P11

O ∗P
10 ∗P

10.35 ∗P
11

20 < 10.35k < 22
1.93 < k < 2.13

13 < 13.8 < 14
O∗P13 ∗P13.8 ∗P14

O ∗P
13 ∗P

13.8 ∗P
14

26 < 13.8k < 28
1.88 < k < 2.0317 < 17.25 < 18

O∗P17 ∗P17.25 ∗P18

O ∗P
17 ∗P

17.25 ∗P
18

34 < 17.25k < 36
1.97 < k < 2.09 20 < 20.7 < 21

O∗P20 ∗P20.7 ∗P21

O ∗P
20 ∗P

20.7 ∗P
21

40 < 20.7k < 42
1.93 < k < 2.03

1

3

5

2

4

6
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Proof. It is finally time to prove that parallel projection scales distance.
Let k = |O′P′

1| so that k is the scaling factor for the segment of length one
(and consequently all integer length segments). Now take some arbitrary
point Px on � and let k′ be the scaling factor for the segment OPx. We want
to show that k′ = k and to do that, I want to follow the same basic strategy
as in the example above– capture k′ in an increasingly narrow band around
k by looking at the parallel projection of Pnx as n increases.

�nx�< nx < �nx�
O∗P�nx� ∗Pnx ∗P�nx�

O′ ∗P′
�nx� ∗P′

nx ∗P′
�nx�

k�nx�< k′nx < k�nx�

k(nx−1)< k�nx�< k′nx < k�nx�< k(nx+1)

k(nx−1)< k′nx < k(nx+1)
k · (nx−1)/(nx)< k′ < k · (nx+1)/(nx)

As n increases, the two ratios (nx− 1)/(nx) and (nx+ 1)/(nx) both ap-
proach 1. In the limit as n goes to infinity, they are one. Since the above
inequalities have to be true for all n, the only possible value for k′ , then,
is k.

The floor function, f (x) = �x�, assigns to each real num-
ber x the largest integer which is less than or equal to it.

The ceiling function, f (x) = �x�, assigns to each real
number x the smallest integer which is greater than or
equal to it.

notation

* In this step, I have replaced one set of inequalities with another, less precise, 
set. The new inequalities are easier to manipulate mathematically though, and  
are still accurate enough to get the desired result.

*
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Exercises

1. Investigate the other possible cases in the proof that parallel projection
preserves order.

2. Suppose that Φ is a parallel projection from � to �′. If � and �′ intersect,
and that point of intersection is P, prove that Φ(P) = P.

3. Prove that if � and �′ are parallel, then the scaling factor of any parallel
projection between them must be one, but that if � and �′ are not paral-
lel, then there is a parallel projection with every possible scaling factor
k where 0 < k < ∞.

4. In the lesson 7, we constructed a distance function, and one of the
keys to that construction was locating the points on a ray which were a
distance of m/2n from its endpoint. In Euclidean geometry, there is a
construction which locates all the points on a ray which are any rational
distance m/n from its endpoint. Take two (non-opposite) rays r and r′
with a common endpoint O. Along r, lay out m congruent copies of
a segment of length one, ending at the point Pm. Along r′, lay out n
congruent copies of a segment of length one, ending at the point Qn.
Mark the point Q1 on r′ which is a distance one from O. Verify that
the line which passes through Q1 and is parallel to PmQn intersects r a
distance of m/n from O.
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In the lessons on neutral geometry, we spent a lot of effort to gain an
understanding of polygon congruence. In particular, I think we were pretty
thorough in our investigation of triangle and quadrilateral congruence. So
I sincerely hope that you haven’t forgotten what it means for two polygons
to be congruent:

1. all their corresponding sides must be congruent, and
2. all their corresponding interior angles must be congruent.

Remember as well that polygon congruence is an equivalence relation (it
is reflexive, symmetric, and transitive). It turns out that congruence is not
the only important equivalence relation between polygons, though, and
the purpose of this lesson is to investigate another: similarity.

Similarity is a less demanding relation than congruence. I think of con-
gruent polygons as exactly the same, just positioned differently. I think of
similar polygons as “scaled versions” of one another– the same shape, but
possibly different sizes. That’s not really a definition, though, so let’s get
to something a little more formal.

DEF: SIMILAR POLYGONS
Two n-sided polygons P1P2 . . .Pn and Q1Q2 . . .Qn are similar to one
another if they meet two sets of conditions

1. corresponding interior angles are congruent:

∠Pi � ∠Qi, 1 ≤ i ≤ n.

2. corresponding side lengths differ by the same constant multiple:

|PiPi+1|= k · |QiQi+1|, 1 ≤ i ≤ n.
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I will use the notation P1P2 . . .Pn ∼Q1Q2 . . .Qn to indicate similarity. There
are a few things worth noting here. First, if polygons are congruent, they
will be similar as well– the scaling constant k will be one in this case.
Second, similarity is an equivalence relation– I leave it to you to verify
that the three required conditions are met. Third, when you jump from
one polygon to another similar polygon, all the corresponding segments
lengths are scaled by the same amount. That behavior echoes the work we
did in the last lesson, and for good reason: parallel projection underlies
everything that we are going to do in this lesson.

An arrangement of similar triangles.

A spiralling stack 
of similar golden 
rectangles (see the 
exercises).
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Much of the time, when working with either parallel projection or simi-
larity, the actual scaling constant is just not that important. The only thing
that matters is that there is a scaling constant. Fortunately, the existence
of a scaling constant can be indicated without ever mentioning what it is.
The key to doing this is ratios. Consider a parallel projection from line �
to line ��. Let A, B, a, and b be points on � and let A�, B�, a� and b� be their
respective images on ��. The main result of the last lesson was that there
is a scaling constant k so that

|A�B�|= k · |AB| & |a�b�|= k · |ab|.

The ratios I am talking about are only a step away from this pair of equa-
tions.

Ratio 1: Solve for k in both equa-
tions and set them equal to each
other

|A�B�|
|AB| =

|a�b�|
|ab| .

Ratio 2: Starting from the first ra-
tio, multiply through by |AB| and
divide through by |a�b�|

|A�B�|
|a�b�| =

|AB|
|ab| .

a

b

B

A

a

b

B

A

= =

|AB|
|ab|

|AB|
|ab|

|AB|
|AB|

|ab|
|ab|

Two invariant ratios of a parallel projection.
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Triangle similarity theorems

I would now like to turn our attention to a few theorems that deal with sim-
ilarity of triangles. I like to think of these similarity theorems as degen-
erations of the triangle congruence theorems, where the strict condition
of side congruence, A�B� � AB, is replaced with the more flexible condi-
tion of constant scaling, |A�B�| = k|AB|. First up is the S·A·S similarity
theorem.

THM: S·A·S SIMILARITY
In triangles �ABC and �A�B�C�, if ∠A � ∠A� and if there is a con-
stant k so that

|A�B�|= k · |AB| & |A�C�|= k · |AC|,

then �ABC ∼�A�B�C�.

Proof. First of all, let me point out that just as with the parallel projection,
the second condition in the S·A·S similarity theorem can be recast in terms
of ratios:

{
|A�B�|= k|AB|
|A�C�|= k|AC|

⇐⇒ |A�B�|
|AB|

=
|A�C�|
|AC|

⇐⇒ |A�B�|
|A�C�|

=
|AB|
|AC|

.

With that said, what we need to do in this proof is to establish two more
angle congruences, that ∠B � ∠B� and ∠C � ∠C�, and one more ratio of
sides, that |B�C�|= k|BC|. Two parallel projections will form the backbone
of this proof. The first will establish the two angle congrunces while the
second will calculate the ratio of the third pair of sides.
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B

C

A

k

k
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C
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The first parallel projection. The primary purpose of the first projection
is to build a transitional triangle which is congruent to �A�B�C� but posi-
tioned on top of �ABC. Begin by locating the point B� on AB � so that
AB� � A�B�. We cannot know the exact location of B� relative to B on this
ray– that depends upon whether A�B� is shorter or longer than AB. For
this argument, assume that A�B� is shorter than AB, which will place B�

between A and B (the other case is not substantially different). Consider
the parallel projection

Φ1 : (�AB�)−→ (�AC�)

which takes B to C. Note that since A is the intersection of these two lines,
Φ1(A) =A. Label C� =Φ1(B�). Let’s see how the newly formed �AB�C�

compares with �A�B�C�. Compare the ratios

|AC�|
|AC|

1
=

|AB�|
|AB|

2
=

|A�B�|
|AB|

3
=

|A�C�|
|AC|

.

1. parallel projection
2. constructed congruence

3. given

If you look at the first and last entries in that string of equalities you will
see that |AC�| = |A�C�|. Put that together with what we already knew,
that AB� � A�B� and ∠A � ∠A�, and by S·A·S, we see that �A�B�C� and
�AB�C� are congruent. In particular, that means ∠B� � ∠B� and ∠C� �
∠C�. Now let’s turn back to see how �AB�C� relates to �ABC. In order
to locate C�, we used a projection which was parallel to �BC�. That of
course means � B�C� � and � BC � are parallel to one another, and so,
by the converse of the Alternate Interior Angle Theorem, ∠B� � ∠B and
∠C� � ∠C. Since angle congruence is transitive, we now have the two
required angle congruences, ∠B � ∠B� and ∠C � ∠C�.

C

B
B

C
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B
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The second parallel projection. Consider the parallel projection

Φ2 : (�AC�)−→ (�BC�)

which maps A to B. Again, since C is the intersection of those two lines,
Φ2(C) =C. The other point of interest this time is C�. Define P=Φ2(C�).
In doing so, we have effectively carved out a parallelogram BB�C�P. Re-
call that the opposite sides of a parallelogram are congruent– in particular,
B�C� � BP. Now consider the ratios that Φ2 provides

|B�C�|
|BC|

1
=

|B�C�|
|BC|

2
=

|BP|
|BC|

3
=

|AC�|
|AC|

4
=

|A�C�|
|AC| = k.

1. triangle congruence established above
2. opposite sides of a parallelogram

3. parallel projection
4. triangle congruence established above

Thus, |B�C�|= k|BC|, as needed.

The first parallel projection. The primary purpose of the first projection
is to build a transitional triangle which is congruent to �A�B�C� but posi-
tioned on top of �ABC. Begin by locating the point B� on AB � so that
AB� � A�B�. We cannot know the exact location of B� relative to B on this
ray– that depends upon whether A�B� is shorter or longer than AB. For
this argument, assume that A�B� is shorter than AB, which will place B�

between A and B (the other case is not substantially different). Consider
the parallel projection

Φ1 : (�AB�)−→ (�AC�)

which takes B to C. Note that since A is the intersection of these two lines,
Φ1(A) =A. Label C� =Φ1(B�). Let’s see how the newly formed �AB�C�

compares with �A�B�C�. Compare the ratios

|AC�|
|AC|

1
=

|AB�|
|AB|

2
=

|A�B�|
|AB|

3
=

|A�C�|
|AC|

.

1. parallel projection
2. constructed congruence

3. given

If you look at the first and last entries in that string of equalities you will
see that |AC�| = |A�C�|. Put that together with what we already knew,
that AB� � A�B� and ∠A � ∠A�, and by S·A·S, we see that �A�B�C� and
�AB�C� are congruent. In particular, that means ∠B� � ∠B� and ∠C� �
∠C�. Now let’s turn back to see how �AB�C� relates to �ABC. In order
to locate C�, we used a projection which was parallel to �BC�. That of
course means � B�C� � and � BC � are parallel to one another, and so,
by the converse of the Alternate Interior Angle Theorem, ∠B� � ∠B and
∠C� � ∠C. Since angle congruence is transitive, we now have the two
required angle congruences, ∠B � ∠B� and ∠C � ∠C�.
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Back in the neutral geometry lessons, after S·A·S we next encountered
A·S·A and A·A·S. Unlike S·A·S, both of those theorems reference only
one pair of sides in the triangles. Let’s take a look at what happens when
you try to modify those congruence conditions into similarity conditions.

A·S·A Congruence A·S·A Similarity (?)

∠A � ∠A� ∠A � ∠A�

AB � A�B� |A�B�|= k · |AB|
∠B � ∠B� ∠B � ∠B�

A·A·S Congruence A·A·S Similarity (?)

∠A � ∠A� ∠A � ∠A�

∠B � ∠B� ∠B � ∠B�

BC � B�C� |B�C�|= k · |BC|

In each of these conversions, the condition on the one side is automati-
cally satisfied– there will always be a real value of k that makes the equa-
tion true. That is a hint that it may take only two angle congruences to
guarantee similarity.

THM: A · A SIMILARITY
In triangles �ABC and �A�B�C�, if ∠A � ∠A� and ∠B � ∠B�, then
�ABC ∼�A�B�C�.

Proof. We have plenty of information about the angles, so what we need
here is some information about ratios of sides. In particular, I want to
show that

|A�B�|
|AB|

=
|A�C�|
|AC|

.

Along with the given congruence ∠A � ∠A�, that will be enough to use
S·A·S similarity. As in the S·A·S similarity proof, I want to construct a
transition triangle: one that is positioned on top of �ABC but is congruent
to �A�B�C�. To do that, locate B� on AB� so that AB� � A�B�, and C� on
AC� so that AC� � A�C�. By S·A·S, �AB�C� and �A�B�C� are congruent.
Now take a look at all the congruent angles

∠B� � ∠B� � ∠B.

According to the Alternate Interior Angle Theorem, �B�C�� and �BC�
must be parallel. Therefore the parallel projection from �AB� to �AC�
which maps B to C and A to itself will also map B� to C�. That gives us
some ratios

|A�B�|
|AB|

1
=

|AB�|
|AB|

2
=

|AC�|
|AC|

3
=

|A�C�|
|AC| .

1. constructed congruence
2. parallel projection

3. constructed congruence

The first and last terms in that list of equalities give the ratio we need.
That, together with the known congruence ∠A�∠A�, is enough for S·A·S
similarity, so �ABC ∼�A�B�C�.

B

C

A

B

C

A
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Proof. We have plenty of information about the angles, so what we need
here is some information about ratios of sides. In particular, I want to
show that

|A�B�|
|AB|

=
|A�C�|
|AC|

.

Along with the given congruence ∠A � ∠A�, that will be enough to use
S·A·S similarity. As in the S·A·S similarity proof, I want to construct a
transition triangle: one that is positioned on top of �ABC but is congruent
to �A�B�C�. To do that, locate B� on AB� so that AB� � A�B�, and C� on
AC� so that AC� � A�C�. By S·A·S, �AB�C� and �A�B�C� are congruent.
Now take a look at all the congruent angles

∠B� � ∠B� � ∠B.

According to the Alternate Interior Angle Theorem, �B�C�� and �BC�
must be parallel. Therefore the parallel projection from �AB� to �AC�
which maps B to C and A to itself will also map B� to C�. That gives us
some ratios

|A�B�|
|AB|

1
=

|AB�|
|AB|

2
=

|AC�|
|AC|

3
=

|A�C�|
|AC| .

1. constructed congruence
2. parallel projection

3. constructed congruence

The first and last terms in that list of equalities give the ratio we need.
That, together with the known congruence ∠A�∠A�, is enough for S·A·S
similarity, so �ABC ∼�A�B�C�.
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Note that while A·A·A was not enough to guarantee congruence, thanks to
the result above, we now know that it is (more than) enough to guarantee
similarity. Finally, the last of the triangle similarity theorems is S·S·S
similarity (S·S·A, which just misses as a congruence theorem, is done in
again by the same counterexample).

THM: S·S·S SIMILARITY
In triangles �ABC and �A�B�C�, if there is a constant k so that

|A�B�|= k · |AB| |B�C�|= k · |BC| & |C�A�|= k · |CA|,

then �ABC ∼�A�B�C�.

I am going to leave the proof of this last similarity theorem as an exercise
for you.

Note that while A·A·A was not enough to guarantee congruence, thanks to
the result above, we now know that it is (more than) enough to guarantee
similarity. Finally, the last of the triangle similarity theorems is S·S·S
similarity (S·S·A, which just misses as a congruence theorem, is done in
again by the same counterexample).

THM: S·S·S SIMILARITY
In triangles �ABC and �A�B�C�, if there is a constant k so that

|A�B�|= k · |AB| |B�C�|= k · |BC| & |C�A�|= k · |CA|,

then �ABC ∼�A�B�C�.

I am going to leave the proof of this last similarity theorem as an exercise
for you.

The Pythagorean Theorem

Before we close this lesson, though, let’s meet one of the real celebrities
of the subject.

THM: THE PYTHAGOREAN THEOREM
Let �ABC be a right triangle whose right angle is at the vertex C.
Identify the lengths of each side as

a = |BC| b = |AC| c = |AB|.

Then c2 = a2 +b2.

B

C

A

B

C

A

k
k

k



189SIMILARITY

Proof. There are many, many proofs of this theorem. The one that I am
going to give involves dividing the triangle into two smaller triangles,
showing each of those is similar to the initial triangle, and then work-
ing with ratios. Let D be the foot of the perpendicular to AB through C.
The segment CD divides �ABC into two smaller triangles: �ACD and
�BCD. Let’s go ahead and label the lengths of the newly created sides of
those two triangles:

c1 = |AD| c2 = |BD| d = |CD|

and note that c = c1 + c2. Now �ADC shares ∠A with �ACB, and they
both have a right angle, so by the A·A similarity theorem, �ADC ∼
�ACB. Similarly, �BDC shares ∠B with �ACB, and they both have a
right angle as well, so again by A·A similarity, �BDC ∼ �ACB. From
these similarities, there are many ratios, but the two that we need are

a
c
=

c2

a
=⇒ a2 = c · c2 &

b
c
=

c1

b
=⇒ b2 = c · c1.

Now all you have to do is add those two equations together and simplify
to get the Pythagorean Theorem

a2 +b2 = c · c2 + c · c1 = c(c2 + c1) = c2.

D

A
b

c
a

B

C

c d1

c2

A proof of the Pythagorean Theorem via similarity.
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Exercises

1. Prove that similarity of polygons is an equivalence relation.

2. Prove the S·S·S triangle similarity theorem.

3. State and prove the S·A·S·A·S and A·S·A·S·A similarity theorems for
convex quadrilaterals.

The six trigonometric functions can be defined, for values of θ between
0 and 90◦, as ratios of pairs of sides of a right triangle with an interior
angle θ . If the length of the hypotenuse is h, the length of the leg
adjacent to θ is a, and the length of the leg opposite θ is o, then these
functions are defined as

sine: sin(θ) = o/h
cosine: cos(θ) = a/h
tangent: tan(θ) = o/a
cotangent: cot(θ) = a/o
secant: sec(θ) = h/a
cosecant: csc(θ) = h/o.

