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3 EUCLIDEAN TRANSFORMATIONS   

In the third part of this book, we will look at Euclidean geometry from
a different perspective, that of Euclidean transformations. It is a point
of view that has been most closely associated with Felix Klein– that the
way to study some property (such as congruence) is to study the maps
that preserve it. The first lesson sets the scene with a quick development
of analytic geometry. Then it is on to Euclidean isometries– bijections
of the Euclidean plane which preserve distance. Over several lessons we
will study these isometries, and ultimately we will classify all Euclidean
isometries into four types: reflections, rotations, translations, and glide
reflections. Then it is time to loosen the restriction a bit to consider bi-
jections which preserve congruence, but not necessarily distance. Finally,
we will look at inversion, a type of bijection of the punctured plane (the
Euclidean plane minus a point). As luck would have it, inversion provides
a convenient bridge into non-Euclidean geometry.
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This lesson is just a quick development of analytic geometry and trigonom-
etry in the language of Euclidean geometry. I feel an obligation to provide
the connection between traditional Euclidean geometry (as I have devel-
oped it in these lessons) and more contemporary analytic geometry, but
you should already be comfortable with this material, so feel free to skim
through it.

Analytic geometry

At the heart of analytic geometry, there is a correspondence between points
and coordinates, ordered pairs of real numbers. The Cartesian approach
to that correspondence is a familiar one, but let me quickly run through
it. Begin with two perpendicular lines (the choice is arbitrary). These are
the x- and y-axes. Their intersection is the origin O. We will want to mea-
sure signed distances from O along these axes, and that means we have to
assign a positive direction to each axis. From a geometric point of view,
the choice of those directions is arbitrary, but there is an established con-
vention as follows. Once directions have been chosen, each axis will be
divided into two rays that share O as their common vertex: a positive axis
consisting of points whose signed distance from O is positive, and a neg-
ative axis consisting of points whose signed distance from O is negative.
The convention is that the axes are assigned positive directions so that
the positive y-axis is a 90◦ counterclockwise turn from the positive x-axis.
Now here’s the catch: the geometry itself provides no way to distinguish
which direction is the counterclockwise direction. So this is a convention
that must be passed along by way of illustrations (and clocks).

counterclockwise

+

O

––

+
y x
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A point P on the x-axis is assigned the coordinates (p,0), where p is
the signed distance from O to P. A point Q on the y-axis is assigned
the coordinates (0,q) where q is the signed distance from O to Q. Most
points will not lie on either axis. For these points, we must consider their
projections onto the axes. If R is such a point, then we draw the two
lines that pass through R and are perpendicular to the two axes. If the
points where these perpendiculars cross the axes have coordinates (a,0)
and (0,b), then the coordinates of R are (a,b). With this correspondence,
every point corresponds to a unique coordinate pair, and every coordinate
pair corresponds to a unique point.

The next step is to figure out how to calculate the distance between points
in terms of their coordinates. This is pretty much essential for everything
else that we are going to do. Let’s begin with two special cases.

LEM: VERTICAL DISTANCE
For points that share an x-
coordinate, P1 = (x,y1) and
P2 = (x,y2),

|P1P2|= |y1 − y2|.

HORIZONTAL DISTANCE
For points that share a y-
coordinate, P3 = (x3,y) and
P4 = (x4,y),

|P3P4|= |x3 − x4|.

O

(a,0)

R: (a,b)

(0,b)
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Proof. I will just prove the first statement. Label two more points, Q1 =
(0,y1) and Q2 = (0,y2). The resulting quadrilateral P1P2Q2Q1 is a rectan-
gle, so its opposite sides P1P2 and Q1Q2 have to be the same length.

This is where we make the direct connection between coordinates and
distance– the coordinates along each axis were chosen to reflect their
signed distance from the origin O. To be thorough, though, there are sev-
eral cases to consider:

O∗Q1 ∗Q2 : |Q1Q2|= |OQ2|− |OQ1|= y2 − y1 = |y1 − y2|
O∗Q2 ∗Q1 : |Q1Q2|= |OQ1|− |OQ2|= y1 − y2 = |y1 − y2|
Q1 ∗O∗Q2 : |Q1Q2|= |OQ1|+ |OQ2|=−y1 + y2 = |y1 − y2|
Q2 ∗O∗Q1 : |Q1Q2|= |OQ2|+ |OQ1|=−y2 + y1 = |y1 − y2|
Q1 ∗Q2 ∗O : |Q1Q2|= |OQ1|− |OQ2|=−y1 − (−y2) = |y1 − y2|
Q2 ∗Q1 ∗O : |Q1Q2|= |OQ2|− |OQ1|=−y2 − (−y1) = |y1 − y2|

No matter the case, |P1P2|= |Q1Q2|= |y1 − y2|.
The general distance formula is now an easy consequence of the Pythagorean
Theorem.

O

P1 P2

Q2Q1
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THM: THE DISTANCE FORMULA
For any two points P = (x1,y1) and Q = (x2,y2),

|PQ|=
√

(x1 − x2)2 +(y1 − y2)2.

Proof. If P and Q share either x-coordinates or y-coordinates, then this
formula reduces down to the special case in the previous lemma (because√

a2 = |a|). If not, mark one more point: R = (x2,y1).

Then |PR|= |x1 − x2|, and |RQ|= |y1 − y2|, and �PRQ is a right triangle.
By the Pythagorean theorem,

|PQ|2 = |PR|2 + |QR|2 = (x1 − x2)
2 +(y1 − y2)

2

Now take the square root to get the formula.

COR: THE EQUATION OF A CIRCLE
The equation of a circle C with center at P = (h,k) and radius r is

(x−h)2 +(y− k)2 = r2.

Proof. By definition, the points of C are all those points that are a distance
of r from P. Therefore (x,y) is on C if and only if

√
(x−h)2 +(y− k)2 = r.

Square both sides of the equation to get the standard form.