4. Verify that the six trigonometric functions are well-defined. That is,
show that it does not matter which right triangle with interior angle θ
you choose– these six ratios will not change.

5. Verify the Pythagorean identities (for values of θ between 0 and 90◦).

sin2 θ + cos2 θ = 1
1+ tan2θ = sec2θ

1+ cot2θ = csc2θ
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6. Verify the cofunction identities (for values of θ between 0 and 90◦).

sin(90◦ −θ) = cosθ
cos(90◦ −θ) = sinθ
tan(90◦ −θ) = cotθ
cot(90◦ −θ) = tanθ
sec(90◦ −θ) = cscθ
csc(90◦ −θ) = secθ

7. The geometric mean of two numbers a and b is defined to be
√

ab. Let
�ABC be a right triangle with right angle at C and let D be the point
on AB so that CD is perpendicular to AB (the same setup as in the proof
of the Pythagorean Theorem). Verify that |CD| is the geometric mean
of |AD| and |BD|.

8. Consider a rectangle �ABCD with |AB|< |BC|, and suppose that this
rectangle has the following special property: if a square �ABEF is
constructed inside �ABCD, then the remaining rectangle �ECDF is
similar to the original �ABCD. A rectangle with this property is called
a golden rectangle. Find the value of |BC|/|AB|, a value known as the
golden ratio.
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This is the first of two lessons dealing with circles. This lesson gives some
basic definitions and some elementary theorems, the most important of
which is the Inscribed Angle Theorem. In the next lesson, we will tackle
the important issue of circumference and see how that leads to the radian
angle measurement system.

Definitions

So you might be thinking “Lesson 16 and we are just now getting to cir-
cles... what was the hold-up?” In fact, we could have given a proper
definition for the term circle as far back as lesson 3. All that you really
need for a good definition is points, segments, and congruence. But once
you give the definition, what next? Most of what I want to cover with cir-
cles is specific to Euclidean geometry. I don’t know that many theorems
about circles in neutral geometry, and in the discussion thus far, the only
time I remember that the lack of circles made things awkward was when
we looked at cyclic polygons. In any case, now is the time, so

DEF: CIRCLE
For any point O and positive real number r, the circle with center O
and radius r is the set of points which are a distance r from O.

A few observations.

1. A circle is a set. Therefore, you should probably speak of the ele-
ments of that set as the points of the circle, but it is more common
to refer to these as points on the circle.

2. In the definition I have given, the radius is a number. We often
talk about the radius as a geometric entity though– as one of the
segments from the center to a point on the circle.

3. We tend to think of the center of a circle as a fundamental part of
it, but you should notice that the center of a circle is not actually a
point on the circle.

4. It is not that common to talk about circles as congruent or not con-
gruent. If you were to do it, though, you would say that two circles
are congruent if and only if they have the same radius.
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Before we get into anything really complicated, let’s get a few other re-
lated definitions out of the way.

DEF: CHORD AND DIAMETER
A segment with both endpoints on a circle is called a chord of that
circle. A chord which passes through the center of the circle is called
a diameter of that circle.

Just like the term radius, the term diameter plays two roles, a numerical
one and geometric one. The diameter in the numerical sense is just the
length of the diameter in the geometric sense.

DEF: CENTRAL ANGLE
An angle with its vertex at the center of a circle is called a central
angle of that circle.

We will see (in the next section) that a line intersects a circle at most
twice. Therefore, if AB is a chord of a circle, then all the points of that
circle other than A and B are on one side or the other of � AB �. Thus
� AB � separates those points into two sets. These sets are called arcs
of the circle. There are three types of arcs– semicircles, major arcs, and
minor arcs– depending upon where the chord crosses the circle.

DEF: SEMICIRCLE
Let AB be a diameter of a circle C. All the points of C which are
on one side of � AB�, together with the endpoints A and B, form a
semicircle.

3 diameters12 chords 4 central angles
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Each diameter divides the circle into two semicircles, overlapping at the
endpoints A and B.

DEF: MAJOR AND MINOR ARC
Let AB be a chord of a circle C which is not a diameter, and let O be
the center of this circle. All the points of C which are on the same
side of � AB � as O, together with the endpoints A and B, form
a major arc. All the points of C which are on the opposite side of
� AB � from O, together with the endpoints A and B, form a minor
arc.

Like the two semicircles defined by a diameter, the major and minor arcs
defined by a chord overlap only at the endpoints A and B. For arcs in
general, including diameters, I use the notation �AB. Most of the arcs we
look at will be minor arcs, so in the instances when I want to emphasize
that we are looking at a major arc, I will use the notation �AB.

There is a very simple, direct, and important relationship between arcs
and central angles. You may recall that in the lesson on polygons, I sug-
gested that two rays with a common endpoint define not one, but two
angles– a “proper” angle and a “reflex” angle. These proper and reflex
angles are related to the minor and major arcs as described in the next
theorem, whose proof I leave to you.

THM: CENTRAL ANGLES AND ARCS
Let AB be a chord of a circle with center O. The points of �AB are
A, B, and all the points in the interior of the proper angle ∠AOB. The
points of �AB are A, B, and all the points in the interior of the reflex
angle ∠AOB (that is, the points exterior to the proper angle).

minor arc semicircle major arc
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Intersections

Circles are different from the shapes we have been studying to this point
because they are not built out of lines or line segments. Circles do share
at least one characteristic with simple polygons though– they have an in-
terior and an exterior. For any circle C with center O and radius r, and for
any point P which is not C,

◦ if |OP|< r, then P is inside C;
◦ if |OP|> r, then P is outside C.

The set of points inside the circle is the interior and the set of points out-
side the circle is the exterior. Just like simple polygons, the circle separates
the interior and exterior from each other. To get a better sense of that, we
need to look at how circles intersect other basic geometric objects.

THM: A LINE AND A CIRCLE
A line will intersect a circle in 0, 1, or 2 points.

Proof. Let O be the center of a circle C of radius r, and let � be a line. It
is easy to find points on � that are very far from C, but are there any points
on � that are close to C? The easiest way to figure out how close � gets
to C is to look at the closest point on � to the center O. We saw (it was a
lemma for the proof of A·A·A·S·S in lesson 10) that the closest point to O
on � is the foot of the perpendicular– call this point Q.

Zero intersections: |OQ|> r.
All the other points of � are even farther from O, so none of the points on
� can be on C.

Q

O
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One intersection: |OQ|= r.
Of course Q is an intersection, but it is the only intersection because all
the other points on � are farther away from O.

Two intersections: |OQ|< r.
The line spends time both inside and outside the circle. We just need to
find where the line crosses in, and then back out of, the circle. The idea is
to relate a point’s distance from O to its distance from Q, and we can do
that with the Pythagorean Theorem. If P is any point on � other than Q,
then �OQP will be a right triangle with side lengths that are related by
the Pythagorean theorem

|OQ|2 + |QP|2 = |OP|2.

In order for P to be on the circle, |OP| must be exactly r. That means that
|PQ| must be exactly

√
r2 −|OQ|2. Since |OQ| < r, this expression is a

positive real number, and so there are exactly two points on �, one on each
side of Q, that are this distance from Q.

One intersection: |OQ|= r.
Of course Q is an intersection, but it is the only intersection because all
the other points on � are farther away from O.

Two intersections: |OQ|< r.
The line spends time both inside and outside the circle. We just need to
find where the line crosses in, and then back out of, the circle. The idea is
to relate a point’s distance from O to its distance from Q, and we can do
that with the Pythagorean Theorem. If P is any point on � other than Q,
then �OQP will be a right triangle with side lengths that are related by
the Pythagorean theorem

|OQ|2 + |QP|2 = |OP|2.

In order for P to be on the circle, |OP| must be exactly r. That means that
|PQ| must be exactly

√
r2 −|OQ|2. Since |OQ| < r, this expression is a

positive real number, and so there are exactly two points on �, one on each
side of Q, that are this distance from Q.

Q

O

Q

O
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A line that intersects a circle once (at the foot of the perpendicular) is
called a tangent line to the circle. A line that intersects a circle twice is
called a secant line of the circle. There is a important corollary that turns
this last theorem about lines into a related theorem about segments.

COR: A SEGMENT AND A CIRCLE
If point P is inside a circle, and point Q is outside it, then the segment
PQ intersects the circle.

Proof. Label the center of the circle O. From the last theorem, we know
that � PQ � intersects the circle twice, and that the two intersections
are separated by F , the foot of the perpendicular to PQ through O. The
important intersection here is the one that is on the same side of the foot
of the perpendicular as Q– call this point R. According to the Pythagorean
theorem (with triangles �OFR and �OFQ),

|FQ|=
√

|OQ|2 −|OF|2 & |FR|=
√

|OR|2 −|OF|2.

Since |OQ| > |OR|, |FQ| > |FR|, which places R between F and Q. We
don’t know whether P and Q are on the same side of F , though. If they
are on opposite sides of F , then P∗F ∗R∗Q, so R is between P and Q as
needed. If P and Q are on the same side of F , then we need to look at the
right triangles �OFP and �OFR. They tell us that

|FP|=
√
|OP|2 −|OF|2 & |FQ|=

√
|OQ|2 −|OF|2.

Since |OP|< |OR|, |FP|< |FR|, which places P between F and R. Finally,
if P is between F and R, and R is between F and Q, then R has to be
between P and Q.

QR

O

PF
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There is another important question of intersections, and that involves
the intersection of two circles. If two circles intersect, then it is highly
likely their two centers and the point of intersection will be the vertices of
a triangle (there is a chance the three could be colinear, and we will deal
with that separately). The lengths of all three sides of that triangle will be
known (the two radii and the distance between centers). So this question
is not so much one about circles, but whether triangles can be built with
three given side lengths. We have one very relevant result– the Triangle
Inequality says that if a, b, and c are the lengths of the side of a triangle,
then

|a−b|< c < a+b.

What about the converse, though? If a, b, and c are any positive reals sat-
isfying the Triangle Inequality conditions, can we put together a triangle
with sides of those lengths? As much as a digression as it is, we need to
answer this question before moving on.

THM: BUILDABLE TRIANGLES
Let a, b, and c be positive real numbers. Suppose that c is the largest
of them and that c < a+ b. Then there is a triangle with sides of
length a, b, and c.

Proof. Start off with a segment AB whose length is c. We need to place a
third point C so that it is a distance a from B and b from A. According to
S·S·S, there is only one such triangle “up to congruence”, so this may not
be too easy. What I am going to do, though, is to build this triangle out
of a couple of right triangles (so that I can use the Pythagorean theorem).
Mark D on AB � and label d = |AD|. Mark C on one of the rays with
endpoint D which is perpendicular to AB and label e = |CD|. Then both
�ACD and �BCD are right triangles. Furthermore, by sliding D and C
along their respective rays, we can make d and e any positive numbers.

A

C
B

d

a

c

e

D
b

d
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We need to see if it is possible to position the two so that |AC| = b and
|BC|= a.

To get |AC|= b, we will need d2 + e2 = b2.
To get |BC|= a, we will need (c−d)2 + e2 = a2.

It’s time for a little algebra to find d and e. According to the Pythagorean
Theorem,

b2 −d2 = e2 = a2 − (c−d)2

b2 −d2 = a2 − c2 +2cd −d2

b2 = a2 − c2 +2cd

(b2 −a2 + c2)/2c = d.

Since we initially required c > a, this will be a positive value. Now let’s
plug back in to find e.

e2 = b2 −d2 = b2 −
(

b2 −a2 + c2

2c

)2

.

Here is the essential part– because we will have to take a square root to
find e, the right hand side of this equation has to be positive– otherwise
the equation has no solution and the triangle cannot be built. Let’s go back
to see if the Triangle Inequality condition on the three sides will help:

c < a+b
c−b < a

(c−b)2 < a2

c2 −2bc+b2 < a2

c2 −a2 +b2 < 2bc

(c2 −a2 +b2)/2c < b

((c2 −a2 +b2)/2c)2 < b2

0 < b2 − ((c2 −a2 +b2)/2c)2

which is exactly what we want [of course, when I first did this calculation,
I worked in the other direction, from the answer to the condition]. As long
as c < a+b, then, a value for e can be found, and that means the triangle
can be built.
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Now let’s get back to the real issue at hand– that of the intersection of two
circles.

THM: A CIRCLE AND A CIRCLE
Two circles intersect at 0, 1, or 2 points.

Proof. Three factors come in to play here: the radius of each circle and
the distance between their centers. Label

r1, r2: the radii of the two circles, and
c, the distance between the centers.

Two intersections:
when |r1 − r2|< c < r1 + r2.
There are exactly two triangles, �O1XO2
and �O1YO2, one on each side of O1O2,
with sides of the required lengths. There-
fore there are exactly two intersections of
the two circles.

One intersection:
when c = |r1 − r2| or c = r1 + r2.
In these two limiting cases, the triangle de-
volves into a line segment and the two inter-
sections merge. In the first, either O1 ∗O2 ∗
X or X ∗O1 ∗O2, depending upon which ra-
dius is larger. In the second O1 ∗X ∗O2.

Zero intersections:
when c < |r1 − r2| or c > r1 + r2.
In this case, you just cannot form the needed
triangle (it would violate the Triangle In-
equality), so there cannot be any intersec-
tions. In the first case, one circles lies en-
tirely inside the other. In the second, they
are separated from one another.
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As I mentioned before, there is a one-to-
one correspondence between central an-
gles and arcs that matches the proper an-
gle ∠AOB with the minor arc �AB and
the reflex angle ∠AOB with the major arc
�AB. In the next lesson we are going to
look at the relationship between the size
of the central angle and the length of the
corresponding arc (which is the basis for
radian measure). In the meantime, I will
use the correspondence as a way to sim-
plify my illustrations– by using an arc to
indicate a central angle, I can keep the
picture from getting too crowded around
the center of the circle.

The Inscribed Angle Theorem

In this section we will prove the Inscribed Angle Theorem, a result which
is indispensible when working with circles. I suspect that this theorem is
the most elementary result of Euclidean geometry which is generally not
known to the average calculus student. Before stating the theorem, we
must define an inscribed angle, the subject of the theorem.

DEF: INSCRIBED ANGLE
If A, B, and C are all points on a circle, then ∠ABC is an inscribed
angle on that circle.

Given any inscribed angle ∠ABC, points
A and C are the endpoints of two arcs (ei-
ther a minor and a major arc or two semi-
circles). Excluding the endpoints, one
of those two arcs will be contained in
the interior of ∠ABC (a homework prob-
lem). We say, then, that ∠ABC is in-
scribed on that arc. The Inscribed Angle
Theorem describes the close relationship
between an inscribed angle and the cen-
tral angle on the same arc.

A B

Major arc: reflex ∠AOB
Minor arc: proper ∠AOB

Two inscribed angles
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THE INSCRIBED ANGLE THEOREM
If ∠BAC is an inscribed angle on a circle with center O, then

(∠ABC) =
1
2
(∠AOC).

Proof. This proof is a good lesson on the benefits of starting off with an
easy case. There are three parts to this proof, depending upon the location
of the vertex B relative to the lines OA and OC.

Part 1. When B is the intersection
of OC�op with the circle, or when
B is the intersection of OA �op

with the circle.

Even though we are only establishing the theorem for two very particular
locations of B, this part is the key that unlocks everything else. Now, while
I have given two possible locations for B, I am going to prove the result
for just the first one (where B is on OC�op). All you have to do to prove
the other part is to switch the letters A and C. Label ∠AOB as ∠1 and
∠AOC as ∠2. These angles are supplementary, so

(∠1)+ (∠2) = 180◦. (i)

The angle sum of �AOB is 180◦, but in that triangle ∠A and ∠B are
opposite congruent segments, so by the Isosceles Triangle Theorem they
are congruent. Therefore

2(∠B)+ (∠1) = 180◦, (ii)

and if we subtract equation (ii) from equation (i), we get (∠2)−2(∠B) =
0, so (∠AOC) = 2(∠ABC).

B A

C

O
2

1
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Part 2. When B is in the interior of
∠AOC, or when B is in the interior
of the angle formed by OA�op and
OC�op, or when A∗O∗C.

There are three scenarios here– in
the first the central angle is reflex,
in the second it is proper, and in
the third it is a straight angle– but
the proof is the same for all of them.
In each of these scenarios, the line
� OB � splits both the inscribed
and the central angles. In order to
identify these four angles, let me
label one more point: D is the sec-
ond intersection of � OB � with
the circle (so BD is a diameter of
the circle). Using angle addition in
conjunction with the previous re-
sults,

(∠AOC) = (∠AOD)+ (∠DOC)

= 2(∠ABD)+2(∠DBC)

= 2((∠ABD)+ (∠DBC))

= 2(∠ABC).

Part 3. When B is in the interior
of the angle formed by OA � and
OC �op, or when B is in the inte-
rior of the angle formed by OC �
and OA�op.

As in the last case, label D so that
BD is a diameter. The difference
this time is that we need to use an-
gle subtraction instead of angle ad-
dition. Since subtraction is a little
less symmetric than addition, the
two scenarios will differ slightly (in
terms of lettering). In the first sce-
nario

(∠AOC) = (∠AOD)− (∠DOC)

= 2(∠ABD)−2(∠DBC)

= 2((∠ABD)− (∠DBC))

= 2(∠ABC).

To get the second, you just need to
switch A and C.

B

D

A

C

O

B

D

A

C

O



206 LESSON 16

There are two important and immediate corollaries to this theorem. First,
because all inscribed angles on a given arc share the same central angle,

COR 1
All inscribed angles on a given arc are congruent.

Second, the special case where the central angle ∠AOC is a straight angle,
so that the inscribed ∠ABC is a right angle, is important enough to earn its
own name

THALES’ THEOREM
If C is a point on a circle with diameter AB (and C is neither A nor
B), then �ABC is a right triangle.

Applications of the Inscribed Angle Theorem

Using the Inscribed Angle Theorem, we can establish several nice rela-
tionships between chords, secants, and tangents associated with a circle. I
will look at two of these results to end this lesson and put some more in
the exercises.

There are two important and immediate corollaries to this theorem. First,
because all inscribed angles on a given arc share the same central angle,

COR 1
All inscribed angles on a given arc are congruent.

Second, the special case where the central angle ∠AOC is a straight angle,
so that the inscribed ∠ABC is a right angle, is important enough to earn its
own name

THALES’ THEOREM
If C is a point on a circle with diameter AB (and C is neither A nor
B), then �ABC is a right triangle.