R = (x2, y1)

Q = (x2, y2)

P = (x1, y1)
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Moving along, lines are next. Intuitively, the key is the idea that a line
describes the shortest path between points. That is captured more formally
in the triangle inequality, which you should recall states that |AB|+ |BC| ≥
|AC|, but that the equality only happens when A∗B∗C.

PARAMETRIC FORM FOR THE EQUATION OF A LINE
Given two distinct points P1 = (x1,y1) and P2 = (x2,y2) on a line �,
a third point P = (x,y) lies on � if and only if its coordinates can be
written in the form

x = x1 + t(x2 − x1) & y = y1 + t(y2 − y1)

for some t ∈ R.

Proof. The different possible orderings of P, P1, and P2 on the line create
several scenarios

Let me just take the middle case, where t is between 0 and 1 and P is be-
tween P1 and P2. It is representative of the other two cases.

=⇒ Show that if P = (x1 + t(x2 − x1),y1 + t(y2 − y1)) for some value of
t between 0 and 1, then P is between P1 and P2.

We can directly calculate |P1P| and |PP2|:

|P1P|= [(x− x1)
2 +(y− y1)

2]1/2

= [(x1 + t(x2 − x1)− x1)
2 +(y1 + t(y2 − y1)− y1)

2]1/2

= [(tx2 − tx1)
2 +(ty2 − ty1)

2]1/2

= t[(x2 − x1)
2 +(y2 − y1)

2]1/2

= t|P1P2|.

P1

P2

P
P1

P2P
P1

P2
P

1 2 3
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|PP2|= [(x2 − x)2 +(y2 − y)2]1/2

= [(x2 − (x1 + t(x2 − x1)))
2 +(y2 − (y1 + t(y2 − y1)))

2]1/2

= [((1− t)x2 − (1− t)x1)
2 +((1− t)y2 − (1− t)y1)

2]1/2

= (1− t)[(x2 − x1)
2 +(y2 − y1)

2]1/2

= (1− t)|P1P2|.

According to the Triangle Inequality, then, P is between P1 and P2, since

|P1P|+ |PP2|= t|P1P2|+(1− t)|P1P2|= |P1P2|.

⇐= Show that if P is between P1 and P2, then the coordinates of P can be
written in the parametric form (x1 + t(x2 − x1),y1 + t(y2 − y1)) for some
value of t between 0 and 1.

Point P is the only point in the plane which is a distance d1 = |P1P| from
P1 and a distance d2 = |PP2| from P2. Because of that uniqueness, we
just need to find a point in parametric form that is also those respective
distances from P1 and P2. The point that we are looking for is the one
where t = d1/(d1 +d2). The two calculations, that the distance from this
point to P1 is d1, and that the distance from this point to P2 is d2, are both
straightforward, so I will leave them to you.

P1

P2

P

d1

d2
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From the parametric form it is easy to get to standard form, and from there
to point-slope form, slope-intercept form, and so on. The latter steps are
standard fare for a pre-calculus course, so I will only go one step further.

STANDARD FORM FOR THE EQUATION OF A LINE
The coordinates (x,y) of the points of a line all satisfy an equation of
the form Ax+By =C where A, B, and C are real numbers.

Proof. Suppose that (x1,y1) and (x2,y2) are distinct points on the line. As
we saw in the last theorem, the other points on the line have coordinates
(x,y) that satisfy the equations

{
x = x1 + t(x2 − x1)

y = y1 + t(y2 − y1).

Now it is just a matter of combining the equations to eliminate the param-
eter t. {

x− x1 = t(x2 − x1)

y− y1 = t(y2 − y1).

At this point, you could divide the second equation by the first. That
eliminates the t variable and also serves as a definition of the slope of a
line (in particular, it shows that the slope is constant). But it also presents
a potential “divide by zero” scenario, so instead let’s multiply:

{
(x− x1)(y2 − y1) = t(x2 − x1)(y2 − y1)

(y− y1)(x2 − x1) = t(y2 − y1)(x2 − x1).

Set the two equations equal and simplify

(x− x1)(y2 − y1) = (y− y1)(x2 − x1)

x(y2 − y1)− x1(y2 − y1) = y(x2 − x1)− y1(x2 − x1)

x(y2 − y1)− y(x2 − x1) = x1(y2 − y1)− y1(x2 − x1).

This equation has the proper form, with

A = y2 − y1 B =−(x2 − x1) & C = x1(y2 − y1)− y1(x2 − x1).

Finally, it should be noted that any three real numbers A, B, C do describe
a line, so long as A and B are not both zero.
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The unit circle approach to trigonometry

At the end of the lesson on similarity, in the exercises, we defined the six
trigonometric functions. At that time, we defined them in terms of the
angles of a right triangle, which means that they were restricted to values
in the interval (0,π/2). As you know, there is also a “unit circle approach”
that extends these definitions beyond that narrow window. You have seen
this before, so I will be as brief as I can be. A point with two positive
coordinates (x,y) on the unit circle corresponds to a right triangle whose
vertices are (0,0), (x,0) and (x,y). If θ is the measure of the angle at the
origin, then cosθ = x and sinθ = y (because the hypotenuse has length
one). Now just continue that: any ray from the origin forms an angle
θ measured in the counterclockwise direction from the x-axis. That ray
intersects the unit circle at a point (x,y) and we define

cos(θ) = x sin(θ) = y.

Allowing for both proper and reflex angles, that extends the domains of
sine and cosine to [0,2π), but we can go farther. Informally, we need to
allow the ray to spin around the circle more than once (for θ values greater
than 2π) or in the counterclockwise direction (for negative θ ). Formally,
this can be done by imposing periodicity:

cos(θ +2nπ) = cos(θ) sin(θ +2nπ) = sin(θ) ∀n ∈N.

x2 + y2 = 1

(cosθ , sinθ)
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Use an isosceles and equilateral triangle to find sine and cosine values for π/3, 
π/4, and π/6. Use the symmetry of the circle to extend outside of quadrant I.
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The other four trigonometric functions (tangent, cotangent, secant, cose-
cant) are defined similarly as the ratios

tan(θ) = y/x cot(θ) = x/y sec(θ) = 1/x csc(θ) = 1/y.