Applications of the Inscribed Angle Theorem

Using the Inscribed Angle Theorem, we can establish several nice rela-
tionships between chords, secants, and tangents associated with a circle. I
will look at two of these results to end this lesson and put some more in
the exercises.

Five congruent angles inscribed on 
the same arc.

A right angle inscribed on a 
semicircle.
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THE CHORD-CHORD FORMULA
Let C be a circle with center O. Suppose that AC and BD are chords
of this circle, and suppose further that they intersect at a point P.
Label the angle of intersection, θ =∠APD � ∠BPC. Then

(θ) =
(∠AOD)+ (∠BOC)

2
.

Proof. The angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on the arc �CD
and ∠D is inscribed on the arc �AB. According to the Inscribed Angle
Theorem, they are half the size of the corresponding central angles, so

(θ) = 180◦ − 1
2(∠COD)− 1

2(∠AOB)
= 1

2 (360◦ − (∠COD)− (∠AOB)).

This is some progress, for at least now θ is related to central angles, but
alas, these are not the central angles in the formula. If we add all four
central angles around O, though,

(∠AOB)+ (∠BOC)+ (∠COD)+ (∠DOA)= 360◦

(∠BOC)+ (∠DOA) = 360◦ − (∠COD)− (∠AOB).

Now just substitute in, and you have the formula.

THE CHORD-CHORD FORMULA
Let C be a circle with center O. Suppose that AC and BD are chords
of this circle, and suppose further that they intersect at a point P.
Label the angle of intersection, θ =∠APD � ∠BPC. Then

(θ) =
(∠AOD)+ (∠BOC)

2
.

Proof. The angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on the arc �CD
and ∠D is inscribed on the arc �AB. According to the Inscribed Angle
Theorem, they are half the size of the corresponding central angles, so

(θ) = 180◦ − 1
2(∠COD)− 1

2(∠AOB)
= 1

2 (360◦ − (∠COD)− (∠AOB)).

This is some progress, for at least now θ is related to central angles, but
alas, these are not the central angles in the formula. If we add all four
central angles around O, though,

(∠AOB)+ (∠BOC)+ (∠COD)+ (∠DOA)= 360◦

(∠BOC)+ (∠DOA) = 360◦ − (∠COD)− (∠AOB).

Now just substitute in, and you have the formula.

A

P

B
C

D
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According to the Chord-Chord formula, as long as the intersection point
P is inside the circle, θ can be computed as the average of two central
angles. What would happen if P moved outside the circle? Of course
then we would not be talking about chords, since chords stop at the circle
boundary, but rather the secant lines containing them.

THE SECANT-SECANT FORMULA
Suppose that A, B, C, and D are points on a circle, arranged so that
�ABCD is a simple quadrilateral, and that the secant lines AB and
CD intersect at a point P which is outside the circle. Label the angle
of intersection, ∠APD, as θ . If P occurs on the same side of AD as B
and C, then

(θ) =
(∠AOD)− (∠BOC)

2
.

If P occurs on the same side of BC as A and D, then

(θ) =
(∠BOC)− (∠AOD)

2
.

Proof. There is obviously a great deal of symmetry between the two cases,
so let me just address the first. The same principles apply here as in the
last proof. Angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on arc � BD
and ∠D is inscribed on arc � AC. We need to use the Inscribed Angle
Theorem to relate these angles to central angles, and in this case, those
central angles overlap a bit, so we will need to break them down further,
but the rest is straightforward.

(θ) = 180◦ − 1
2(∠BOD)− 1

2(∠AOC)

= 1
2 (360◦ − (∠BOD)− (∠AOC))

= 1
2 (360◦ − (∠BOC)− (∠COD)− (∠AOB)− (∠BOC))

= 1
2 ([360◦ − (∠AOB)− (∠BOC)− (∠COD)]− (∠BOC))

= 1
2 ((∠AOD)− (∠BOC)).

According to the Chord-Chord formula, as long as the intersection point
P is inside the circle, θ can be computed as the average of two central
angles. What would happen if P moved outside the circle? Of course
then we would not be talking about chords, since chords stop at the circle
boundary, but rather the secant lines containing them.

THE SECANT-SECANT FORMULA
Suppose that A, B, C, and D are points on a circle, arranged so that
�ABCD is a simple quadrilateral, and that the secant lines AB and
CD intersect at a point P which is outside the circle. Label the angle
of intersection, ∠APD, as θ . If P occurs on the same side of AD as B
and C, then

(θ) =
(∠AOD)− (∠BOC)

2
.

If P occurs on the same side of BC as A and D, then

(θ) =
(∠BOC)− (∠AOD)

2
.

Proof. There is obviously a great deal of symmetry between the two cases,
so let me just address the first. The same principles apply here as in the
last proof. Angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on arc � BD
and ∠D is inscribed on arc � AC. We need to use the Inscribed Angle
Theorem to relate these angles to central angles, and in this case, those
central angles overlap a bit, so we will need to break them down further,
but the rest is straightforward.

(θ) = 180◦ − 1
2(∠BOD)− 1

2(∠AOC)

= 1
2 (360◦ − (∠BOD)− (∠AOC))

= 1
2 (360◦ − (∠BOC)− (∠COD)− (∠AOB)− (∠BOC))

= 1
2 ([360◦ − (∠AOB)− (∠BOC)− (∠COD)]− (∠BOC))

= 1
2 ((∠AOD)− (∠BOC)).

A

PC

B
D
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According to the Chord-Chord formula, as long as the intersection point
P is inside the circle, θ can be computed as the average of two central
angles. What would happen if P moved outside the circle? Of course
then we would not be talking about chords, since chords stop at the circle
boundary, but rather the secant lines containing them.

THE SECANT-SECANT FORMULA
Suppose that A, B, C, and D are points on a circle, arranged so that
�ABCD is a simple quadrilateral, and that the secant lines AB and
CD intersect at a point P which is outside the circle. Label the angle
of intersection, ∠APD, as θ . If P occurs on the same side of AD as B
and C, then

(θ) =
(∠AOD)− (∠BOC)

2
.

If P occurs on the same side of BC as A and D, then

(θ) =
(∠BOC)− (∠AOD)

2
.

Proof. There is obviously a great deal of symmetry between the two cases,
so let me just address the first. The same principles apply here as in the
last proof. Angle θ is an interior angle of �APD, so

(θ) = 180◦ − (∠A)− (∠D).

Both ∠A and ∠D are inscribed angles– ∠A is inscribed on arc � BD
and ∠D is inscribed on arc � AC. We need to use the Inscribed Angle
Theorem to relate these angles to central angles, and in this case, those
central angles overlap a bit, so we will need to break them down further,
but the rest is straightforward.

(θ) = 180◦ − 1
2(∠BOD)− 1

2(∠AOC)

= 1
2 (360◦ − (∠BOD)− (∠AOC))

= 1
2 (360◦ − (∠BOC)− (∠COD)− (∠AOB)− (∠BOC))

= 1
2 ([360◦ − (∠AOB)− (∠BOC)− (∠COD)]− (∠BOC))

= 1
2 ((∠AOD)− (∠BOC)).
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Exercises
1. Verify that the length of a diameter of a circle is twice the radius.

2. Prove that no line is entirely contained in any circle.

3. Prove that a circle is convex. That is, prove that if points P and Q are
inside a circle, then all the points on the segment PQ are inside the
circle.

4. Prove that for any circle there is a triangle entirely contained in it (all
the points of the triangle are inside the circle).

5. Prove that for any circle there is a triangle which entirely contains it
(all the points of the circle are in the interior of the triangle).

6. In the proof that two circles intersect at most twice, I have called both
(1) |a−b|< c < a+b, and (2) c ≥ a,b and c < a+b

the Triangle Inequality conditions. Verify that the two statements are
equivalent for any three positive real numbers.

7. Let ∠ABC be an inscribed angle on a circle. Prove that, excluding
the endpoints, exactly one of the two arcs �AC lies in the interior of
∠ABC.

8. Prove the converse of Thales’ theorem: if �ABC is a right triangle with
right angle at C, then C is on the circle with diameter AB.

9. Consider a simple quadrilateral which is inscribed on a circle (that is,
all four vertices are on the circle). Prove that the opposite angles of
this quadrilateral are supplementary.

10. Let C be a circle and P be a point outside of it. Prove that there are
exactly two lines which pass through P and are tangent to C. Let Q and
R be the points of tangency for the two lines. Prove that PQ and PR are
congruent.

11. The “Tangent-Tangent” formula. Let P be a point which is outside of
a circle C . Consider the two tangent lines to C which pass through P
and let A and B be the points of tangency between those lines and the
circle. Prove that

(∠APB) =
(∠1)− (∠2)

2



211CIRCLES

where ∠1 is the reflex central angle corresponding to the major arc
� AB and ∠2 is the proper central angle corresponding to the minor
arc �AB.

12. Let AC and BD be two chords of a circle which intersect at a point P
inside that circle. Prove that

|AP| · |CP|= |BP| · |DP|.

References

I learned of the Chord-Chord, Secant-Secant, and Tangent-Tangent for-
mulas in the Wallace and West book Roads to Geometry[1]. They use
the names Two-Chord Angle Theorem, Two-Secant Angle Theorem, and
Two-Tangent Angle Theorem.

[1] Edward C. Wallace and Stephen F. West. Roads to Geometry. Pearson
Education, Inc., Upper Saddle River, New Jersey, 3rd edition, 2004.
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A theorem on perimeters

In the lesson on polygons, I defined the perimeter of a polygon P =
P1 · · ·Pn as

|P|=
n

∑
i=1

|PiPi+1|,

but I left it at that. In this lesson we are going to use perimeters of cyclic
polygons to find the circumference of the circle. Along the way, I want
to use the following result which compares the perimeters of two convex
polygons when one is contained in the other.

THM 1
If P and Q are convex polygons and all the points of P are on or
inside Q, then |P| ≤ |Q|.

Proof. Some of the edges of P may run along the edges of Q, but unless
P= Q, at least one edge of P must pass through the interior of Q. Let s be
one of those interior edges. The line containing s intersects Q twice– call
those intersections a and b– dividing Q into two smaller polygons which
share the side ab, one on the same side of s as P, the other on the opposite
side. Essentially we want to “shave off” the part of Q on the opposite side,
leaving behind only the polygon Q1 which consists of

◦ points of Q on the same side of s as P, and
◦ points on the segment ab.

a

s

b

P P

Q Q1

Shaving a polygon.
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There are two things to notice about Q1. First, Q1 and P have one more
coincident side (the side s) than Q and P had. Second, the portions of
Q and Q1 on the side of s with P are identical, so the segments making
up that part contribute the same amount to their respective perimeters.
On the other side, though, the path that Q takes from a to b is longer
than the direct route along the segment ab of Q1 (because of the Triangle
Inequality). Combining the two parts, that means |Q1| ≤ |Q|.

Now we can repeat this process with P and Q1, generating Q2 with even
smaller perimeter than Q1 and another coincident side with P. And again,
to get Q3. Eventually, though, after say m steps, we run out of sides that
pass through the interior, at which point P= Qm. Then

|P|= |Qm| ≤ |Qm−1| ≤ · · · |Q2| ≤ |Q1| ≤ |Q|.

1

3

6

4

2 5

One at a time, shave the sides of the outer polygon down to the inner one.
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Circumference

Geometers have drawn circles for a long time. I don’t think it is a big
surprise, then, that they would wonder about the relationship between the
distance around the circle (how far they have dragged their pencil) and the
radius of the circle. The purpose of this lesson is to answer that question.
Our final result, the formula C = 2πr, sits right next to the Pythagorean
Theorem in terms of star status, but I think it is a misunderstood celebrity.
So let me be clear about what this equation is not. It is not an equation
comparing two known quantities C and 2πr. Instead, this equation is the
way that we define the constant π . Nevertheless, the equation is saying
something about the relationship between C and r– it is saying that the
ratio of the two is a constant.

To define the circumference of a circle, I want to take an idea from
calculus– the idea of approximating a curve by straight line segments, and
then refining the approximation by increasing the number of segments. In
the case of a circle C, the approximating line segments will be the edges
of a simple cyclic polygon P inscribed in the circle. Conceptually, we
will want the circumference of C to be bigger than the perimeter of P. We
should also expect that by adding in additional vertices to P, we should be
able to get the perimeter of P as close as we want to the circumference of
C. All this suggests (to me at least) that to get the circumference of C, we
need to find out how large the perimeters of inscribed polygons can be.

DEF: CIRCUMFERENCE
The circumference of a circle C, written |C|, is

|C|= sup
{
|P|

∣∣∣P is a simple cyclic polygon inscribed in C
}
.

Circumference
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distance around the circle (how far they have dragged their pencil) and the
radius of the circle. The purpose of this lesson is to answer that question.
Our final result, the formula C = 2πr, sits right next to the Pythagorean
Theorem in terms of star status, but I think it is a misunderstood celebrity.
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calculus– the idea of approximating a curve by straight line segments, and
then refining the approximation by increasing the number of segments. In
the case of a circle C, the approximating line segments will be the edges
of a simple cyclic polygon P inscribed in the circle. Conceptually, we
will want the circumference of C to be bigger than the perimeter of P. We
should also expect that by adding in additional vertices to P, we should be
able to get the perimeter of P as close as we want to the circumference of
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∣∣∣P is a simple cyclic polygon inscribed in C
}
.

Approximation of an arc by segments.
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There is nothing in the definition to guarantee that this supremum ex-
ists. It is conceivable that the lengths of these approximating perimeters
might just grow and grow with bound. One example of such degeneracy
is given the deceptively cute name of “the Koch snowflake.” Let me de-
scribe how it works. Take an equilateral triangle with sides of length one.
The perimeter of this triangle is, of course, 3. Now divide each of those
sides into thirds. On each middle third, build an equilateral triangle by
adding two more sides; then remove the the original side. You have made
a shape with 3 ·4 sides, each with a length 1/3, for a perimeter of 4. Now
iterate– divide each of those sides into thirds; build equilateral triangles
on each middle third, and remove the base. That will make 3 ·16 sides of
length 1/9, for a perimeter of 16/3. Then 3 · 64 sides of length 1/27 for a
perimeter of 64/9. Generally, after n iterations, there are 3 · 4n sides of
length 1/3n for a total perimeter of 4n/3n−1, and

lim
n→∞

4n

3n−1 = lim
n→∞

3
(

4
3

)n
= ∞.

The Koch snowflake, which is the limiting shape in this process, has in-
finite perimeter! The first thing we need to do, then, is to make sure that
circles are better behaved than this.

1 32

54

The first few steps in the construcion of the Koch snowflake.
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AN UPPER BOUND FOR CIRCUMFERENCE
If C is a circle of radius r, then |C| ≤ 8r.

Proof. The first step is to build a circum-
scribing square around C– the smallest pos-
sible square that still contains C. Begin by
choosing two perpendicular diameters d1 and
d2. Each will intersect C twice, for a total of
four intersections, P1, P2, P3, and P4. For each
i between one and four, let ti be the tangent
line to C at Pi. These tangents intersect to
form the circumscribing square. The length
of each side of the square is equal to the di-
ameter of C, so the perimeter of the square is
4 ·2r = 8r.

Now we turn to the theorem we proved to start this lesson. Each simple
cyclic polygon inscribed in C is a convex polygon contained in the cir-
cumscribing square. Therefore the perimeter of any such approximating
polygon is bounded above by 8r. Remember that we have defined |C| to
be the supremum of all of these approximating perimeters, so it cannot
exceed 8r either.

Now that we know that any circle does have a circumference, the next step
is to find a way to calculate it. The key to that is the next theorem.

CIRCUMFERENCE/RADIUS
The ratio of the circumference of a circle to its radius is a constant.

Proof. Let’s suppose that this ratio is not a constant, so that there are two
circles C1 and C2 with centers O1 and O2 and radii r1 and r2, but with
unequal ratios

|C1|/r1 > |C2|/r2.

As we have defined circumference, there are approximating cyclic poly-
gons to C1 whose perimeters are arbitrarily close to its circumference.
In particular, there has to be some approximating cyclic polygon P =
P1P2 . . .Pn for C1 so that

|P|/r1 > |C2|/r2.

P1

P3

P2

P4
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The heart of the contradiction is that we can build a cyclic polygon Q

on C2 which is similar to P (intuitively, we just need to scale P so that it
fits in the circle). The construction is as follows

1. Begin by placing a point Q1 on
circle C2.

2. Locate Q2 on C2 so that ∠P1O1P2
is congruent to ∠Q1O2Q2 (there are
two choices for this).

3. Locate Q3 on C2 and on the
opposite side of O2Q2 from Q1 so
that ∠P2O1P3 � ∠Q2O2Q3.

4. Continue placing points on C2
in this fashion until Qn has been
placed to form the polygon Q =
Q1Q2 . . .Qn.

Then

|O2Qi|
|O1Pi|

=
r2

r1
=

|O2Qi+1|
|O1Pi+1|

& ∠QiO2Qi+1 � ∠PiO1Pi+1,

so by S·A·S similarity, �QiO2Qi+1 ∼�PiO1Pi+1. That gives us the ratio
of the third sides of the triangle as |QiQi+1|/|PiPi+1| = r2/r1 and so we
can describe the perimeter of Q as

|Q|=
n

∑
i=1

|QiQi+1|=
n

∑
i=1

r2

r1
|PiPi+1|=

r2

r1

n

∑
i=1

|PiPi+1|=
r2

r1
|P|.

P1

P3

P2

Q2

Q3

Q4

Q5
Q6

Q1

P4

P5

P6

2

14
65

3

1
2 3

4
56
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Here’s the problem. That would mean that

|Q|
r2

=
|P|
r1

>
|C2|
r2

so |Q|> |C2| when the circumference of C2 is supposed to be greater than
the perimeter of any of the approximating cyclic polygons.

DEF: π
The constant π is the ratio of the circumference of a circle to its
diameter

π =
|C|
2r

.

The problem with this definition of circumference, and consequently this
definition of π , is that it depends upon a supremum, and supremums are
ungainly and difficult to maneuver. A limit is considerably more nimble.
Fortunately, this particular supremum can be reached via the perimeters
of a sequence of regular polygons as follows. Arrange n angles each mea-
suring 360◦/n around the center of any circle C. The rays of those angles
intersect C n times, and these points Pi are the vertices of a regular n-gon,
Pn = P1P2 . . .Pn. The tangent lines to C at the neighboring points Pi and
Pi+1 intersect at a point Qi. Taken together, these n points are the vertices
of another regular n-gon Qn = Q1Q2 . . .Qn. The polygon Pn is just one of
the many cyclic polygons inscribed in C so |Pn| ≤ |C|. The polygon Qn
circumscribes C, and every cyclic polygon inscribed on C lies inside Qn,
so |Qn| ≥ |C|.