There are a lot of relationships between the trigonometric functions, some
easy and some subtle. Let’s get the easy ones out of the way. From the
very definitions of the functions, we get the reciprocal identities

secθ =
1

cosθ
cscθ =

1
sinθ

cotθ =
1

tanθ
,

and identities that relate tangent and cotangent to sine and cosine

tanθ =
sinθ
cosθ

cotθ =
cosθ
sinθ

.

From the equation of the circle x2 + y2 = 1, we get the Pythagorean iden-
tities:

sin2θ + cos2θ = 1 tan2θ +1 = sec2θ 1+ cot2 θ = csc2θ .

By comparing angles taken in the counterclockwise and clockwise direc-
tions, we see that cosine and secant are even functions (where f (−x) =
f (x)) and that the other four are odd functions (where f (−x) =− f (x)).

Beyond these, there is a second tier of identities– double angle, half angle,
power reduction, etc – that are not so immediately clear. They can all be
derived from two big identities, the addition formulas for sine and cosine,
but the proofs of those two formulas require a more careful look at the
geometry of the unit circle. To close out this lesson, I will prove the two
addition formulas.

ADDITION RULE FOR COSINE

cos(α+β ) = cosα cosβ − sinα sinβ

Proof. The key to the proof is to compare two distances which we know
to be the same– one distance expressed in terms of the angle α + β , the
other in terms of the individual angles α and β . The real trick to this is to
make the right choice of distances. In particular, you have to be careful so
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that you don’t get stuck with a sin(α+β ) term in the first calculation. On
the unit circle, label the following points:

P0 = (1,0)
Pα = (cosα ,sinα)
P−β = (cos(−β ),sin(−β ))

= (cosβ ,−sinβ )
Pα+β = (cos(α+β ),sin(α+β ))

If O is the origin, then the triangles �OP0Pα+β and �OP−βPα are con-
gruent (S·A·S: in each triangle, two of the sides are radii, and the angle
between them measures α+β ). That means that the two segments P0Pα+β
and P−βPα have to be congruent, and so we can compare their lengths (it
is actually easier to work with the squares of those lengths). Through-
out these calculations, we make repeated use of the Pythagorean Identity
sin2 x+ cos2 x = 1.

|P0Pα+β |2 = (cos(α+β )−1)2 +(sin(α+β )−0)2

= cos(α+β )2 −2cos(α+β )+1+ sin2(α+β )

= 2−2cos(α+β ).

|P−βPα |2 = (cosα− cosβ )2 +(sinα+ sinβ )2

= cos2α−2cosα cosβ + cos2β

+ sin2α+2sinα sinβ + sin2β

= 2−2cosα cosβ +2sinα sinβ .

Set these two expressions equal to each other, subtract 2 and divide by -2
to get the desired formula

cos(α+β ) = cosα cosβ − sinα sinβ .

Pα
Pα+β

P– β

P0

that you don’t get stuck with a sin(α+β ) term in the first calculation. On
the unit circle, label the following points:

P0 = (1,0)
Pα = (cosα ,sinα)
P−β = (cos(−β ),sin(−β ))

= (cosβ ,−sinβ )
Pα+β = (cos(α+β ),sin(α+β ))
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ADDITION RULE FOR SINE

sin(α+β ) = sinα cosβ + cosα sinβ

Proof. For this proof, one approach would be to use the cofunction iden-
tity sin(x) = cos(π/2−x) followed by the addition rule for cosine that we
just derived. That is pretty easy, but you would have to verify the cofunc-
tion identity first. That too is easy for x values between 0 and π/2, but
gets to be a nuisance once you have to consider all the other possible val-
ues of x. I think it is easier to do something like the last proof– compare
some distances and then do a little algebra. On the unit circle, label the
following points

P0 = (1,0)
Pα = (cosα ,sinα)
Pβ = (cosβ ,sinβ )
Pα+β = (cos(α+β ),sin(α+β )).

By S·A·S, the segments PαPα+β and P0Pβ are congruent. Let’s compare
those two distances. Here we go (note the use of the addition rule for
cosine midway through the first distance calculation).

|PαPα+β |2 = (cos(α+β )− cos(α))2 +(sin(α+β )− sin(α))2

= cos2(α+β )−2cosα cos(α+β )+ cos2α

+ sin2(α+β )−2sinα sin(α+β )+ sin2α

= 2−2cosα cos(α+β )−2sinα sin(α+β )

= 2−2cosα(cosα cosβ − sinα sinβ )−2sinα sin(α+β )

= 2−2cos2α cosβ +2sinα cosα sinβ −2sinα sin(α+β )

Pα

Pα+β

P0

Pβ
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and

|P0Pβ |2 = (cosβ −1)2 +(sinβ −0)2

= cos2β −2cosβ +1+ sin2β

= 2−2cosβ .

Now set these two expressions equal, subtract 2 from both sides and divide
through by -2 to get

cos2α cosβ − sinα cosα sinβ + sinα sin(α+β ) = cosβ .

In this equation solve for the sin(α+β ) term

sinα sin(α+β ) = cosβ − cos2α cosβ + sinα cosα sinβ
= cosβ (1− cos2α)+ sinα cosα sinβ
= cosβ sin2α+ sinα cosα sinβ
= sinα(sinα cosβ + cosα sinβ ).

As long as sinα is not zero, we can divide both sides by that, and what’s
left over is what we want. What if sinα is zero? Well, that happens when
α is any multiple of π , and those cases are easy enough to handle on their
own. On the left side, adding nπ corresponds to a half-turn or a whole
turn around the unit circle, so

sin(nπ+β ) =

{
sinβ if n is even
−sinβ if n is odd.

Compare that to the right side

sin(nπ)cosβ + cos(nπ)sinβ = 0 · cosβ + cos(nπ)sinβ

=

{
sinβ if n is even
−sinβ if n is odd

They are the same.
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Exercises

1. Prove the midpoint formula. Let P = (a,b) and Q = (c,d). Verify that
the coordinates of the midpoint of PQ are

(
a+ c

2
,
b+d

2

)
.

2. Show that the points on the circle with center (h,k) and radius r can be
described by the parametric equations

{
x(θ) = h+ r cosθ
y(θ) = k+ r sinθ

.

3. Let �1 and �2 be perpendicular lines, neither of which is a vertical line.
Show that the slopes of �1 and �2 are negative reciprocals of one an-
other.

4. Verify that the triangle with vertices at (0,0), (2a,0), and (a,a
√

3) is
equilateral.

5. Find the equation of the circle which passes through the three points:
(0,0), (4,2) and (2,6).

6. Let �ABC be the triangle with vertices at the coordinates A = (0,0),
B = (1,0), C = (a,b). Find the coordinates of its circumcenter, ortho-
center, and centroid (in terms of a and b).

7. All of the special values on the unit circle can be written in the form
nπ/12, but not all values of that form are represented. Find the coor-
dinates on the unit circle for the angles θ = π/12, 5π/12, 7π/12, and
11π/12.
The remaining exercises verify some common trigonometric identities
that we will need to for later calculations. You don’t need to do them
all– I really just want to have all of these identities together in one
place.
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8. Use the addition formulas to derive the cofunction identities.

sin
(π

2
−θ

)
= cosθ cos

(π
2
−θ

)
= sinθ

tan
(π

2
−θ

)
= cotθ cot

(π
2
−θ

)
= tanθ

sec
(π

2
−θ

)
= cscθ csc

(π
2
−θ

)
= secθ

9. Use the addition formulas to derive the double angle formulas

sin(2θ) = 2sinθ cosθ

cos(2θ) = cos2 θ − sin2θ

= 2cos2θ −1
= 1−2sin2 θ

tan(2θ) =
2tanθ

1− tan2θ

10. Use the double angle formulas for cosine to derive the power-reduction
formulas

sin2 θ =
1− cos(2θ)

2

cos2 θ =
1+ cos(2θ)

2

tan2 θ =
1− cos(2θ)
1+ cos(2θ)

11. Use the power-reduction formulas to derive the half-angle formulas

sin
θ
2
=±

√
1− cosθ

2

cos
θ
2
=±

√
1+ cosθ

2

tan
θ
2
=

1− cosθ
sinθ

=
sinθ

1+ cosθ
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12. Verify the product-to-sum formulas

sinα sinβ =
1
2
[cos(α−β )− cos(α+β )]

cosα cosβ =
1
2
[cos(α+β )+ cos(α−β )]

sinα cosβ =
1
2
[sin(α+β )+ sin(α−β )]

13. Verify the sum-to-product formulas

sinα+ sinβ = 2sin
(
α+β

2

)
cos

(
α−β

2

)

sinα− sinβ = 2cos
(
α+β

2

)
sin

(
α−β

2

)

cosα+ cosβ = 2cos
(
α+β

2

)
cos

(
α−β

2

)

cosα− cosβ =−2sin
(
α+β

2

)
sin

(
α−β

2

)
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24 ISOMETRIES
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One of the prevailing philosophies of modern mathematics is that in order
to study something, you need to study the types of maps that preserve it–
that is, the types of maps that leave it invariant. For instance, in group
theory we study group homomorphisms because they preserve the group
operation (in the sense that f (a ·b) = f (a) · f (b)). In Euclidean geometry
there are several structures that might be worth preserving– incidence, or-
der, congruence– but in the next few lessons our focus will be on mappings
that preserve distance.

Definitions

Let’s start with a review of some basic terminology associated with maps
from one set to another.

DEF: ONE-TO-ONE, ONTO, AND BIJECTIVE MAPPINGS
A map f : X →Y is:
· one-to-one if f (x) = f (y) =⇒ x = y;
· onto if for every y ∈ Y there is an x ∈ X such that f (x) = y;
· bijective if it is both one-to-one and onto.

× ×
× ×

1-1
onto
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Under the right circumstances, two mappings may be chained together:
the composition of f : X →Y and g : Y → Z is

g◦ f : X → Z : g◦ f (x) = g( f (x)).

This type of composition is usually not commutative– in fact, f ◦ g may
not even be defined. It is associative, though, and that is a very essential
property. For any space X the map

id : X → X : id(x) = x

is called the identity map. Two maps f : X →Y and g : Y → X are inverses
of one another if f ◦ g is the identity map on Y and g ◦ f is the identity
map on X . In order for a map to have an inverse, it must be bijective (and
conversely, any bijection is invertible).

DEF: AUTOMORPHISM
An automorphism is a bijective mapping f from a space to itself.

We are interested in automorphisms of the Euclidean plane, but not just
any automorphisms. We want the ones that do not distort the distances
between points. These are called Euclidean isometries.

x

X Y Z

f g

f f−1

X Y X
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DEF: ISOMETRY
Let E denote the set of points of the Euclidean plane. A Euclidean
isometry is an automorphism f : E → E that preserves the distance
between points: for all A, B in E, | f (A) f (B)|= |AB|.

I will leave the proof of the following basic properties of isometries to you.
If you are familiar with the concept of a group, these properties mean that
the set of Euclidean isometries is a group.

LEM: BASIC PROPERTIES OF ISOMETRIES
The composition of two isometries is an isometry. The identity map
is an isometry. The inverse of an isometry is an isometry.

Recall that everything we have done in Euclidean geometry floats on five
undefined terms: point, line, on, between, and congruence. An isometry
is defined in terms of its behavior on points, but the distance preservation
condition has implications for the remaining undefined terms as well.