P1

P3

P2

Q2

Q3 Q4

Q5

Q6Q1

P4

P5

P6

Regular inscribed and circumscribing hexagons.
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The lower bound prescribed by Pn.
Each OQi � is a perpendicular bi-
sector of PiPi+1, intersecting it at a
point Ri and dividing �OPiPi+1 in
two. By the H·L congruence the-
orem for right triangles, those two
parts, �ORiPi and �ORiPi+1, are
congruent. That means that Pn is
built from 2n segments of length
|PiRi|. Now

sin(360◦/2n) =
|PiRi|

r
=⇒ |PiRi|= r sin(360◦/2n)

so

|Pn|= 2nr sin(360◦/2n).

The upper bound prescribed by Qn.
Each OPi � is a perpendicular bi-
sector of Qi−1Qi, intersecting it at
Pi and dividing �OQi−1Qi in two.
By S·A·S, the two parts, �OPiQi−1
and �OPiQi, are congruent. That
means Qn is built from 2n segments
of length |PiQi|. Now

tan(360◦/2n) = |PiQi|/r
=⇒ |PiQi|= r tan(360◦/2n)

so

|Qn|= 2nr tan(360◦/2n).

Pi+1

Pi

Pi

Ri

Qi–1

Qi

O
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Let’s compare |Pn| and |Qn| as n increases (the key to this calculation is
that as x approaches zero, cos(x) approaches one):

lim
n→∞

|Qn|= lim
n→∞

2nr tan(360◦/2n)

= lim
n→∞

2nr sin(360◦/2n)
cos(360◦/2n)

=
limn→∞ 2nr sin(360◦/2n)

limn→∞ cos(360◦/2n)
= lim

n→∞
2nr sin(360◦/2n)/1

= lim
n→∞

|Pn|.

Since |C| is trapped between |Pn| and |Qn| for all n, and since these are
closing in upon the same number as n goes to infinity, |C| must also be
approaching this number. That gives a more comfortable equation for
circumference as

|C|= lim
n→∞

2nr sin(360◦/2n),

and since |C|= 2πr, we can disentangle a definition of π as

π = lim
n→∞

nsin(360◦/2n).

2.52.0 3.0 3.5 4.0 4.5 5.0 5.5

5.196

4.0002.828

2.598

3.6332.939

3.4643.000

3.3713.037

3.3143.061

π=3.14159265...

n=3

=4

=5

=6

=7

=8

|Pn| / 2r |Qn| / 2r

Upper and lower bounds for π.
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Lengths of arcs and radians.

It doesn’t take much modification to get a formula for a length of arc. The
360◦ in the formula for |C| is the measure of the central angle correspond-
ing to an arc that goes completely around the circle. To get the measure
of any other arc, we just need to replace the 360◦ with the measure of the
corresponding central angle.

LENGTHS OF CIRCULAR ARCS
If �AB is the arc of a circle with radius r, and if θ is the measure of
the central angle ∠AOB, then

|�AB|= π
180◦

θ · r.

Proof. To start, replace the 360◦ in the circumference formula with θ :

|�AB|= lim
n→∞

2nr sin(θ/2n) = 2r · lim
n→∞

nsin(θ/2n).

This limit is clearly related to the one that defines π . I want to absord
the difference between the two into the variable via the substitution n =
m ·θ/360◦. Note that as n approaches infinity, m will as well, so

|�AB|= 2r · lim
m→∞

m ·θ
360◦

sin
(

θ
2m ·θ/360◦

)

=
2rθ
360◦

· lim
m→∞

msin(360◦/2m)

=
θ

180◦
rπ.

θ

r

A

B

O
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There is one more thing to notice before the end of this lesson. This arc
length formula provides a most direct connection between angle measure
(of the central angle) and distance (along the arc). And yet, the π

180◦ factor
in that formula suggests that distance and the degree measurement system
are a little out of sync with one another. This can be fixed by modernizing
our method of angle measurement. The preferred angle measurement sys-
tem, and the one that I will use from here on out, is radian measurement.

DEF: RADIAN
One radian is π/180◦.

The measure of a straight angle is π radians. The measure of a right
angle is π/2 radians. One complete turn of the circle is 2π radians. If
θ = (∠AOB) is measured in radians, then

|�AB|= r ·θ .

There is one more thing to notice before the end of this lesson. This arc
length formula provides a most direct connection between angle measure
(of the central angle) and distance (along the arc). And yet, the π

180◦ factor
in that formula suggests that distance and the degree measurement system
are a little out of sync with one another. This can be fixed by modernizing
our method of angle measurement. The preferred angle measurement sys-
tem, and the one that I will use from here on out, is radian measurement.

DEF: RADIAN
One radian is π/180◦.

The measure of a straight angle is π radians. The measure of a right
angle is π/2 radians. One complete turn of the circle is 2π radians. If
θ = (∠AOB) is measured in radians, then

|�AB|= r ·θ .

1
One radian is approximately 57.296º.
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Exercises

1. Let A and B be points on a circle C with radius r. Let θ be the mea-
sure of the central angle corresponding to the minor arc (or semicircle)
�AB. What is the relationship (in the form of an equation) between θ ,
r, and |AB|?

2. Let AB be a diameter of a circle C, and let P be a point on AB. Let C1
be the circle with diameter AP and let C2 be the circle with diameter
BP. Show that the sum of the circumferences of C1 and C2 is equal to
the circumference of C (the shape formed by the three semicircles on
one side of AB is called an arbelos).

3. In the construction of the Koch snowflake, the middle third of each
segment is replaced with two-thirds of an equilateral triangle. Suppose,
instead, that middle third was replaced with three of the four sides of
a square. What is the perimeter of the n-th stage of this operation?
Would the limiting perimeter still be infinite?

4. This problem deals with the possibility of angle measurement systems
other than degrees or radians. Let A be the set of angles in the plane.
Consider a function

� : A→ (0,∞) : ∠A → (∠A)�

which satisfies the following properties

(1) if ∠A � ∠B, then (∠A)� = (∠B)�

(2) if D is in the interior of ∠ABC, then

(∠ABC)� = (∠ABD)�+(∠DBC)�.

Prove that the � measurement system is a constant multiple of the de-
gree measurement system (or, for that matter, the radian measurement
system). That is, prove that there is a k > 0 such that for all ∠A ∈A,

(∠A)� = k · (∠A).





18 THE BLANK CANVAS AWAITS 
EUCLIDEAN CONSTRUCTIONS
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This lesson is a diversion from our projected path, but I maintain that it
is a pleasant and worthwhile diversion. We get a break from the heavy
proofs, and we get a much more tactile approach to the subject. I have
found that compass and straight edge constructions serve as a wonderful
training ground for the rigors of mathematics without the tricky logical
pitfalls of formal proof. In my geometry classes, I often don’t have time
to prove many of the really neat Euclidean results that we will see in the
next few lessons, but I have found that I can use compass and straight edge
constructions to present the theorems in an sensible way.

Now kindly rewind all the way back to Lesson 1, when I talked briefly
about Euclid’s postulates. In particular, I want you to look at the first three

P1 To draw a straight line from any point to any point.
P2 To produce a finite straight line continuously in a straight

line.
P3 To describe a circle with any center and distance.

Back then, I interpreted these postulates as claims of existence (of lines
and circles). Consider instead a more literal reading: they are not claim-
ing the existence of objects, but rather telling us that we can make them.
This lesson is dedicated to doing just that: constructing geometric objects
using two classical tools, a compass and a straight edge. The compass
makes circles and arcs, and the straight edge makes segments, rays, and
lines. Together they make the kinds of shapes that Euclid promised in his
postulates.



229CONSTRUCTIONS

The straight edge

The straight edge is a simple tool– it is just something that can draw lines.
In all likelihood, your straight edge will be a ruler, and if so, you need
to be aware of the key distinction between a ruler and a straight edge.
Unlike a ruler, a straight edge has no markings (nor can you add any).
Therefore, you cannot measure distance with it. But a straight edge can
do the following :

– draw a segment between two points;
– draw a ray from a point through another point;
– draw a line through two points;
– extend a segment to either a ray or the line containing it;
– extend a ray to the line containing it.

The compass

Not to be confused with the ever-northward-pointing navigational com-
pass, the compass of geometry is a tool for creating a circle. More pre-
cisely, a compass can do the following:

◦ given two distinct points P and Q, draw the circle centered
at P which passes through Q;
◦ given points P and Q on a circle with a given center R, draw
the arc �PQ.

You could make a simple compass by tying a pencil to a piece of string,
but it would be pretty inaccurate. The metal compasses of my youth
(such as the one pictured) are more precise instruments, but alas double
as weaponry in the hands of some mischievous rascals. The plastic com-
passes that are now the norm in many schools are an adequate substitute
until they fall apart, usually about halfway through the lesson.

Let me give a warning about something a compass cannot do (at least
not “out of the box”). A common temptation is to try to use the compass
to transfer distance. That is, to draw a circle of a certain radius, lift up the
compass and move it to another location, then place it back down to draw
another circle with the same radius. That process effectively transfers a
distance (the radius) from one location to another, and so is a convenient
way to construct a congruent copy of one segment in another location.
It is a simple enough maneuver, but the problem is that according to the
classical rules of the game a compass does not have this transfer ability.
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The classical compass is “collapsing”, meaning that as soon as it is used to
create a circle, it falls apart (in this way, I guess the classical compass does
resemble those shoddy plastic ones). We will soon see that the two types
of compasses are not fundamentally different, and therefore that the non-
collapsing feature is actually only a convenience. Once we have shown
that, I will have no qualms about using a non-collapsing compass when
it will streamline the construction process. Until then, distance transfer
using a compass is off-limits.

The digital compass and straight edge

There are several good computer programs that will allow you to build
these constructions digitally (though I won’t formally endorse a particular
one). There are both advantages and disadvantages to the digital approach.
At the risk of sounding like a mystic, I believe that drawing lines and
circles on a real piece of paper with a real pencil links you to a long,
beautiful tradition in a way that no computer experience can. For more
complicated constructions, though, the paper and pencil approach gets
really messy. In addition, a construction on paper is static, while computer
constructions are dynamic– you can drag points around and watch the rest
of the construction adjust accordingly. Often that dynamism really reveals
the power of the theorems in a way that no single static image ever could. I
would recommend that you try to make a few of the simpler constructions
the old-fashioned way, with pencil and paper. And I would recommend
that you try a few of the more complicated constructions with the aid of a
computer.

A little advice

1. It is easier to draw than to erase.

2. Lines are infinite, but your use for them may not be– try not to draw
more of the line than is needed. Similarly, if you only need a small arc of
a circle, there is little point in drawing the whole thing.

3. To the extent that you can plan ahead, you can build your construction
so that it is neither too big nor too small. The Euclidean plane is infinite,
but your piece of paper is not. At the other extreme, your real world
compass likely will not function well below a certain radius.
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The perpendicular bisector

1 Begin with a segment AB.

2 With the compass construct two
circles: one centered at A which
passes through B and one cen-
tered at B which passes through
A. These circles intersect twice, at
C and D, once on each side of AB.

3 Use the straight edge to draw the
line �CD �. That line is the per-

pendicular bisector of AB, and its
intersection P with AB is the mid-
point of AB.

Perhaps some justification of the
last statement is in order. Observe
the following.

4 That �ABC and �ABD are
equilateral, and since they share
a side, are congruent.

1 3

2 4

C

D

C

D

A

B

A

B

P
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5 That �ACD is isosceles, so
the angles opposite its congruent
sides, ∠ACD and ∠ADC, are con-
gruent.

6 S·A·S: That �ACP and �ADP
are congruent. This means ∠APC
is congruent to its own supple-
ment, and so is a right angle. That

handles the first part of the claim:
CD is perpendicular to AB.

7 Continuing, ∠APC and ∠BPC
are right angles. By A·A·S, �APC
and �BPC are congruent and so
AP � BP. That means P has to be
the midpoint of AB.

5 7

6

C

D

C C

D
A A

B

A

P

P
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The bisector of an angle

1 Begin with an angle whose ver-
tex is O.

2 Draw a circle centered at O, and
mark where it intersects the rays
that form the angle as A and B.

3 Draw two circles– one centered
at A passing through B, and one
centered at B passing through A.

4 Label their intersection as P.

1 3

2 4

A

B

O

PA

B
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5 Draw the ray OP �. It is the
bisector of ∠AOB.

6 The justification is easier this
time. You see,

AP � AB � BP

so by S·S·S, �OAP � �OBP.
Now match up the congruent inte-
rior angles, and ∠AOP � ∠BOP.

5

6

P

A

B

O

P
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The perpendicular to a line �
through a point P.

Case 1: if P is not on �

1 Mark a point A on �.

2 Draw the circle centered at P and
passing through A.

3 If this circle intersects � only

once (at P), then � is tangent to the
circle and AP is the perpendicular
to � through P (highly unlikely).
Otherwise, label the second inter-
section B.

4 Use the previous construction to
find the perpendicular bisector to
AB. This is the line we want.

P

A

B

1 3

2 4



236 LESSON 18

Case 2: if P is on �

5 Mark a point A on � other than P.

6 Draw the circle centered at P
passing through A.

7 Mark the second intersection of
this circle with � as B.

8 Use the previous construction to
find the perpendicular bisector to
AB. This is the line we want.

Again, there may be some ques-
tion about why these constructions
work. This time I am going to
leave the proof to you.

A A

P P

B

5

6 8

7
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Once you know how to construct perpendicular lines, constructing par-
allels is straightforward: starting from any line, construct a perpendicular,
and then a perpendicular to that. According to the Alternate Interior An-
gle Theorem, the result will be parallel to the initial line. Such a construc-
tion requires quite a few steps, though, and drawing parallels feels like it
should be a fairly simple procedure. As a matter of fact, there is a quicker
way, but it requires a non-collapsing compass. So it is now time to look
into the issue of collapsing versus non-collapsing compasses.

Collapsing v. non-collapsing

The apparent difference between a collapsing and a non-collapsing com-
pass is that with a non-collapsing compass, we can draw a circle, move
the compass to another location, and draw another circle of the same size.
In effect, the non-collapsing compass becomes a mechanism for relaying
information about size from one location in the plane to another. As I
mentioned at the start of this lesson, the official rulebook does not permit
a compass to retain and transfer that kind of information. The good news
is that, in spite of this added feature, a non-collapsing compass is not any
more powerful than a collapsing one. Everything that can be constructed
with a non-collapsing compass can also be constructed with a collapsing
one. The reason is simple: a collapsing compass can also transfer a circle
from one location to another– it just takes a few more steps.

Once you know how to construct perpendicular lines, constructing par-
allels is straightforward: starting from any line, construct a perpendicular,
and then a perpendicular to that. According to the Alternate Interior An-
gle Theorem, the result will be parallel to the initial line. Such a construc-
tion requires quite a few steps, though, and drawing parallels feels like it
should be a fairly simple procedure. As a matter of fact, there is a quicker
way, but it requires a non-collapsing compass. So it is now time to look
into the issue of collapsing versus non-collapsing compasses.

Collapsing v. non-collapsing

The apparent difference between a collapsing and a non-collapsing com-
pass is that with a non-collapsing compass, we can draw a circle, move
the compass to another location, and draw another circle of the same size.
In effect, the non-collapsing compass becomes a mechanism for relaying
information about size from one location in the plane to another. As I
mentioned at the start of this lesson, the official rulebook does not permit
a compass to retain and transfer that kind of information. The good news
is that, in spite of this added feature, a non-collapsing compass is not any
more powerful than a collapsing one. Everything that can be constructed
with a non-collapsing compass can also be constructed with a collapsing
one. The reason is simple: a collapsing compass can also transfer a circle
from one location to another– it just takes a few more steps.
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1 Begin with a circle C with center
A. Suppose we wish to draw an-
other circle of the same size, this
time centered at a point B.

2 Construct the line �AB�.

3 Construct two lines perpendicu-
lar to �AB�: �A through A and �B
through B.

4 Now �A intersects C twice: iden-
tify one point of intersection as P.

A

B

P

B

A

1 3

2 4
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5 Construct the line �P which
passes through P and is perpen-
dicular to �A.

6 This line intersects �B. Identify
the intersection of �P and �B as Q.

7 Now A, B, P, and Q are the four

corners of a rectangle. The op-
posite sides AP and BP must be
congruent. So finally,

8 Construct the circle with center
B which passes through Q. This
circle has the same radius as C.

Q

7

6

5

8

P
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This means that a collapsing compass can do all the same things a non-
collapsing compass can. From now on, let’s assume that our compass has
the non-collapsing capability.

Transferring segments

Given a segment AB and a ray r whose endpoint is C, it is easy to find
the point D on r so that CD � AB. Just construct the circle centered at
A with radius AB, and then (since the compass is non-collapsing) move
the compass to construct a circle centered at C with the same radius. The
intersection of this circle and r is D.

Transferring angles

Transferring a given angle to a new location is a little more complicated.
Suppose that we are given an angle with vertex P and a ray r with endpoint
Q, and that we want to build congruent copies of ∠P off of r (there are
two– one on each side of r).

1 Draw a circle with center P, and
label its intersections with the two
rays of ∠P as A and B.

2 Using the non-collapsing com-

pass, transfer this circle to one that
is centered at Q. Call it C and label
its intersection with r as C.

P B

A

Q

C

1 2
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3 Draw another circle, this time
one centered at A which passes
through B. Then transfer it to one
centered at C. The resulting cir-
cle will intersect C twice, once on
each side of r. Label the intersec-
tion points as D1 and D2.

4 By S·S·S, all three of the
triangles, �PAB, �PD1C, and
�PD2C are congruent. Therefore

∠D1QC � ∠P �∠D2QC.

The parallel to a line through
a point

1 With a non-collapsing compass
and angle transfer, we can now
draw parallels the “easy” way.
Start with a line �, and a point P
which is not on that line.

2 Mark a point Q on �.

D1

D2

D1

C

Q

P

D2

P

Q

3 1

24
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3 Construct the ray QP�.

4 This ray and � form two angles,
one on each side of QP�. Choose
one of these two angles and call it
θ .

5 Transfer this angle to another
congruent angle θ′ which comes
off of the ray PQ�. There are two

such angles, one on each side of
the ray, but for the purposes of this
construction, we want the one on
the opposite side of PQ� from θ .

6 Now PQ � is one of the rays
defining θ ′. Extend the other ray
to the line containing it: call this
line �′. By the Alternate Interior
Angle Theorem, �′ is parallel to �.