LEM: ISOMETRIES AND CONGRUENCE
An isometry preserves both segment and angle congruence. That is,

AB � A�B� =⇒ f (A) f (B)� f (A�) f (B�)
∠ABC �∠A�B�C� =⇒ ∠ f (A) f (B) f (C)� ∠ f (A�) f (B�) f (C�)



337ISOMETRIES

Proof. The segment congruence part is easy, because isometries preserve
distance and hence segment length, and it is those lengths that determine
whether or not segments are congruent: if AB � A�B�, then

| f (A) f (B)|= |AB|= |A�B�|= | f (A�) f (B�)|

and so f (A) f (B)� f (A�) f (B�). The angle congruence part is not that hard
either, but we will need to use a few of the triangle congruence theorems.
Relocate, if necessary, A� and C� on their respective rays so that BA �
B�A� and BC � B�C�. By S·A·S, the triangles �ABC and �A�B�C� are
congruent. The corresponding sides of these two triangles are congruent,
and from the first part of the proof, the congruences are transferred by f :

AB � A�B� =⇒ f (A) f (B)� f (A�) f (B�)
BC � B�C� =⇒ f (B) f (C) � f (B�) f (C�)
CA �C�A� =⇒ f (C) f (A) � f (C�) f (A�)

By S·S·S, triangles � f (A) f (B) f (C) and � f (A) f (B) f (C) are congruent,
and so the corresponding angles ∠ f (A) f (B) f (C) and ∠ f (A�) f (B�) f (C�)
are congruent.

f (A)

B

B
A

A

f (B)

f (B )

f (A )

f (A)
f (C)

B

C

B

C

A

A

f (B)

f (B )

f (A )

f (C )

, S·S·S, S·A·S



338 LESSON 24

If you were paying attention in the last proof, you may have noticed that
it could easily be tweaked to say a bit more: an isometry doesn’t preserve
just distance– it also preserves angle measure, in the sense that

(∠ABC) = (∠ f (A) f (B) f (C)).

This is useful. In fact, we will use it in the last proof of this lesson.

LEM: ISOMETRIES, INCIDENCE AND ORDER
If A, B, and C are collinear, in the order A∗B∗C, and f is an isometry,
then f (A), f (B), and f (C) are collinear, in the order f (A) ∗ f (B) ∗
f (C).

Proof. Suppose A∗B∗C. Then, by segment addition

|AC|= |AB|+ |BC|.

Distance is invariant under f , so we can make the substitutions

| f (A) f (B)|= |AB|, | f (B) f (C)| = |BC|, | f (A) f (C)| = |AC|,

to get
| f (A) f (C)| = | f (A) f (B)|+ | f (B) f (C)|.

This is the degenerate case of the Triangle Inequality: the only way this
equation can be true is if f (A), f (B), and f (C) are collinear, and that f (B)
is between f (A) and f (C).

f(A)

f(C)
B

C

A
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In the last result we were talking about three points, but by extension, this
means that all the points on a line are mapped again to collinear points. In
other words, an isometry, which is defined as a bijection of points, is also a
bijection of the lines of the geometry. Further, an isometry maps segments
to segments, rays to rays, angles to angles, and circles to circles. Well,
here’s an opportunity to simplify notation. When I apply an isometry f to
a segment AB, for example, instead of writing f (A) f (B), I will go with the
more streamlined f (AB). For an angle ∠ABC, instead of ∠ f (A) f (B) f (C),
I will write f (∠ABC). And so on.

Fixed points

The overarching goal of the next few lessons is to classify all Euclidean
isometries. It turns out that one of the keys to this is fixed points.

DEF: FIXED POINT
A point P is a fixed point of an isometry f if f (P) = P.

The first big step towards a classification is to answer the following ques-
tion:

Given isometries f1 and f2, which may be described in very different
ways, how do we figure out if they are really the same?

Showing that they are not the same is usually easy– you just need to find
one point P where f1(P) �= f2(P). Showing that they are the same seems
like a more difficult task. At the most basic level, isometries are functions
of the Euclidean plane. Without any additional structure, the only way to
show two functions are equal is to show that they agree on the value of
all points. This is because the behavior of an arbitrary function is quite
unconstrained. Fortunately, the bijection and distance-preserving proper-
ties of an isometry impose significant constraints on its behavior. Those
constraints mean that we can determine whether or not two isometries are
the same by looking at just a few points.
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THM: TWO FIXED POINTS
If an isometry f fixes two distinct points A and B, then it fixes all the
points of the line �AB�.

Proof. Let C be a third point on this line. Label its distances from A as d1
and from B as d2. The key here is that C is the only point that is a distance
d1 from A and a distance d2 from B (I think this is intuitively clear, but for
a more formal point of view, you can look back at our investigation of the
possible intersections of circles in Lesson 16). Now hit these three points
with the isometry f . Distances stay the same, so f (C) is still a distance d1
from f (A) = A, and f (C) is still a distance d2 from f (B) = B. That means
that f (C) must be C.

THM: THREE (NON-COLLINEAR) FIXED POINTS
If an isometry f fixes three non-collinear points A, B, and C, then it
fixes all points (it is the identity isometry).

Proof. By the last result, f must fix all the points on each of the lines
� AB �, � AC �, and � BC �. Now suppose that D is a point that is not
on any of those lines. We need to show that D is a fixed point as well.
Choose a point M that is between A and B. It is fixed by f . According to
Pasch’s lemma, the line � DM � must intersect at least one other side of
�ABC. Call this intersection N. It too is fixed by f . Therefore D is on a
line �MN� with two fixed points. According to the previous result, it is
a fixed point.

f(C) must still be on both of these circles.

A

C

A A

B
B

C

C

B

d1

d1 d1

d2 d2

d2
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Now we can answer the question I posed at the start of this section: how
much do we need to know about two isometries before we can say they
are the same?

THM: THREE NON-COLLINEAR POINTS ARE ENOUGH
If two isometries f1 and f2 agree on three non-collinear points, then
they are equal.

Proof. Suppose that A, B, and C are three non-collinear points, and that

f1(A) = f2(A) f1(B) = f2(B) f1(C) = f2(C).

Applying f−1
2 to both sides of each of these equations,

f−1
2 ◦ f1(A) = f−1

2 ◦ f2(A) = id(A) = A,

f−1
2 ◦ f1(B) = f−1

2 ◦ f2(B) = id(B) = B,

f−1
2 ◦ f1(C) = f−1

2 ◦ f2(C) = id(C) =C.

Therefore f−1
2 ◦ f1 has three non-collinear fixed points– it must be the

identity, and so

f−1
2 ◦ f1 = id

f2 ◦ f−1
2 ◦ f1 = f2 ◦ id

id ◦ f1 = f2

f1 = f2.

A line through D intersecting two fixed lines.

A

MN

C
B

D
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The analytic viewpoint

To wrap up this lesson, let’s look at isometries from the analytical point
of view. Any isometry defines a function on the coordinate pairs. As we
have seen, isometries themselves are fairly structured, so it makes sense,
then, that the functions they define on the coordinate pairs would have to
be similarly inflexible. That is indeed the case.

GENERAL FORM FOR AN ISOMETRY
Any Euclidean isometry T has analytic equations that can be written
in one of two matrix forms

(1) T
(

x
y

)
=

(
h
k

)
+

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)

(2) T
(

x
y

)
=

(
h
k

)
+

(
cosθ sinθ
sinθ −cosθ

)(
x
y

)

where h, k, and θ are real numbers.

Proof. Let T be an isometry. Ultimately, we want to know about T (x,y),
but it will take a few steps to get there, starting with the origin, moving to
the point (x,0), and then finally to (x,y).

The origin (0,0). This is the easy one. Since the origin is our first point
of consideration, there are no limitations on where it goes (we don’t know
it yet, but there are isometries that take any point to any other point of
the plane). Set h and k by looking at what happens to the origin: set
(h,k) = T (0,0).

(0,0) (x,0)

(h,k)

T(x,0)|x|

|x|
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The point (x,0). An isometry preserves distances, and the distance from
(x,0) to the origin is |x|. Applying the isometry to both of those points, the
distance from T (x,0) to (h,k) also has to be |x|. In other words, T (x,0)
is on the circle with center (h,k) and radius |x|. If you did the exercise
in the last lesson on parametrizing circles (or if you have worked with
parametrized circles in calculus), then you know this means that T (x,0)
has to have the form

(h+ |x|cosθ , k+ |x|sinθ)

for some value of θ . In fact (and I will leave it to you to figure out why),
the absolute value signs around the x are not needed.

The point (x,y). Likewise, since the distance from (x,0) to (x,y) is |y|,
T (x,y) has to be on the circle centered at T (x,0) with radius |y|. That
means its coordinates can be written in the form

(h+ xcosθ + |y|cosφ , k+ xsinθ + |y|sinφ)

for some value of φ . The possibilities are more limited than that, though:
the three points (0,0), (x,0) and (x,y) form a right angle at (x,0). Since
an isometry preserves angle measures, the images of these three points
must also form a right angle. This can only happen if φ = θ + π/2 or
φ = θ − φ/2. As before, the absolute value signs around the y can be
dropped and that gets us to:

(
h+ xcosθ + ycos

(
θ ± π

2

)
, k+ xsinθ + ysin

(
θ ± π

2

))
.

(0,0) (x,0)

(h,k)

T(x,0)

T(x,y)
(x,y)

|x|

|x||y|
|y|
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Now use the addition formulas for sine and cosine

cos(θ ±π/2) = cosθ cos(±π/2)− sinθ sin(±π/2) =∓sinθ
sin(θ ±π/2) = sinθ cos(±π/2)+ cosθ sin(±π/2) =±cosθ

and the coordinates for T (x,y) take on the form

(1) T (x,y) = (h+ xcosθ − ysinθ ,k+ xsinθ + ycosθ)
(2) T (x,y) = (h+ xcosθ + ysinθ ,k+ xsinθ − ycosθ).

Written in matrix form, these are

(1) T
(

x
y

)
=

(
h
k

)
+

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)

(2) T
(

x
y

)
=

(
h
k

)
+

(
cosθ sinθ
sinθ −cosθ

)(
x
y

)
.
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Exercises

1. Let T be an isometry and let r be a ray with endpoint O. Prove that
T (r) is also a ray, with endpoint T (0).

2. Verify that if �1 and �2 are parallel lines and T is an isometry, then
T (�1) and T (�2) will be parallel.

3. Let T be an isometry and let A and B be two points that are on the same
side of a line �. Prove that T (A) and T (B) are on the same side of T (�).

4. Let T be an isometry and let D be a point in the interior of angle ∠ABC.
Prove that T (D) is a point in the interior of T (∠ABC).

5. Let M be the midpoint of a segment AB, and let T be an isometry so
that T (A) = B and T (B) = A. Prove that M is a fixed point of this
isometry.

6. Given a proper angle ∠ABC and an isometry T such that

(1) T (BA�) = BC� & (2) T (BC�) = BA�,

show that T fixes all the points of the angle bisector of ∠ABC.

7. In the final theorem of this lesson I showed that every isometry can be
written in one of two forms. Prove the converse, that any mapping of
that form is an isometry.
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This lesson introduces the first type of isometry– reflection across a line.
As it turns out, reflections are the building blocks for all isometries. In
this lesson we will see why, in a theorem that I don’t believe has a formal
name, but that I call the “Three Reflections Theorem”. This theorem pro-
vides the strategy that we will use over the next few lessons to classify all
isometries.

DEF: REFLECTION ACROSS A LINE
Define the reflection s across a line � as follows. For any point P on
�, set s(P) = P. For any point P that is not on �, there is a unique line
passing through P that is perpendicular to �. On this line, there is one
other point that is the same distance from � as P– it is on the opposite
side of � from P. Set s(P) to be this point.