3 5

64

P

Q
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A rational multiple of a seg-
ment

Given a segment OP, we can con-
struct a segment whose length is
any rational multiple m/n of |OP|.

1 Along OP�, lay down m congru-
ent copies of OP, end-to-end, to
create a segment of length m|OP|.
Label the endpoint of this segment
as Pm.

2 Draw another ray with endpoint

O (other than OP � or OP �op),
and label a point on it Q.

3 Along OQ�, lay down n congru-
ent copies of OQ, end-to-end, to
create a segment of length n|OQ|.
Label the endpoint of this segment
as Qn.

4 Draw � PmQn � and construct
the line through Q that is parallel
to �PmQn�.

1 3

2 4

ex: A segment of length 5/3·|OP|

P5

PO

O

P5

Q3

P

Q

P5

Q3

P

Q

P5

P

Q
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5 It intersects OP�. Label the in-
tersection as P�.

6 I claim that OP� is the segment
we want: that

|OP|� = m/n · |OP|.

To see why, observe that O, P�,
and Pn are all parallel projections

from O, Q, and Qm, respectively.
Therefore,

|OP�|
|OPm|

=
|OQ|
|OQn|

|OP�|
m · |OP| =

1
n

|OP�|= m
n
|OP|.

To round out this lesson I would like to look at one of the central ques-
tions in the classical theory of constructions: given a circle, is it possible
to construct a regular n-gon inscribed in it? This question has now been
answered: it turns out that the answer is yes for some values of n, but no
for others. In fact, a regular n-gon can be constructed if and only if n is
a power of 2, or a product of a power of 2 and distinct Fermat primes (a
Fermat prime is a prime of the form 22n

+ 1, and the only known Fermat
primes are 3, 5, 17, 257, and 65537). A proof of this result falls outside
the scope of this book, but I would like to look at a few of the small values
of n where the construction is possible. In all cases, the key is to construct
a central angle at O which measures 2π/n.

5 6

P5

Q3 Q3

P

Q

P P5P

Q

P
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An equilateral triangle that is
inscribed in a given circle

In this case, we need to construct
a central angle of 2π/3, and this
can be done by constructing the
supplementary angle of π/3.

1 Given a circle C with center O,
mark a point A on it.

2 Draw the diameter through A,
and mark the other endpoint of it
as B.

3 Construct the perpendicular bi-
sector to OB. Mark the intersec-
tions of that line with C as C and D.

4 The triangles �BOC and �BOD
are equilateral, so

(∠BOC) = (∠BOD) = π/3

and so the two supplementary an-
gles ∠AOC and ∠AOD each mea-
sure 2π/3. Construct the segments
AC and AD to complete the equi-
lateral triangle �ACD.

1 3

2 4

O A

O A AB

OB

C

D

OB

C

D
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A square inscribed in a given
circle

1 This is even easier, since the cen-
tral angle needs to measure π/2–
a right angle.

2 Given a circle C with center O,
mark a point A on it.

3 Draw the diameter through A and
mark the other endpoint as B.

4 Construct the perpendicular bi-
sector to AB and mark the intersec-
tions with C as C and D. The four
points A, B, C, and D are the ver-
tices of the square. Just connect
the dots to get the square itself.

1 3

2 4

O A

OB A

B A

C

D
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A regular pentagon inscribed in a given circle

This one is considerably trickier. The central angle we are going to need
is 2π/5 (which is 72◦), an angle that you see a lot less frequently than
the 2π/3 and the π/2 of the previous constructions. Before diving into
the construction, then, let’s take a little time to investigate the geometry of
an angle measuring 2π/5. Let me show you a configuration of isosceles
triangles that answers a lot of questions.

In this illustration AB � AC and BC � BD. Since �ABC ∼ �BCD, we
have a way to solve for x,

1− x
x

=
x
1

=⇒ 1− x = x2 =⇒ x2 + x−1 = 0

and with the quadratic formula, x = (−1±
√

5)/2. Of these solutions, x
has to be the positive value since it represents a distance. The line from
A to the midpoint of BC divides �ABC into two right triangles, and from
them we can read off that

cos(2π/5) =
x/2
1

=
−1+

√
5

4
.

This cosine value is the key to the construction of the regular pentagon.

[note: I am going with this construction because it seems pretty intuitive,
but it is not the most efficient construction. Also, I am going to inscribe
this pentagon in a circle of radius one to make the calculations a little
easier– the same construction works in a circle of any radius though.]

A

D

C

B

x

x

x/21–x

1

1

72º72º

36º
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1 Given a circle C with center O
and radius one. Mark a point A on
C.

Objective I. Construct a segment
of length

√
5/4.

2 Construct the line which passes
through A and is perpendicular to

�OA�. Call this line �.

3 Use the compass to mark a point
B on � that is a distance |OA| from
A.

4 Construct the midpoint of AB,
and call that point C.

O A

B

C

1 3

42
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5 Draw the segment OC. Note that
by the Pythagorean Theorem,

|OC|=
√

|OA|2 + |AC|2

=
√

1+(1/2)2

=
√

5/2.

Locate the midpoint of OC (which
is a distance

√
5/4 from O). Call

this point D.

Objective II. Construct a segment
of length 1/4.

6 Extend OA until it reaches the
other side of C (the other endpoint
of the diameter). Label this point
E .

7 Find the midpoint F of OE , and
then find the midpoint G of OF .
Then |OE| = 1, |OF| = 1/2 and
|OG|= 1/4.

D

O

C

E

F G

5 7

6
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Objective III. Construct a segment
of length (−1+

√
5)/4.

8 Draw the circle centered at O
that passes through D. Mark its
intersection with OE as H . Then
GH is a segment whose length is
(−1+

√
5)/4.

9 Use segment transfer to place a
congruent copy of GH along the
ray OA�, with one endpoint at O.
Label the other endpoint I.

Objective IV. Mark a vertex of the
pentagon.

10 We will use A as one vertex of
the pentagon. For the next, con-
struct the line perpendicular to OA
which passes through I.

11 Mark one of the intersections
of this perpendicular with C as J.

H G

D

H G O

O A

I

I

J

8 10

119
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12 Now look at ∠O in the right tri-
angle �OIJ

cos(∠O) =
|OI|
|OJ|

=
(−1+

√
5)/4

1
.

According to our previous calcu-
lation, that means (∠OIJ)= 2π/5.

Objective V. The pentagon itself.

13 Segment AJ is one of the sides
of the pentagon. Now just transfer
congruent copies of that segment
around the circle to get the other
four sides of the pentagon.

J

IO

J

A

12 13
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Exercises

1. Given a segment AB, construct a segment of length (7/3)|AB|.

2. In a given circle, construct a regular (i) octagon, (ii) dodecagon, (iii)
decagon.

3. Given a circle C and a point A outside the circle, construct the lines
through A that are tangent to C.

4. Foreshadowing. (i) Given a triangle, construct the perpendicular bisec-
tors to the three sides. (ii) Given a triangle, construct the three angle
bisectors.

We haven’t discussed area yet, but if you are willing to do some things
out of order, here are a few area-based constructions.

5. Given a square whose area is A, construct a square whose area is 2A.

6. Given a rectangle, construct a square with the same area.

7. Given a triangle, construct a rectangle with the same area.

References

Famously, it is impossible to trisect an angle with compass and straight
edge. The proof of this impossibility requires a little Galois Theory, but
for the reader who has seen abstract algebra, is quite accessible. Proofs
are often given in abstract algebra books– I like Durbin’s approach in his
Modern Algebra book [1](probably because it was the first one I saw).

[1] John R. Durbin. Modern Algebra: An Introduction. John Wiley and
Sons, Inc., New York, 3rd edition, 1992.
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Start with three (or more) points. There is a small chance that those points
all lie on the same line– that they are colinear. In all likelihood, though,
they are not. And so, should we find a configuration of points that are
consistently colinear, well, that could be a sign of something interesting.
Likewise, with three (or more) lines, the greatest likelihood is that each
pair of lines interect, but that none of the intersections coincide. It is
unusual for two lines to be parallel, and it is unusual for three or more
lines to intersect at the same point.

DEF: CONCURRENCE
When three (or more) lines all intersect at the same point, the lines
are said to be concurrent. The intersection point is called the point of
concurrence.

In this lesson we are going to look at a few (four) concurrences of lines
associated with a triangle. Geometers have catalogued thousands of these
concurrences, so this is just the tip of a very substantial iceberg. [1]

The circumcenter

In the last lesson, I gave the construction of the perpendicular bisector of
a segment, but I am not sure that I ever properly defined it (oops). Let me
fix that now.

DEF: PERPENDICULAR BISECTOR
The perpendicular bisector of a segment AB is the line which is per-
pendicular to AB and passes through its midpoint.

Parallelism Intersection Concurrence
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Our first concurrence deals with the perpendicular bisectors of the three
sides of a triangle, but in order to properly understand that concurrence,
we need another characterization of the points of the perpendicular bisec-
tor.

LEMMA
A point X is on the perpendicular bisector to AB if and only if

|AX |= |BX |.

Proof. There’s not much to this
proof. It is really just a simple ap-
plication of some triangle congru-
ence theorems. First, suppose that
X is a point on the perpendicular
bisector to AB and let M be the
midpoint of AB. Then

S : AM � BM
A : ∠AMX � ∠BMX
S : MX = MX ,

and so �AMX and �BMX are
congruent. This means that |AX |=
|BX |.

Conversely, suppose that |AX | =
|BX |, and again let M be the mid-
point of AB. Then

S : AM � BM
S : MX = MX
S : AX � BX .

and so �AMX and �BMX are
congruent. In particular, this
means that ∠AMX � ∠BMX .
Those two angles are supplements,
though, and so they must be right
angles. Hence X is on the line
through M that forms a right angle
with AB– it is on the perpendicular
bisector.

B

B
X

X
M

M

A

A

S·S·SS·A·S
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Now we are ready for the first concurrence.

THE CIRCUMCENTER
The perpendicular bisectors to the three sides of a triangle �ABC
intersect at a single point. This point of concurrence is called the
circumcenter of the triangle.

Proof. The first thing to notice is that no two sides of the triangle can be
parallel. Therefore, none of the perpendicular bisectors can be parallel–
they all intersect each other. Let P be the intersection point of the per-
pendicular bisectors to AB and BC. Since P is on the perpendicular bisec-
tor to AB, |PA| = |PB|. Since P is on the perpendicular bisector to BC,
|PB| = |PC|. Therefore, |PA| = |PC|, and so P is on the perpendicular
bisector to AC.

An important side note: P is equidistant from A, B and C. That means
that there is a circle centered at P which passes through A, B, and C. This
circle is called the circumcircle of �ABC. In fact, it is the only circle
which passes through all three of A, B, and C (which sounds like a good
exercise).Now we are ready for the first concurrence.

THE CIRCUMCENTER
The perpendicular bisectors to the three sides of a triangle �ABC
intersect at a single point. This point of concurrence is called the
circumcenter of the triangle.

Proof. The first thing to notice is that no two sides of the triangle can be
parallel. Therefore, none of the perpendicular bisectors can be parallel–
they all intersect each other. Let P be the intersection point of the per-
pendicular bisectors to AB and BC. Since P is on the perpendicular bisec-
tor to AB, |PA| = |PB|. Since P is on the perpendicular bisector to BC,
|PB| = |PC|. Therefore, |PA| = |PC|, and so P is on the perpendicular
bisector to AC.

An important side note: P is equidistant from A, B and C. That means
that there is a circle centered at P which passes through A, B, and C. This
circle is called the circumcircle of �ABC. In fact, it is the only circle
which passes through all three of A, B, and C (which sounds like a good
exercise).

C

B

A

P
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The orthocenter

Most people will be familiar with the altitudes of a triangle from area
calculations in elementary geometry. Properly defined,

DEF: ALTITUDE
An altitude of a triangle is a line which passes through a vertex and
is perpendicular to the opposite side.

You should notice that an altitude of a triangle does not have to pass
through the interior of the triangle at all. If the triangle is acute then all
three altitudes will cross the triangle interior, but if the triangle is right,
two of the altitudes will lie along the legs, and if the triangle is obtuse,
two of the altitudes will only touch the triangle at their respective vertices.
In any case, though, the altitude from the largest angle will cross through
the interior of the triangle.

THE ORTHOCENTER
The three altitudes of a triangle �ABC intersect at a single point.
This point of concurrence is called the orthocenter of the triangle.The orthocenter

Most people will be familiar with the altitudes of a triangle from area
calculations in elementary geometry. Properly defined,

DEF: ALTITUDE
An altitude of a triangle is a line which passes through a vertex and
is perpendicular to the opposite side.

You should notice that an altitude of a triangle does not have to pass
through the interior of the triangle at all. If the triangle is acute then all
three altitudes will cross the triangle interior, but if the triangle is right,
two of the altitudes will lie along the legs, and if the triangle is obtuse,
two of the altitudes will only touch the triangle at their respective vertices.
In any case, though, the altitude from the largest angle will cross through
the interior of the triangle.

THE ORTHOCENTER
The three altitudes of a triangle �ABC intersect at a single point.
This point of concurrence is called the orthocenter of the triangle.

Altitudes for an acute, right, and obtuse triangle.
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Proof. The key to this proof is that the altitudes of �ABC also serve as
the perpendicular bisectors of another (larger) triangle. That takes us back
to what we have just shown– that the perpendicular bisectors of a triangle
are concurrent. First, we have to build that larger triangle. Draw three
lines

�1 which passes through A and is parallel to BC,
�2 which passes through B and is parallel to AC,
�3 which passes through C and is parallel to AB.

Each pair of those lines intersect (they cannot be parallel since the sides
of �ABC are not parallel), for a total of three intersections

�1 ∩ �2 = c �2 ∩ �3 = a �3 ∩ �1 = b.

The triangle �abc is the “larger triangle”. Now we need to show that an
altitude of �ABC is a perpendicular bisector of �abc. The argument is
the same for each altitude (other than letter shuffling), so let’s just focus
on the altitude through A: call it αA. I claim that αA is the perpendicu-
lar bisector to bc. There are, of course, two conditions to show: (1) that
αA ⊥ bc and (2) that their intersection, A, is the midpoint of bc.

(1) The first is easy thanks to the simple interplay between parallel and
perpendicular lines in Euclidean geometry.

bc � BC & BC ⊥ αA =⇒ bc ⊥ αA.

Proof. The key to this proof is that the altitudes of �ABC also serve as
the perpendicular bisectors of another (larger) triangle. That takes us back
to what we have just shown– that the perpendicular bisectors of a triangle
are concurrent. First, we have to build that larger triangle. Draw three
lines

�1 which passes through A and is parallel to BC,
�2 which passes through B and is parallel to AC,
�3 which passes through C and is parallel to AB.

Each pair of those lines intersect (they cannot be parallel since the sides
of �ABC are not parallel), for a total of three intersections

�1 ∩ �2 = c �2 ∩ �3 = a �3 ∩ �1 = b.

The triangle �abc is the “larger triangle”. Now we need to show that an
altitude of �ABC is a perpendicular bisector of �abc. The argument is
the same for each altitude (other than letter shuffling), so let’s just focus
on the altitude through A: call it αA. I claim that αA is the perpendicu-
lar bisector to bc. There are, of course, two conditions to show: (1) that
αA ⊥ bc and (2) that their intersection, A, is the midpoint of bc.

(1) The first is easy thanks to the simple interplay between parallel and
perpendicular lines in Euclidean geometry.

bc � BC & BC ⊥ αA =⇒ bc ⊥ αA.
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(2) To get at the second, we are going to have to leverage some of the
congruent triangles that we have created.

A : AC � ac =⇒ ∠cBA � ∠BAC
S : AB = AB
A : BC � bc =⇒ ∠cAB � ∠ABC

∴ �ABc ��BAC.

A : AB � ab =⇒ ∠BAC � ∠bCA
S : AC = AC
A : BC � bc =⇒ ∠BCA � ∠bAC

∴ �ABC ��CbA.

A : AC � ac =⇒ ∠cBA � ∠BAC
S : AB = AB
A : BC � bc =⇒ ∠cAB � ∠ABC

∴ �ABc ��BAC.

A : AB � ab =⇒ ∠BAC � ∠bCA
S : AC = AC
A : BC � bc =⇒ ∠BCA � ∠bAC

∴ �ABC ��CbA.

Therefore Ac � BC � Ab, placing A
at the midpoint of bc and making αA
the perpendicular bisector to bc. Like-
wise, the altitude through B is the per-
pendicular bisector to ac and the al-
titude through C is the perpendicular
bisector to ab. As the three perpen-
dicular bisectors of �abc, these lines
must intersect at a single point.
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The centroid

MEDIAN
A median of a triangle is a line segment from a vertex to the midpoint
of the opposite side.

THE CENTROID
The three medians of a triangle intersect at a single point. This point
of concurrence is called the centroid of the triangle.

Proof. On �ABC, label the midpoints of the three edges,

a, the midpoint of BC,
b, the midpoint of AC,
c, the midpoint of AB,

so that Aa, Bb, and Cc are the medians. The key to this proof is that we
can pin down the location of the intersection of any two medians– it will
always be found two-thirds of the way down the median from the vertex.
To understand why this is, we are going to have to look at a sequence of
three parallel projections.

The three medians of a triangle
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1. Label the intersection of Aa and Bb
as P. Extend a line from c which is
parallel to Bb. Label its intersec-
tion with Aa as Q, and its intersec-
tion with AC as c�. The first paral-
lel projection, from AB to AC, as-
sociates the points

A �→ A B �→ b c �→ c�.

Since Ac � cB, this means Ac� �
c�b.

2. Extend a line from a which is par-
allel to Bb. Label its intersection
with AC as a�. The second paral-
lel projection, from BC to AC, as-
sociates the points

C �→C B �→ b a �→ a�.

Since Ca � aB, this means Ca� �
a�b.

3. Now b divides AC into two congru-
ent segments, and a� and c� evenly
subdivide them. In all, a�, b, and
c� split AC into four congruent seg-
ments. The third parallel projec-
tion is from AC back onto Aa:

A �→ A c� �→ Q b �→ P a� �→ a.

Since Ac� � c�b � ba�, this means
AQ � QP � Pa.

A

c

P
Q

a

b
C

c

B

P
a

b
C

A

a

B

A

P
a

b
Ca

Q

c

B



262 LESSON 19

The incenter

This lesson began with bisectors of the sides of a triangle. It seems fitting
to end it with the bisectors of the interior angles of a triangle.

THE INCENTER
The bisectors of the three interior angles of a triangle intersect at a
single point. This point of concurrence is called the incenter of the
triangle.

Therefore P, the intersection of Bb and Aa, will be found on Aa exactly
two-thirds of the way down the median Aa from the vertex A. Now the
letters in this argument are entirely arbitrary– with the right permutation
of letters, we could show that any pair of medians will intersect at that
two-thirds mark. Therefore, Cc will also intersect Aa at P, and so the
three medians concur.

Students who have taken calculus may already be familiar with the cen-
troid (well, probably not my students, since I desperately avoid that sec-
tion of the book, but students who have more conscientious and responsi-
ble teachers). In calculus, the centroid of a planar shape D can be thought
of as its balancing point, and its coordinates can be calculated as

1∫∫
D 1dxdy

(∫∫

D
xdxdy,

∫∫

D
ydxdy

)
.

It is worth noting (and an exercise for students who have done calculus)
that in the case of triangles, the calculus and geometric definitions do co-
incide.

Angle bisectors

1 1

2
2

3
3
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Proof. Take two of the angle bisectors, say the bisectors of ∠A and ∠B,
and label their intersection as P. We need to show that CP� bisects ∠C.
The key to this proof is that P is actually equidistant from the three sides of
�ABC. From P, drop perpendiculars to each of the three sides of �ABC.
Label the feet of those perpendiculars: a on BC, b on AC, and c on AB.

Then

A : ∠PbA � ∠PcA
A : ∠bAP � ∠cAP
S : AP = AP

so �AcP is congruent to �AbP
and in particular bP � cP.

Again,

A : ∠PaB �∠PcB
A : ∠aBP � ∠cBP
S : BP = BP

and so �BaP is congruent to
�BcP and in particular cP � aP.

Now notice that the two right trian-
gles �PaC and �PbC have con-
gruent legs aP and bP and share
the same hypotenuse PC. Accord-
ing to the H·L congruence theorem
for right triangles, they have to be
congruent. Thus, ∠aCP � ∠bCP,
and so CP� is the bisector of ∠C.

Notice that P is the same distance from each of the three feet a, b, and
c. That means that there is a circle centered at P which is tangent to each
of the three sides of the triangle. This is called the inscribed circle, or
incircle of the triangle. It is discussed further in the exercises.

Proof. Take two of the angle bisectors, say the bisectors of ∠A and ∠B,
and label their intersection as P. We need to show that CP� bisects ∠C.
The key to this proof is that P is actually equidistant from the three sides of
�ABC. From P, drop perpendiculars to each of the three sides of �ABC.
Label the feet of those perpendiculars: a on BC, b on AC, and c on AB.

Then

A : ∠PbA � ∠PcA
A : ∠bAP � ∠cAP
S : AP = AP

so �AcP is congruent to �AbP
and in particular bP � cP.

Again,

A : ∠PaB �∠PcB
A : ∠aBP � ∠cBP
S : BP = BP

and so �BaP is congruent to
�BcP and in particular cP � aP.

Now notice that the two right trian-
gles �PaC and �PbC have con-
gruent legs aP and bP and share
the same hypotenuse PC. Accord-
ing to the H·L congruence theorem
for right triangles, they have to be
congruent. Thus, ∠aCP � ∠bCP,
and so CP� is the bisector of ∠C.

Notice that P is the same distance from each of the three feet a, b, and
c. That means that there is a circle centered at P which is tangent to each
of the three sides of the triangle. This is called the inscribed circle, or
incircle of the triangle. It is discussed further in the exercises.

Proof. Take two of the angle bisectors, say the bisectors of ∠A and ∠B,
and label their intersection as P. We need to show that CP� bisects ∠C.
The key to this proof is that P is actually equidistant from the three sides of
�ABC. From P, drop perpendiculars to each of the three sides of �ABC.
Label the feet of those perpendiculars: a on BC, b on AC, and c on AB.

Then

A : ∠PbA � ∠PcA
A : ∠bAP � ∠cAP
S : AP = AP

so �AcP is congruent to �AbP
and in particular bP � cP.

Again,

A : ∠PaB �∠PcB
A : ∠aBP � ∠cBP
S : BP = BP

and so �BaP is congruent to
�BcP and in particular cP � aP.

Now notice that the two right trian-
gles �PaC and �PbC have con-
gruent legs aP and bP and share
the same hypotenuse PC. Accord-
ing to the H·L congruence theorem
for right triangles, they have to be
congruent. Thus, ∠aCP � ∠bCP,
and so CP� is the bisector of ∠C.

Notice that P is the same distance from each of the three feet a, b, and
c. That means that there is a circle centered at P which is tangent to each
of the three sides of the triangle. This is called the inscribed circle, or
incircle of the triangle. It is discussed further in the exercises.
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Ci circumcenter concurrence of perpendicular bisectors
O orthocenter concurrence of altitudes
Ce centroid concurrence of medians
I incenter concurrence of angle bisectors

Proof. Take two of the angle bisectors, say the bisectors of ∠A and ∠B,
and label their intersection as P. We need to show that CP� bisects ∠C.
The key to this proof is that P is actually equidistant from the three sides of
�ABC. From P, drop perpendiculars to each of the three sides of �ABC.
Label the feet of those perpendiculars: a on BC, b on AC, and c on AB.

Then

A : ∠PbA � ∠PcA
A : ∠bAP � ∠cAP
S : AP = AP

so �AcP is congruent to �AbP
and in particular bP � cP.

Again,

A : ∠PaB �∠PcB
A : ∠aBP � ∠cBP
S : BP = BP

and so �BaP is congruent to
�BcP and in particular cP � aP.

Now notice that the two right trian-
gles �PaC and �PbC have con-
gruent legs aP and bP and share
the same hypotenuse PC. Accord-
ing to the H·L congruence theorem
for right triangles, they have to be
congruent. Thus, ∠aCP � ∠bCP,
and so CP� is the bisector of ∠C.

Notice that P is the same distance from each of the three feet a, b, and
c. That means that there is a circle centered at P which is tangent to each
of the three sides of the triangle. This is called the inscribed circle, or
incircle of the triangle. It is discussed further in the exercises.

References

[1] Clark Kimberling. Encyclopedia of triangle centers - etc. distributed
on World Wide Web. http://faculty.evansville.edu/ck6/encyclopedia
/ETC.html.
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Exercises

1. Using only compass and straight edge, construct the circumcenter, or-
thocenter, centroid, and incenter of a given triangle.

2. Using only compass and straight edge, construct the circumcircle and
incircle of a given triangle.

3. Let A, B, and C be three non-colinear points. Show that the circumcir-
cle to �ABC is the only circle passing through all three points A, B,
and C.

4. Let A, B and C be three non-colinear points. Show that the incircle is
the unique circle which is contained in �ABC and tangent to each of
the three sides.

5. Show that the calculus definition and the geometry definition of the
centroid of a triangle are the same.

6. Under what circumstances does the circumcenter of a triangle lie out-
side the triangle? What about the orthocenter?

7. Under what circumstances do the orthocenter and circumcenter coin-
cide? What about the orthocenter and centroid? What about the cir-
cumcenter and centroid?

8. For any triangle �ABC, there is an associated triangle called the orthic
triangle whose three vertices are the feet of the altitudes of �ABC.
Prove that the orthocenter of �ABC is the incenter of its orthic triangle.
[Hint: look for cyclic quadrilaterals and recall that the opposite angles
of a cyclic quadrilateral are supplementary.]

9. Suppose that �ABC and �abc are similar triangles, with a scaling con-
stant k, so that |AB|/|ab| = k. Let P be a center of �ABC (circumcen-
ter, orthocenter, centroid, or incenter) and let p be the corresponding
center of �abc. (1) Show that |AP|/|ap|= k. (2) Let D denote the dis-
tance from P to AB and let d denote the distance from p to ab. Show
that D/d = k.
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The Euler line

I wrapped up the last lesson with illustrations of three triangles and their
centers, but I wonder if you noticed something in those illustrations? In
each one, it certainly appears that the circumcenter, orthocenter, and cen-
troid are colinear. Well, guess what– this is no coincidence.

THM: THE EULER LINE
The circumcenter, orthocenter and centroid of a triangle are colinear,
on a line called the Euler line.

Proof. First, the labels. On �ABC, label

P: the circumcenter
Q: the orthocenter
R: the centroid
M: the midpoint of BC
�P: the perpendicular bisector to BC
�Q: the altitude through A
�R: the line containing the median AM

A dynamic sketch of all these points and lines will definitely give you a
better sense of how they interact. Moving the vertices A, B, and C creates
a rather intricate dance of P, Q and R. One of the most readily apparent
features of this construction is that both �P and �Q are perpendicular to
BC, and that means they cannot intersect unless they coincide. If you do
have a sketch to play with, you will see that they can coincide.
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BC, and that means they cannot intersect unless they coincide. If you do
have a sketch to play with, you will see that they can coincide.

P

A

B C

Q
R

P

Q



269CONCURRENCE II

This is a good place to start the investigation.

�P = �Q
⇐⇒ �R intersects BC at a right angle
⇐⇒ �AMB is congruent to �AMC
⇐⇒ AB � AC

So in an isosceles triangle with congruent sides AB and AC, all three of P
and Q and R will lie on the line �P = �Q = �R. It is still possible to line up
P, Q and R along the median AM without having �P, �Q and �R coincide.
That’s because �P intersects AM at M and �Q intersects AM at A, and it
turns out that it is possible to place P at M and Q at A.

M is the circumcenter
⇐⇒ BC is a diameter of the circumcircle
⇐⇒ ∠A is a right angle (Thales’ theorem)
⇐⇒ AB and AC are both altitudes of �ABC
⇐⇒ A is the orthocenter

So if �ABC is a right triangle whose right angle is at vertex A, then again
the median AM contains P, Q, and R.

Aligning an altitude and a perpendicular bisector.

A

B M C

Putting the circumcenter and orthocenter on a median.

A=Q

M=P
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In all other scenarios, P and Q will not be found on the median, and this
is where things get interesting. At the heart of this proof are two triangles,
�AQR and �MPR. We must show they are similar.

S: We saw in the last lesson that the centroid is located two thirds of
the way down the median AM from A, so |AR|= 2|MR|.

A: ∠QAR � ∠PMR, since they are alternate interior angles between
the two parallel lines �P and �Q.

S: Q, the orthocenter of �ABC, is also the circumcenter of another
triangle �abc. This triangle is similar to �ABC, but twice as big.
That means that the distance from Q, the circumcenter of �abc to
side bc is double the distance from P, the circumcenter of �ABC, to
side BC (it was an exercise at the end of the last lesson to show that
distances from centers are scaled proportionally by a similarity– if
you skipped that exercise then, you should do it now, at least for this
one case). In short, |AQ|= 2|MP|.

By S·A·S similarity, then, �AQR ∼�MPR. That means ∠PRM is con-
gruent to ∠QRA. The supplement of ∠PRA is ∠PRM, so ∠PRM must
also be the supplement of ∠QRA. Therefore P, Q, and R are colinear.

c A

B
C

b

a

The second S.
One triangle’s altitudes 
are another triangle’s 
perpendicular bisectors.

2y
2x

x
y

P

A

CB
M

Q
R
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The nine point circle

While only three points are needed to define a unique circle, the next result
lists nine points associated with any triangle that are always on one circle.
Six of the points were identified by Feuerbach (and for this reason the
circle sometimes bears his name). Several more beyond the traditional
nine have been found since. If you are interested in the development of
this theorem, there is a brief history in Geometry Revisited by Coxeter and
Greitzer [1].

THM: THE NINE POINT CIRCLE
For any triangle, the following nine points all lie on the same circle:
(1) the feet of the three altitudes, (2) the midpoints of the three sides,
and (3) the midpoints of the three segments connecting the orthocen-
ter to the each vertex. This circle is the nine point circle associated
with that triangle.

This is a relatively long proof, and I would ask that you make sure you are
aware of two key results that will play pivotal roles along the way.

1. Thales’ Theorem: A triangle �ABC has a right angle at C
if and only if C is on the circle with diameter AB.

2. The diagonals of a parallelogram bisect one another.
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Proof. Given the triangle �A1A2A3 with orthocenter R, label the follow-
ing nine points:

Li, the foot of the altitude which passes through Ai,
Mi, the midpoint of the side that is opposite Ai,
Ni, the midpoint of the segment AiR.

The proof that I give here is based upon a key fact that is not mentioned
in the statement of the theorem– that the segments MiNi are diameters of
the nine point circle. We will take C, the circle with diameter M1N1 and
show that the remaining seven points are all on it. Allow me a moment to
outline the strategy. First, we will show that the four angles

∠M1M2N1 ∠M1N2N1 ∠M1M3N1 ∠M1N3N1

are right angles. By Thales’ Theorem, that will place each of the points
M2, M3, N2, and N3 on C. Second, we will show that M2N2 and M3N3 are
in fact diameters of C. Third and finally, we will show that each ∠MiLiNi
is a right angle, thereby placing the Li on C.

Lines that are parallel.
We need to prove several sets of lines are parallel to one another. The
key in each case is S·A·S triangle similarity, and the argument for that
similarity is the same each time. Let me just show you with the first one,
and then I will leave out the details on all that follow.

L1

L3

L2

M1

M2
M3

N

R

1

A1

A2 A3

N2 N3
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Observe in triangles �A3M1M2 and �A3A2A1 that

|A3M2|= 1
2 |A3A1| ∠A3 = ∠A3 |A3M1|= 1

2 |A3A2|.

By the S·A·S similarity theorem, then, they are similar. In particular, the
corresponding angles ∠M2 and ∠A1 in those triangles are congruent. Ac-
cording to the Alternate Interior Angle Theorem, M1M2 and A1A2 must be
parallel. Let’s employ that same argument many more times.

�A3M1M2 ∼�A3A2A1

=⇒ M1M2 � A1A2

�RN1N2 ∼�RA1A2

=⇒ N1N2 � A1A2

�A1N1M2 ∼�A1RA3

=⇒ N1M2 � A3R

�A2M1N2 ∼�A2A3R
=⇒ M1N2 � A3R

�A2M1M3 ∼�A2A3A1

=⇒ M1M3 � A1A3

�RN1N3 ∼�RA1A3

=⇒ N1N3 � A1A3

�A1M3N1 ∼�A1A2R
=⇒ M3N1 � A2R

�A3M1N3 ∼�A3A2R
=⇒ M1N3 � A2R

�A3M1M2 ∼�A3A2A1

=⇒ M1M2 � A1A2

�RN1N2 ∼�RA1A2

=⇒ N1N2 � A1A2

�A1N1M2 ∼�A1RA3

=⇒ N1M2 � A3R

�A2M1N2 ∼�A2A3R
=⇒ M1N2 � A3R

�A2M1M3 ∼�A2A3A1

=⇒ M1M3 � A1A3

�RN1N3 ∼�RA1A3

=⇒ N1N3 � A1A3

�A1M3N1 ∼�A1A2R
=⇒ M3N1 � A2R

�A3M1N3 ∼�A3A2R
=⇒ M1N3 � A2R

M1

M2 M3

R

N1

A1

A2 A3

N2
M1

R

N1

A1

A2 A3

N3
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L3
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M2 M3

R
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A2 A3
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R
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A1

A2 A3
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Angles that are right.

Now A3R is a portion of the alti-
tude perpendicular to A1A2. That
means the first set of parallel lines
are all perpendicular to the sec-
ond set of parallel lines. Therefore
M1M2 and M2N1 are perpendicu-
lar, so ∠M1M2N1 is a right angle;
and N1N2 and N2M1 are perpendic-
ular, so ∠M1N2N1 is a right angle.
By Thales’ Theorem, both M2 and
N2 are on C.

Similarly, segment A2R is perpen-
dicular to A1A3 (an altitude and
a base), so M1M3 and M3N1 are
perpendicular, and so ∠M1M3N1
is a right angle. Likewise, N1N3
and N3M1 are perpendicular, so
∠M1N3N1 is a right angle. Again
Thales’ Theorem tells us that M3
and N3 are on C.

Segments that are diameters.
We have all the M’s and N’s placed on C now, but we aren’t done with
them just yet. Remeber that M1N1 is a diameter of C. From that, it is just
a quick hop to show that L1 is also on C. It would be nice to do the same
for L2 and L3, but in order to do that we will have to know that M2N2 and
M3N3 are also diameters. Based upon our work above,

M1M2 ‖ N1N2 & M1N2 ‖ M2N1

M1

M2 M3

N1

N2
M1

N1

N3

A3 A2

R R

L1

L3

L2

M1

M2 M3

N1

N2
M1

N1

N3
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That makes �M1M2N1N2 a parallelogram (in fact it is a rectangle). Its
two diagonals, M1N1 and M2N2 must bisect each other. In other words,
M2N2 crosses M1N1 at its midpoint. Well, the midpoint of M1N1 is the
center of C. That means that M2N2 passes through the center of C, and
that makes it a diameter. The same argument works for M3N3. The paral-
lelogram is �M1M3N1N3 with bisecting diagonals M1N1 and M3N3.

More angles that are right.
All three of M1N1, M2N2, and M3N3 are diameters of C. All three of
∠M1L1N1, ∠M2L2N2 and M3L3N3 are formed by the intersection of an al-
titude and a base, and so are right angles. Therefore, by Thales’ Theorem,
all three of L1, L2 and L3 are on C.

The center of the nine point circle

The third result of this lesson ties together the previous two.

THM
The center of the nine point circle is on the Euler line.

L1

L3

L2

M1

M2
M3

N1

N2 N3

A

B C
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Proof. This proof nicely weaves together a lot of what we have developed
over the last two lessons. On �ABC, label the circumcenter P and the
orthocenter Q. Then �PQ� is the Euler line. Label the center of the nine
point circle as O. Our last proof hinged upon a diameter of the nine point
circle. Let’s recycle some of that– if M is the midpoint of BC and N is the
midpoint of QA, then MN is a diameter of the nine point circle. Now this
proof really boils down to a single triangle congruence– we need to show
that �ONQ and �OMP are congruent.

S: ON �OM. The center O of the nine point circle bisects the diameter
MN.

A: ∠M �∠N. These are alternate interior angles between two parallel
lines, the altitude and bisector perpendicular to BC.

S: NQ � MP. In the Euler line proof we saw that |AQ|= 2|MP|. Well,
|NQ|= 1

2 |AQ|, so |NQ|= |MP|.

By S·A·S, the triangles �ONQ and �OMP are congruent, and in partic-
ular ∠QON � ∠POM. Since ∠NOP is supplementary to ∠POM, it must
also be supplementary to ∠QON. Therefore Q, O, and P are colinear, and
so O is on the Euler line.