Of course, the first agenda item is to verify that a reflection really is an
isometry.

P

s(P)
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THM
A reflection is an isometry.

Proof. It is easy to see that any reflection s is a bijection. Just look at
the composition s ◦ s: the swap of points done by the first application of
s is immediately undone by the second application of s, so that s2 = id.
Therefore s is its own inverse, and in order for a mapping to have an
inverse, it must be a bijection.

The other step is to show that s preserves distances– that |s(PQ)|= |PQ|
for any points P and Q. The only thing that makes this part difficult is that
there are so many possible positions of P and Q relative to each other and
to �, the line of reflection:

I. P and Q are both on �.

II. One of P and Q is on �, while the other is not.
1. the line �PQ� is perpendicular to �

2. the line �PQ� is not perpendicular to �

III. Neither P nor Q is on �.
1. the line �PQ� is perpendicular to �

i. P and Q are on the same side of �

ii. P and Q are on opposite sides of �
2. the line �PQ� is not perpendicular to �

i. P and Q are on the same side of �
ii. P and Q are on opposite sides of �

I II.1 III.1.i III.2.i

II.2 III.1.ii III.2.ii
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At this point, none of these cases should cause any trouble. Let me look
at just one, Case III.2.i, which is, I feel, the archetypal case in this proof.
To verify this case, first label two more points (both fixed by s).

FP: the foot of the perpendicular to � through P, and
FQ: the foot of the perpendicular to � through Q.

From the very definition of a reflection,

PFP � s(PFP) & QFQ � s(QFQ)

and the angles at FP and FQ are right angles. Of course FPFQ is congruent
to itself, so by S·A·S·A·S, the quadrilaterals PFPFQQ and s(PFPFQQ) are
congruent, and therefore PQ and s(PQ) are the same length.

We saw in the last lesson that if an isometry fixes two points, it must fix
all the points on the line through those points. Of course, every reflection
fixes all the points of a line. A good question to ask, then, is how common
is this “line-fixing” behavior? Not that common, as it turns out, and so
this is a useful characterization of a reflection.

s(P)

s(Q)

FQ

FP

P Q
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THM
If an isometry fixes all the points of a line, but is not the identity, then
it must be a reflection.

Proof. Let f be an isometry that fixes all the points on a line � but that is
not the identity. Let s be the reflection across that line. We already know
that f and s agree on all the points of �, so we just need to show that they
agree on one point that isn’t on �. Take two points A and B on �, and a
third point C that is not on �. Since an isometry preserves distance, and
since both A and B are fixed

AC � f (AC)� A f (C)

=⇒ f (C) is on the circle with center A and radius |AC|, and
BC � f (BC)� B f (C)

=⇒ f (C) is on the circle with center B and radius |BC|.

We are triangulating in on the location of f (C): it has to be at an intersec-
tion of these two circles, and there are only two such intersections (distinct
circles intersect at most twice). Furthermore, one of those intersections is
C itself, and if f (C) =C, then f would fix three non-collinear points and
would have to be the identity. We excluded that possibility at the outset,
so f (C) has to be the other intersection of the circles. For all the same rea-
sons, s(C) must also be that second intersection. Therefore f (C) = s(C),
the two isometries agree on three non-collinear points, A, B, and C, and so
they must be equal.

A

C

B
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THE THREE REFLECTIONS THEOREM
Any isometry can be written as a reflection, as a composition of two
reflections, or as a composition of three reflections.

Proof. Let A, B, and C be three non-collinear points and let T be an isom-
etry. We saw in the last lesson that when isometries agree on three non-
collinear points, they have to be the same. That is how we will proceed.
We just need to find a composition of up to three reflections s3 ◦ s2 ◦ s1
that agrees with T on each of A, B, and C. There are three steps to this.
At each step we want to get one of the three points into the right position,
without moving any of the previously set points.

Step One. With the first isometry, s1, we are going to get A into position.
If A = T (A), let s1 be the identity isometry. If A �= T (A), let s1 be the
reflection across the perpendicular bisector of AT(A). Either way, s1(A) =
T (A).

A

B

C

An isometry T

T(A)

T(C)

T(B)

A

B

C

The first reflection
s1(B)

s1(C)

T(A)

T(C)

T(B)
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Step Two. With the second isometry, s2, we put B into position. In order
to do this, we need to look at where s1(B) ended up after step one. It is
possible (but unlikely) that s1(B) ended up on the line T (�AB�). If that
is the case, then because

|s1(AB)|= |AB|= |T (AB)|,

there are only two possible spots for s1(B), one on either side of T (A).
If s1(B) is on the same side of T (A) as T (B), then s1(B) = T (B) already,
so we can just let s2 be the identity isometry. If s1(B) is on the opposite
side of T (A) from T (B), then let s2 be the reflection across the line that
passes through T (A) and is perpendicular to s1(B)T (B). That reflection
fixes T (A) and maps s1(B) to T (B).

The more likely possibility is that s1(B) is not on T (� AB �). In that
case, let s2 be the reflection across the bisector of ∠s1(B)T (A)T (B). Then
T (A) is on the line of reflection, so it will be fixed by s2. Furthermore,
the reflecting line cuts the triangle �s1(B)T (A)T (B) in two pieces, that,
by S·A·S, are congruent. Therefore the reflecting line is the perpendicular
bisector to s1(B)T (B)– and that means s2 will map s1(B) to T (B).

Here is where we stand after step two:

s2 ◦ s1(A) = s2 ◦T (A) = T (A),
s2 ◦ s1(B) = T (B).