M
B C

A

Q

N

P
O
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Exercises

1. Consider a triangle �ABC. Let D and E be the feet of the altitudes on
the sides AC and BC. Prove that there is a circle which passes through
the points A, B, D, and E .

2. Under what conditions does the incenter lie on the Euler line?

3. Consider an isosceles triangle �ABC with AB � AC. Let D be a point
on the arc between B and C of the circumscribing circle. Show that DA
bisects the angle ∠BDC.

4. Let P be a point on the circumcircle of triangle �ABC. Let L be the foot
of the perpendicular from P to AB, M be the foot of the perpendicular
from P to AC, and N be the foot of the perpendicular from P to BC.
Show that L, M, and N are collinear. This line is called a Simson line.
Hint: look for cyclic quadrilaterals and use the fact that opposite angles
in a cyclic quadrilateral are congruent.
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B

A

CB

A

C

PP

FA

FB

BC

Excenters and excircles

In the first lesson on concurrence, we saw that the bisectors of the inte-
rior angles of a triangle concur at the incenter. If you did the exercise in
the last lesson dealing with the orthic triangle then you may have noticed
something else– that the sides of the original triangle are the bisectors of
the exterior angles of the orthic triangle. I want to lead off this last les-
son on concurrence with another result that connects interior and exterior
angle bisectors.

THM: EXCENTERS
The exterior angle bisectors at two vertices of a triangle and the inte-
rior angle bisector at the third vertex of that triangle intersect at one
point.
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FCFC

FBFB

FA

PP

A

Proof. Let �B and �C be the lines bisecting the exterior angles at vertices
B and C of �ABC. They must intersect. Label the point of intersection
as P. Now we need to show that the interior angle bisector at A must also
cross through P, but we are going to have to label a few more points to get
there. Let FA, FB, and FC be the feet of the perpendiculars through P to
each of the sides BC, AC, and AB, respectively. Then, by A·A·S,

�PFAC ��PFBC �PFAB ��PFCB.

Therefore PFA � PFB � PFC. Here you may notice a parallel with the
previous discussion of the incenter– P, like the incenter, is equidistant
from the lines containing the three sides of the triangle. By H·L right
triangle congruence, �PFCA � �PFBA. In particular, ∠PAFC � ∠PAFB
and so P is on the bisector of angle A.

There are three such points of concurrence. They are called the excen-
ters of the triangle. Since each is equidistant from the three lines contain-
ing the sides of the triangle, each is the center of a circle tangent to those
three lines. Those circles are called the excircles of the triangle.
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Ceva’s Theorem

By now, you should have seen enough concurrence theorems and enough
of their proofs to have some sense of how they work. Most of them ulti-
mately turn on a few hidden triangles that are congruent or similar. Take,
for example, the concurrence of the medians. The proof of that concur-
rence required a 2 : 1 ratio of triangles. What about other triples of seg-
ments that connect the vertices of a triangle to their respective opposite
sides? What we need is a computation that will discriminate between
triples of segments that do concur and triples of segments that do not.

Let’s experiment. Here is a triangle �ABC with sides of length four,
five, and six.

|AB|= 4 |BC|= 5 |AC|= 6.

As an easy initial case, let’s say that one of the three segments, say Cc,
is a median (in other words, that c is the midpoint of AB). Now work
backwards. Say that the triple of segments in question are concurrent.
That concurrence could happen anywhere along Cc, so I have chosen five
points Pi to serve as our sample points of concurrence. Once those points
of concurrence have been chosen, that determines the other two segments–
one passes through A and Pi, the other through B and Pi. I am interested in
where those segments cut the sides of �ABC. Label:

bi: the intersection of BPi and AC
ai: the intersection of APi and BC
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Here are the measurements (two decimal place accuracy):

i : 1 2 3 4 5

|Abi| 1.71 3.00 4.00 4.80 5.45
|Cbi| 4.29 3.00 2.00 1.20 0.55

|Bai| 1.43 2.50 3.33 4.00 4.55
|Cai| 3.57 2.50 1.67 1.00 0.45

Out of all of that it may be difficult to see a useful pattern, but compare
the ratios of the sides |Abi|/|Cbi| and |Bai|/|Cai| (after all, similarity is all
about ratios).

i : 1 2 3 4 5

|Abi|/|Cbi| 0.40 1.00 2.00 4.00 10.00
|Bai|/|Cai| 0.40 1.00 2.00 4.00 10.00

They are the same! Let’s not jump the gun though– what if Cc isn’t a
median? For instance, let’s reposition c so that it is a distance of one from
A and three from B.
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a1
b1
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A c 2.51.5 B

C

i : 1 2 3 4 5

|Abi| 1.26 2.40 3.43 4.36 5.22
|Cbi| 4.74 3.60 2.57 1.64 0.78

|Bai| 2.22 3.33 4.00 4.45 4.76
|Cai| 2.78 1.67 1.00 0.55 0.24

|Abi|/|Cbi| 0.27 0.67 1.33 2.67 6.67
|Bai|/|Cai| 0.80 2.00 4.00 8.02 20.12

The ratios are not the same. Look carefully, though– the ratios |Bai|/|Cai|
are always three times the corresponding ratios |Abi|/|Cbi| (other than a
bit of round-off error). Interestingly, that is the same as the ratio |Bc|/|Ac|.
Let’s do one more example, with |Ac|= 1.5 and |Bc|= 2.5.

i : 1 2 3 4 5

|Abi| 1.45 2.67 3.69 4.57 5.33
|Cbi| 4.55 3.33 2.31 1.43 0.67

|Bai| 1.74 2.86 3.64 4.21 4.65
|Cai| 3.26 2.14 1.36 0.79 0.35

|Abi|/|Cbi| 0.32 0.80 1.60 3.20 8.00
|Bai|/|Cai| 0.53 1.33 2.66 5.34 13.33
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A

a
b

c B

C ab

Once again, the ratios |Abi|/|Cbi| all hover about 1.67, right at the ratio
|Bc|/|Ac|. What we have stumbled across is called Ceva’s Theorem, but it
is typically given a bit more symmetrical presentation.

CEVA’S THEOREM
Three segments Aa, Bb, and Cc, that connect the vertices of �ABC
to their respective opposite sides, are concurrent if and only if

|Ab|
|bC|

· |Ca|
|aB|

· |Bc|
|cA|

= 1.

Proof. =⇒ Similar triangles anchor this proof. To get to those similar
triangles, though, we need to extend the illustration a bit. Assume that Aa,
Bb, and Cc concur at a point P. Draw out the line which passes through
C and is parallel to AB; then extend Aa and Bb so that they intersect this
line. Mark those intersection points as a� and b� respectively. We need to
look at four pairs of similar triangles.
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A

b a

c B

C

P

ab

3.�BcP ∼�b�CP

|CP|
|cP| =

|b�C|
|Bc|

4.�ABb ∼�Cb�b

|b�C|
|AB| =

|bC|
|Ab|

|b�C|= |AB| · |bC|
|Ab|

1.�AcP ∼�a�CP

|CP|
|cP| =

|a�C|
|Ac|

2.�ABa ∼�a�Ca

|a�C|
|AB| =

|aC|
|aB|

|a�C|= |AB| · |aC|
|aB|

They are:

Plug the second equation into the first

|CP|
|cP|

=
|AB| · |aC|
|aB| · |Ac|

and the fourth into the third
|CP|
|cP| =

|AB| · |bC|
|Ab| · |BC|

Set these two equations equal and simplify

|AB| · |aC|
|aB| · |Ac|

=
|AB| · |bC|
|Ab| · |BC|

=⇒ |Ab|
|bC|

· |Ca|
|aB|

· |Bc|
|cA|

= 1.
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A

b a

c B

C ab

P

P
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4.�ABb ∼�Cb�b

|b�C|
|AB| =

|bC|
|Ab|

|b�C|= |AB| · |bC|
|Ab|

1.�AcP ∼�a�CP

|CP|
|cP| =

|a�C|
|Ac|

2.�ABa ∼�a�Ca

|a�C|
|AB| =

|aC|
|aB|

|a�C|= |AB| · |aC|
|aB|

3.�BcQ ∼�b�CQ

|CQ|
|cQ| =

|b�C|
|Bc|

⇐= A similar tactic works for the other direction. For this part, we are
going to assume the equation

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| = 1,

and show that Aa, Bb, and Cc are concurrent. Label

P: the intersection of Aa and Cc
Q: the intersection of Bb and Cc.

In order for all three segments to concur, P and Q will actually have to
be the same point. We can show that they are by computing the ratios
|AP|/|aP| and |AQ|/|aQ| and seeing that they are equal. That will mean
that P and Q have to be the same distance down the segment Aa from A,
and thus guarantee that they are the same. Again with the similar triangles:
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P

0
–1

–2
–3

–4
–5

1
2

3
4

5
+

Signed distance from P. The sign is determined by a choice of direction.

Plug the second equation into the first

|CP|
|cP| =

|aC| · |AB|
|aB| · |Ac|

and the fourth equation into the third

|CQ|
|cQ|

=
|AB| · |bC|
|Ab| · |Bc|

Now divide and simplify

|CP|
|cP|

/
|CQ|
|cQ|

=
|aC| · |AB| · |Ab| · |Bc|
|aB| · |Ac| · |AB| · |bC|

=
|Ab|
|bC|

· |Ca|
|aB|

· |Bc|
|cA|

= 1.

Therefore |AP|/|aP|= |AQ|/|aQ|, so P = Q.

Ceva’s Theorem is great for concurrences inside the triangle, but we have
seen that concurrences can happen outside the triangle as well (such as
the orthocenter of an obtuse triangle). Will this calculation still tell us
about those concurrences? Well, not quite. If the three lines concur, then
the calculation will still be one, but now the calculation can mislead– it is
possible to calculate one when the lines do not concur. If you look back
at the proof, you can see the problem. If P and Q are on the opposite
side of a, then the ratios |AP|/|aP| and |AQ|/|aQ| could be the same even
though P �= Q. There is a way to repair this, though. The key is “signed
distance”. We assign to each of the three lines containing a side of the
triangle a direction (saying this way is positive, this way is negative). For
two points A and B on one of those lines, the signed distance is defined as

[AB] =

{
|AB| if the ray AB� points in the positive direction
−|AB| if the ray AB� points in the negative direction.
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B C

b

a

c

A

+

+

+

This simple modification is all that is needed to extend Ceva’s Theorem

CEVA’S THEOREM (EXTENDED VERSION)
Three lines Aa, Bb, and Cc, that connect the vertices of �ABC to the
lines containing their respective opposite sides, are concurrent if and
only if

[Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

= 1.

Menelaus’s Theorem

Ceva’s Theorem is one of a pair– the other half is its projective dual,
Menelaus’s Theorem. We are not going to look at projective geometry
in this book, but one of its key underlying concepts is that at the level
of incidence, there is a duality between points and lines. For some very
fundamental results, this duality allows the roles of the two to be inter-
changed.

MENELAUS’S THEOREM
For a triangle �ABC, and points a on �BC�, b on �AC�, and c on
�AB�, a, b, and c are colinear if and only if

[Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

=−1.
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B C

b

a

c

P

A

B C

b

a

c

P

A

Proof. =⇒ Suppose that a, b, and c all lie along a line �. The requirement
that a, b, and c all be distinct prohibits any of the three intersections from
occurring at a vertex. According to Pasch’s Lemma, then, � will intersect
two sides of the triangle, or it will miss all three sides entirely. Either way,
it has to miss one of the sides. Let’s say that missed side is BC. There are
two ways this can happen:

1. � intersects line BC on the opposite side of B from C
2. � intersects line BC on the opposite side of C from B

The two scenarios will play out very similarly, so let’s just look at the
second one. Draw the line through C parallel to �. Label its intersection
with AB as P. That sets up some useful parallel projections.

From AB to AC:

A �→ A c �→ b P �→C.

Comparing ratios,

|cP|
|bC|

=
|Ac|
|Ab|

and so

|cP|= |Ac|
|Ab|

· |bC|.

From AB to BC:

B �→ B c �→ a P �→C.

Comparing ratios,

|cP|
|aC|

=
|Bc|
|Ba|

and so

|cP|= |Bc|
|Ba|

· |aC|.
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B C

b
a

c

A

B C

b

a

c
A

++

+ +

++

Just divide the second |cP| by the first |cP| to get

1 =
|cP|
|cP| =

|Ab| · |aC| · |Bc|
|Ac| · |bC| · |Ba| =

|Ab|
|bC| ·

|Ca|
|aB| ·

|Bc|
|cA| .

That’s close, but we are after an equation that calls for signed distance. So
orient the three lines of the triangle so that AC�, CB�, and BA� all point
in the positive direction (any other orientation will flip pairs of signs that
will cancel each other out). With this orientation, if � intersects two sides
of the triangle, then all the signed distances involved are positive except
[Ca] = −|Ca|. If � misses all three sides of the triangle, then three of the
signed distances are positive, but three are not:

[Ab] =−|Ab| [Ca] =−|Ca| [cA] =−|cA|.

Either way, an odd number of signs are changed, so

[Ab]
[bC]

[Ca]
[aB]

[Bc]
[cA]

=−1.

⇐= Let’s turn the argument around to prove the converse. Suppose that

[Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

=−1.
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B C

b

c

P

A

B C a

c

Q

A

Draw the line from C that is paral-
lel to bc and label its intersection
with AB as P. There is a parallel
projection from AB to AC so that

A �→ A c �→ b P �→C

and therefore

|cP|
|Ac|

=
|Cb|
|bA|

.

Draw the line from C that is paral-
lel to ac, and label its intersection
with AB as Q. There is a parallel
projection from AB to BC so that

B �→ B c �→ a Q �→C

and therefore

|cQ|
|cB|

=
|Ca|
|Ba|

Now solve those equations for |cP| and |cQ|, and divide to get

[cQ]

[cP]
=

[bA] · [Ca] · [cB]
[Cb] · [Ac] · [Ba]

=− [Ab]
[bC]

· [Ca]
[aB]

· [Bc]
[cA]

=−(−1) = 1.

Both P and Q are the same distance from c along cC. That means they
must be the same.
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FC

PC

B

A

C FA

PA

FB

PB

The Nagel point

Back to excircles for one more concurrence, and this time we will use
Ceva’s Theorem to prove it.

THE NAGEL POINT
If CA, CB, and CC are the three excircles of a triangle �ABC so that
CA is in the interior of ∠A, CB is in the interior of ∠B, and CC is in
the interior of ∠C; and if FA is the intersection of CA with BC, FB is
the intersection of CB with AC, and FC is the intersection of CC with
AB; then the three segments AFA, BFB, and CFC are concurrent. This
point of concurrence is called the Nagel point.

Proof. This is actually pretty easy thanks to Ceva’s Theorem. The key
is similar triangles. Label PA, the center of excircle CA, PB, the center of
excircle CB, and PC, the center of excircles, CC. By A·A triangle similarity,

�PAFAC ∼�PBFBC
�PBFBA ∼�PCFCA
�PCFCB ∼�PAFAB.
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FC

PC

B

A

C FA

PA

FB

PB

Ceva’s Theorem promises concurrence if we can show that

|AFC|
|FCB| ·

|BFA|
|FAC| ·

|CFB|
|FBA| = 1.

Those triangle similarities give some useful ratios to that end:

|AFC|
|AFB|

=
|PCFC|
|PBFB|

|BFA|
|BFC|

=
|PAFA|
|PCFC|

|CFB|
|CFA|

=
|PBFB|
|PAFA|

.

So

|AFC|
|FCB|

|BFA|
|FAC|

|CFB|
|FBA|

=
|AFC|
|AFB|

|BFA|
|BFC|

|CFB|
|CFA|

=
|PCFC|
|PBFB|

|PAFA|
|PCFC|

|PBFB|
|PAFA|

= 1.

By Ceva’s Theorem, the three segments are concurrent.
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Exercises

1. Use Ceva’s Theorem to prove that the medians of a triangle are con-
current.

2. Use Ceva’s Theorem to prove that the orthocenters of a triangle are
concurrent.

3. Give a compass and straight-edge construction of the three excircles
and the nine-point circle of a given triangle. If your construction is
accurate enough, you should notice that the excircles are all tangent to
the nine-point circle (a result commonly called Feuerbach’s Theorem).





22 TRILINEAR COORDINATES
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This is my last lesson under the heading of “Euclidean geometry”. If you
look back to the start, we have built a fairly impressive structure from
modest beginnings. Throughout it all, I have aspired to a synthetic ap-
proach to the subject, which is to say that I have avoided attaching a coor-
dinate system to the plane, with all the powerful analytic techniques that
come by doing so. I feel that it is in the classical spirit of the subject to
try to maintain this synthetic stance for as long as possible. But as we
now move into the more modern development of the subject, it is time to
shift positions. As a result, much of the rest of this work will take on a
decidedly different flavor. With this lesson, I hope to capture the inflection
point of that shift in stance, from the synthetic to the analytic.

Trilinear coordinates

In this lesson, we will look at trilinear coordinates, a coordinate system
that is closely tied to the concurrence results of the last few lessons. Es-
sentially, trilinear coordinates are defined by measuring signed distances
from the sides of a given triangle.

DEF: THE SIGNED DISTANCE TO A SIDE OF A TRIANGLE
Given a side s of a triangle �ABC and a point P, let |P,s| denote the
(minimum) distance from P to the line containing s. Then define the
signed distance from P to s as

[P,s] =

{
|P,s| if P is on the same side of s as the triangle

−|P,s| if P is on the opposite side of s from the triangle

[P, BC] = PX
[Q, BC] = − QY

P

Q

A

B

Y

C

X
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From these signed distances, every triangle creates a kind of coordinate
system in which a point P in the plane is assigned three coordinates

α = [P,BC] β = [P,AC] γ = [P,AB].

This information is consolidated into the notation P = [α : β : γ ]. There
is an important thing to notice about this system of coordinates: while ev-
ery point corresponds to a triple of real numbers, not every triple of real
numbers corresponds to a point. For instance, when �ABC is equilateral
with sides of length one, there is no point with coordinates [2 : 2 : 2]. For-
tunately, there is a way around this limitation, via an equivalence relation.

AN EQUIVALENCE RELATION ON COORDINATES
Two sets of trilinear coordinates [a : b : c] and [a� : b� : c�] are equiva-
lent, written [a : b : c]∼ [a� : b� : c�], if there is a real number k �= 0 so
that

a� = ka b� = kb c� = kc.

Consider again that equilateral triangle
�ABC with sides of length one. Okay,
there is no point which is a distance of
two from each side. But [2 : 2 : 2] is
equivalent to [

√
3/6 :

√
3/6 :

√
3/6], and

there is a point which is a distance of√
3/6 from each side– the center of the

triangle. That brings us to the definition
of trilinear coordinates.

DEF: TRILINEAR COORDINATES
The trilinear coordinates of a point P with respect to a triangle �ABC
is the equivalence class of triples [kα : kβ : kγ ] (with k �= 0) where

α = [P,BC] β = [P,AC] γ = [P,AB].

The coordinates corresponding to the actual signed distances, when k = 1,
are called the exact trilinear coordinates of P.

1

1/2

√3/2

√3/6
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Because each coordinate is actually an equivalence class, there is an im-
mediately useful relationship between trilinear coordinates in similar tri-
angles. Suppose that �ABC and �A�B�C� are similar, with a scaling con-
stant k so that

|A�B�|= k|AB| |B�C�|= k|BC| |C�A�|= k|CA|.

Suppose that P and P� are points that are positioned similarly with respect
to those triangles (so that |A�P�| = k|AP|, |B�P�| = k|BP|, and |C�P�| =
k|CP|). Then the coordinates of P as determined by �ABC will be equiv-
alent to the coordinates of P� as determined by �A�B�C�.

With that in mind, let’s get back to the question of whether every equiva-
lence class of triples of real numbers corresponds to a point. Straight out
of the gate, the answer is no– the coordinates [0 : 0 : 0] do not correspond
to any point. As it turns out, that is the exception.

THM: THE RANGE OF THE TRILINEARS
Given a triangle �ABC and real numbers x, y, and z, not all zero,
there is a point whose trilinear coordinates with respect to �ABC are
[x : y : z].

Proof. There are essentially two cases: one where all three of x, y, and z
have the same sign, and one where they do not. I will look at the first case
in detail. The second differs at just one crucial step, so I will leave the
details of that case to you. In both cases, my approach is a constructive
one, but it does take a rather indirect path. Instead of trying to find a point
inside �ABC with the correct coordinates, I will start with a point P, and
then build a new triangle �abc around it.

Because each coordinate is actually an equivalence class, there is an im-
mediately useful relationship between trilinear coordinates in similar tri-
angles. Suppose that �ABC and �A�B�C� are similar, with a scaling con-
stant k so that

|A�B�|= k|AB| |B�C�|= k|BC| |C�A�|= k|CA|.

Suppose that P and P� are points that are positioned similarly with respect
to those triangles (so that |A�P�| = k|AP|, |B�P�| = k|BP|, and |C�P�| =
k|CP|). Then the coordinates of P as determined by �ABC will be equiv-
alent to the coordinates of P� as determined by �A�B�C�.

With that in mind, let’s get back to the question of whether every equiva-
lence class of triples of real numbers corresponds to a point. Straight out
of the gate, the answer is no– the coordinates [0 : 0 : 0] do not correspond
to any point. As it turns out, that is the exception.

THM: THE RANGE OF THE TRILINEARS
Given a triangle �ABC and real numbers x, y, and z, not all zero,
there is a point whose trilinear coordinates with respect to �ABC are
[x : y : z].

Proof. There are essentially two cases: one where all three of x, y, and z
have the same sign, and one where they do not. I will look at the first case
in detail. The second differs at just one crucial step, so I will leave the
details of that case to you. In both cases, my approach is a constructive
one, but it does take a rather indirect path. Instead of trying to find a point
inside �ABC with the correct coordinates, I will start with a point P, and
then build a new triangle �abc around it.

A

B C CB

A

P
P

CB

A

P

Exact trilinear coordinates of similarly positioned points in similar triangles.

[2:1:2] [1:0.5:1][1.5:0.75:1.5]
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That new triangle will

1. be similar to the original �ABC, and

2. be positioned so that the trilinear coordinates of P with respect to
�abc are [x : y : z].

Then the similarly positioned point in �ABC will have to have those same
coordinates relative to �ABC.

Case 1. [+ : + : +]∼ [− : − : −]
Consider the situation where all three numbers x, y, and z are greater than
or equal to zero (of course, they cannot all be zero, since a point cannot
be on all three sides of a triangle). This also handles the case where all
three coordinates are negative, since [x : y : z] ∼ [−x : −y : −z]. Mark a
point Fx which is a distance x away from P. On opposite sides of the ray
PFx �, draw out two more rays to form angles measuring π − (∠B) and
π− (∠C). On the first ray, mark the point Fz which is a distance z from P.
On the second, mark the point Fy which is a distance y from P. Let

�x be the line through Fx that is perpendicular to PFx,
�y be the line through Fy that is perpendicular to PFy,
�z be the line through Fz that is perpendicular to PFz.

Label their points of intersection as

a = �y ∩ �z b = �x ∩ �z c = �x ∩ �y.

x

y
z

x

yz

A

CB

a

b c
Fx

Fy

Fz
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Clearly, the trilinear coordinates of P relative to �abc are [x : y : z]. To
see that �abc and �ABC are similar, let’s compare their interior angles.
The quadrilateral PFxbFz has right angles at vertex Fx and Fz and an angle
measuring π− (∠B) at vertex P. Since the angle sum of a quadrilateral is
2π , that means (∠b) = (∠B), so they are congruent. By a similar argu-
ment, ∠c and ∠C must be congruent. By A·A similarity, then, �ABC and
�abc are similar.

Case 2. [+ : − : −]∼ [− : + : +]
Other than some letter shuffling, this also handles scenarios of the form
[− : + : −], [+ : − : +], [− : − : +], and [+ : + : −]. Use the same con-
struction as in the previous case, but with one important change: in the
previous construction, we needed

(∠FzPFx) = π− (∠B) & (∠FyPFx) = π− (∠C).

This time we are going to want

(∠FzPFx) = (∠B) & (∠FyPFx) = (∠C).

The construction still forms a triangle �abc that is similar to �ABC, but
now P lies outside of it. Depending upon the location of a relative to
the line �x, the signed distances from P to BC, AC, and AB, respectively
are either x, y, and z, or −x, −y and −z. Either way, since [x : y : z] is
equivalent to [−x : −y : −z], P has the correct coordinates.

A

CB

a

b c
Fx

Fz

*

*
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x

y
z

a

b c

x

yz

a

bc

Case 2. 
(l) exact trilinears 
with form [–:+:+]
(r) exact trilinears 
with form [+:–:–]

Trilinear coordinates of a few points, normalized so that the sum of the magni-
tudes of the coordinates is 100, and rounded to the nearest integer.

[36 : 36 : –28]

[28 : 48 : –24]

[12 : 70 : –18]

[–13 : 81 : –5]

[51 : 23 : –25]

[45 : 35 : –19]

[34 : 59 : –8]

[0 : 84 : 16]

[74 : 14 : –12]
A

B C

[62 : 28 : 10]

[22 : 39 : 39]

[–16 : 36 : 48]

[81 : –16 : 2]

[65 : –13 : 23]

[40 : –8 : 53]

[0 : 0 : 100]
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Trilinears of the classical centers

The classical triangle centers that we have studied in the last few lessons
tend to have elegant trilinear coordinates. The rest of this lesson is ded-
icated to finding a few of them. The easiest of these, of course, is the
incenter. Since it is equidistant from each of the three sides of the trian-
gle, its trilinear coordinates are [1 : 1 : 1]. The others will require a little
bit more work. These formulas are valid for all triangles, but if �ABC
is obtuse, then one of its angles is obtuse, and thus far we have only re-
ally discussed the trigonometry of acute angles. For that reason, in these
proofs I will restrict my attention to acute triangles. Of course, you have
surely seen the unit circle extension of the trigonometric functions to all
angle measures, so I encourage you to complete the proof by considering
triangles that are not acute.

TRILINEARS OF THE CIRCUMCENTER
The trilinear coordinates of the circumcenter of �ABC are

[cos A : cosB : cosC].

Proof. First the labels. Label the circumcenter P. Recall that the circum-
center is the intersection of the perpendicular bisectors of the three sides
of the triangle. Let’s take just one of those: the perpendicular bisector to
BC. It intersects BC at its midpoint– call that point X . Now we can cal-
culate the first exact trilinear coordinate in just a few steps, which I will
justify below.

[P,BC] =
1�
|PX | =

2�
|PB|cos(∠BPX) =

3�
|PB|cos(∠BAC).

1. The minimum distance from P to BC is
along the perpendicular– so |P,BC| =
|P,X |. We have assumed that �ABC is
acute. That places P inside the trian-
gle, on the same side of BC as A, which
means that the signed distance [P,BC]
is positive. Therefore

[P,BC] = |P,BC|= |PX |.

A

B C

P

X

1
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2. Look at ∠BPX in the triangle �BPX :

cos(∠BPX) =
|PX |
|PB|

=⇒ |PX |= |PB|cos(∠BPX).

3. Segment PX splits �BPC into two pieces,
�BPX and �CPX , which are congru-
ent by S·A·S. Thus PX evenly divides
the angle ∠BPC into two congruent pieces,
and so

(∠BPX) = 1
2(∠BPC).

Recall that the circumcenter is the cen-
ter of the circle which passes through
all three vertices A, B, and C. With
respect to that circle, ∠BAC is an in-
scribed angle, and ∠BPC is the corre-
sponding central angle. According to
the Inscribed Angle Theorem,

(∠BAC) = 1
2(∠BPC).

That means that (∠BPX) = (∠BAC).
With that same argument we can find the signed distances to the other two
sides as well.

[P,AC] = |PC|cos(∠ABC) & [P,AB] = |PA|cos(∠BCA)

Gather that information together to get the exact trilinear coordinates of
the circumcenter

P = [|PB|cos(∠A) : |PC|cos(∠B) : |PA|cos(∠C)].

Finally, observe that PA, PB, and PC are all the same length– they are radii
of the circumcircle. Therefore, we can factor out that constant to get an
equivalent representation

P = [cos(∠A) : cos(∠B) : cos(∠C)].

B

P

X

2

A3

B C

P

X
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TRILINEARS OF THE ORTHOCENTER
The trilinear coordinates of the orthocenter of �ABC are

[cosBcosC : cosAcosC : cosAcosB].

Proof. Label the orthocenter Q. Recall that it is the intersection of the
three altitudes of the triangle. Label the feet of those altitudes

FA: the foot of the altitude through A,
FB: the foot of the altitude through B, and
FC: the foot of the altitude through C.

Now think back to the way we proved that the altitudes concur in lesson
19– it was by showing that they are the perpendicular bisectors of a larger
triangle �abc, where

bc passed through A and was parallel to BC,
ac passed through B and was parallel to AC, and
ab passed through C and was parallel to AB.

We are going to need that triangle again. Here is the essential calculation,
with commentary explaining the steps below.

[Q,BC]
1�
= |QFA|

2�
= |QB|cos(∠FAQB)

3�
= |QB|cos(∠C)

=
4�
|Qa|cos(∠aQB)cos(∠C) =

5�
|Qa|cos(∠B)cos(∠C)

TRILINEARS OF THE ORTHOCENTER
The trilinear coordinates of the orthocenter of �ABC are

[cosBcosC : cosAcosC : cosAcosB].

Proof. Label the orthocenter Q. Recall that it is the intersection of the
three altitudes of the triangle. Label the feet of those altitudes

FA: the foot of the altitude through A,
FB: the foot of the altitude through B, and
FC: the foot of the altitude through C.

Now think back to the way we proved that the altitudes concur in lesson
19– it was by showing that they are the perpendicular bisectors of a larger
triangle �abc, where

bc passed through A and was parallel to BC,
ac passed through B and was parallel to AC, and
ab passed through C and was parallel to AB.

We are going to need that triangle again. Here is the essential calculation,
with commentary explaining the steps below.

[Q,BC]
1�
= |QFA|

2�
= |QB|cos(∠FAQB)

3�
= |QB|cos(∠C)

=
4�
|Qa|cos(∠aQB)cos(∠C) =

5�
|Qa|cos(∠B)cos(∠C)

A

Q

a

c b

B CFA

FB
FC
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1. The distance from Q to BC is measured
along the perpendicular, so |Q,BC| =
|QFA|, but since we assumed our trian-
gle is acute, Q will be inside �ABC and
that means the signed distance [Q,BC]
is positive. So

[Q,BC] = |Q,BC|= |QFA|.

2. Look at the right triangle �FAQB. In
it,

cos(∠FAQB) =
|QFA|
|QB|

=⇒ |QFA|= |QB|cos(∠FAQB).

3. By A·A, �FAQB∼�FBCB (they share
the angle at B and both have a right an-
gle). Therefore

∠FAQB � ∠FBCB.

4. Look at the right triangle �aQB. In it,

cos(∠aQB) =
|QB|
|Qa|

=⇒ |QB|= |Qa|cos(∠aQB).

5. The orthocenter Q of �ABC is actually
the circumcenter of the larger triangle
�abc. The angle ∠abc is an inscribed
angle in the circumcircle whose corre-
sponding central angle is ∠aQc. By the
Inscribed Angle Theorem, then,

(∠abc) = 1
2(∠aQc).

The segment QB bisects ∠aQc though,
so

(∠aQB) = 1
2(∠aQc).

That means ∠aQB � ∠abc, which is,
in turn congruent to ∠B in the original
triangle.
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Through similar calculations,

[Q,AC] = |Qb|cos(∠A)cos(∠C)

[Q,AB] = |Qc|cos(∠A)cos(∠B).

That gives the exact trilinear coordinates for the orthocenter as

Q= [|Qa|cos(∠B)cos(∠C) : |Qb|cos(∠A)cos(∠C) : |Qc|cos(∠A)cos(∠B)]

Of course Qa, Qb and Qc are all the same length, though, since they are
radii of the circumcircle of �abc. Factoring out that constant gives an
equivalent set of coordinates

Q = [cos(∠B)cos(∠C) : cos(∠A)cos(∠C) : cos(∠A)cos(∠B)].

TRILINEARS OF THE CENTROID
The trilinear coordinates of the centroid of �ABC are

[|AB| · |AC| : |BA| · |BC| : |CA| · |CB|].

Proof. First the labels:

F: the foot of the altitude through A;
M: the midpoint of the side BC;
R: the centroid of �ABC (the intersection of the medians);
F �: the foot of the perpendicular through R to the side BC.

In addition, just for convenience write a = |BC|, b = |AC|, and c = |AB|.
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The last few results relied upon some essential property of the center in
question– for the circumcenter it was the fact that it is equidistant from the
three vertices; for the orthocenter, that it is the circumcenter of a larger tri-
angle. This argument also draws upon such a property– that the centroid
is located 2/3 of the way down a median from the vertex. Let’s look at
[R,BC] which is one of the signed distances needed for the trilinear coor-
dinates.

[R,BC] =
1�
|RF �| =

2�
1
3 |AF| =

3�
1
3csin(∠B) = 1

3bsin(∠C)

1. Unlike the circumcenter and orthocen-
ter, the median is always in the interior
of the triangle, even when the triangle
is right or obtuse. Therefore the signed
distance [R,BC] is the positive distance
|R,BC|. Since RF � is the perpendicu-
lar to BC that passes through R, |RF�|
measures that distance.

2. This is the key step. Between the me-
dian AM and the parallel lines AF and
RF � there are two triangles, �AFM and
�RF �M. These triangles are similar by
A·A (they share the angle at M and the
right angles at F and F� are congru-
ent). Furthermore, because R is located
2/3 of the way down the median from
the vertex, |RM|= 1

3 |AM|. The legs of
those triangles must be in the same ra-
tio, so |RF �|= 1

3 |AF|.
3. The goal is to relate |AF| to the sides

and angles of the original triangle, and
we can now easily do that in two ways.
In the right triangle �AFB,

sin(∠B)=
|AF|

c
=⇒ |AF|= csin(∠B),

and in the right triangle �AFC,

sin(∠C)=
|AF|

b
=⇒ |AF|= bsin(∠C).
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Similarly, we can calculate the distances to the other two sides as

[R,AC] = 1
3asin(∠C) = 1

3csin(∠A)
[R,AB] = 1

3bsin(∠A) = 1
3 asin(∠B)

and so the exact trilinear coordinates of the centroid can be written as

R =
[ 1

3csin(∠B) : 1
3asin(∠C) : 1

3bsin(∠A)
]
.

There is still a little more work to get to the more symmetric form pre-
sented in the theorem. Note from the calculation in step (3) above, that,

csin(∠B) = bsin(∠C) =⇒ sin(∠B)
b

=
sin(∠C)

c

Likewise, the ratio sin(∠A)/a also has that same value (this is the “law of
sines”). Therefore we can multiply by the value 3b/sin(∠B) in the first
coordinate, 3c/sin(∠C) in the second coordinate, and 3a/sin(∠A) in the
third coordinate, and since they are all equal, the result is an equivalent set
of trilinear coordinates for the centroid R = [bc : ca : ab].

To close out this lesson, and as well this section of the book, I want
to make passing reference to another triangular coordinate system called
barycentric coordinates. The trilinear coordinates that we have just stud-
ied put the incenter at the center of the triangle in the sense that it is the one
point where are three coordinates are equal. With barycentric coordinates,
that centermost point is the centroid. This is useful because if the triangle
is a flat plate with a uniform density, then the centroid marks the location
of the center of mass (the balance point). The barycentric coordinates of
another point, then, give information about how to redistribute the mass
of the plate so that that point is the balance point. Barycentric coordinates
are usually presented in conjunction with the trilinear coordinates as the
two are closely related. I am not going to do that though because I think
we need to talk about area first, and area is still a ways away.
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Exercises

1. (On the existence of similarly-positioned points) Suppose that �ABC
and �A�B�C� are similar, with scaling constant k, so that

|AB|= k|AB| |B�C�|= k|BC| |C�A�|= k|CA|.

Given any point P, show that there exists a unique point P so that

[A�P�] = k[AP] [B�P�] = k[BP] [C�P�] = k[CP].

2. (On the uniqueness of trilinear coordinate representations) For a given
triangle �ABC, is it possible for two distinct points P and Q to have
the same trilinear coordinates?

3. What are the trilinear coordinates of the three excenters of a triangle?

4. Show that the trilinear coordinates of the center of the nine-point circle
of �ABC are

[cos((∠B)− (∠C)) : cos((∠C)− (∠A)) : cos((∠A)− (∠B))].

This one is a little tricky, so here is a hint if you are not sure where to
start. Suppose that ∠B is larger than ∠C. Label

O: the center of the nine-point circle,
P: the circumcenter,
M: the midpoint of BC, and
X : the foot of the perpendicular from O to BC.

The key is to show that the angle ∠POX is congruent to ∠B and that
∠POM is congruent to ∠C. That will mean (∠MOX) = (∠B)− (∠C).