A

B

C

The second reflection

s1(B)

s1(C)

T(A)

T(C)

T(B)
s2 ◦ s1(C)
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Step Three. That just leaves point C. As in the previous step, what we do
next depends upon where s2 ◦s1(C) is. There aren’t that many possibilities
at this point though. We know that s2 ◦ s1(AB) = T (AB), and we know
that s2 ◦ s1(�ABC) is congruent to �ABC, which is, in turn, congruent to
T (�ABC). There are only two ways to build that triangle on the given side
T (AB)– one on either side of it. If s2 ◦ s1(C) is on the same side of T (AB)
as T (C), then s2 ◦ s1(C) = T (C) already, so just let s3 be the identity map.
If s2 ◦ s1(C) is on the opposite side of T (AB) from T (C), then let s3 be the
reflection across the line T (AB). That fixes both T (A) and T (B), but maps
s2 ◦ s1(C) onto T (C).

Putting it all together,

s3 ◦ s2 ◦ s1(A) = T (A)
s3 ◦ s2 ◦ s1(B) = T (B)
s3 ◦ s2 ◦ s1(C) = T (C).

Since the two isometries agree on three non-collinear points, they must be
the same. As long as at least one of s1, s2, and s3 is a reflection, we have
met the requirements of the theorem. What if all of them are the identity
map though? In that case, T is the identity map, and the identity can be
written as the composition of any reflection s with itself: T = s◦ s.

Over the next few lessons, we will use this result to classify all isometries.
In the next lesson, we will look at what happens when you compose two
reflections. Then, after a little diversion, we will look at what happens
when you tack on a third reflection.

A

B

C

The third reflection

T(A)

T(C)

T(B)

s2 ◦ s1(C)
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The analytic viewpoint

It is a little messy to try to work out an equation for an arbitrary reflection
at this point. We can, however, work out an equation for a reflection across
a line that passes through the origin. Let’s close out this lesson by doing
so.

EQN: REFLECTION ACROSS A LINE THROUGH THE ORIGIN
Let � be a line through the origin, and let (a,b) be the coordinates of
an intersection of � with the unit circle. Then the reflection s across
this line is given by the equation

s
(

x
y

)
=

(
a2 −b2 2ab

2ab b2 −a2

)(
x
y

)

Proof. Since (a,b) is on the unit circle, it can be written as (cosθ ,sinθ).
Let D be the distance from the point (x,y) to the origin and let φ be its
angle measure as measured from the x-axis, in the counterclockwise di-
rection, so that

{
cosφ = x/D
sinφ = y/D

=⇒
(

x
y

)
=

(
Dcosφ
Dsinφ

)
.

If α is the angle between φ and θ , α = φ −θ , then s(x,y) will still be at a
distance D from the origin, but at an angle

φ −2α = φ −2(φ −θ) = 2θ −φ .

(a,b)

(x,y)

D
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Therefore
s
(

x
y

)
=

(
Dcos(2θ −φ)
Dsin(2θ −φ)

)

and we can use the addition rules for sine and cosine

s
(

x
y

)
=

(
Dcos(2θ)cos(−φ)−Dsin(2θ)sin(−φ)
Dsin(2θ)cos(−φ)+Dcos(2θ)sin(−φ)

)

=

(
Dcos(2θ)cosφ +Dsin(2θ)sinφ
Dsin(2θ)cosφ −Dcos(2θ)sinφ

)
.

This can factored into a matrix form, and from there, the double angle
formulas will take us the rest of the way.

s
(

x
y

)
=

(
cos(2θ) sin(2θ)
sin(2θ) −cos(θ)

)(
Dcosφ
Dsinφ

)

=

(
cos2θ − sin2θ 2sinθ cosθ

2sinθ cosθ sin2 θ − cos2 θ

)(
Dcosφ
Dsinφ

)

=

(
a2 −b2 2ab

2ab b2 −a2

)(
x
y

)
.

There are two special cases worth noting. The equation for reflecting
across the x-axis is

s
(

x
y

)
=

(
1 0
0 −1

)(
x
y

)

and the equation for reflecting across the y-axis is

s
(

x
y

)
=

(−1 0
0 1

)(
x
y

)
.
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Exercises

1. What is the matrix equation for a reflection across the line y = x?

2. What is the matrix equation for a reflection across the horizontal line
y = k?

3. Let s1 and s2 be reflections across perpendicular lines �1 and �2 that
intersect at a point P. Show that if Q is any other point, then P is the
midpoint of the segment connecting Q to s2 ◦ s1(Q).
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26 TRANSLATIONS & ROTATIONS
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The big result of the last lesson was that every isometry can be written as
a reflection, or as a composition of two or three reflections. In this lesson
we will look at the types of isometries that you can get by composing two
reflections. Of course, any reflection composed with itself results in the
identity, so we are really interested in compositions of two distinct reflec-
tions. In that case, there are essentially two scenarios.

Scenario 1: the reflecting lines are parallel
Scenario 2: the reflecting lines are intersecting

The two scenarios do describe two fundamentally different types of isome-
tries. In the second scenario, the intersection point of the two lines is fixed
by the composition of isometries. This doesn’t happen in the first scenario,
since there is no intersection point, and in fact, this type of composition
does not have any fixed points.

DEF: TRANSLATION AND ROTATION
A translation is a composition of reflections across parallel lines. A
rotation is a composition of reflections across intersecting lines.

These are strategic definitions– by defining translations and rotations as
compositions of isometries, it is automatically true that they will be isome-
tries as well. But these definitions do not do a good job of revealing what
a translation or rotation actually looks like. That is the purpose of this
lesson.

1 2 1 2
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Translation

First, let’s tackle the case of the translation. To do that, I think it is helpful
to back up a little bit, and to take a more measured look at the behavior of
a single reflection. Consider a reflection s across a line �. Let P be a point
that is not on � and let �⊥ be the line through P that is perpendicular to �.
Now let’s set up �⊥ as a number line. That is, choose an arbitrary point
O to be the origin, and a ray from O that points in the positive direction;
then every point on �⊥ has a “coordinate”– its signed distance from O.
Suppose that P is at coordinate x, and that � and �⊥ intersect at the point
Q with coordinate y. Given the definition of a reflection, s(P) has to be
somewhere on �⊥ as well, and so it too must correspond to some coordi-
nate. Well, what is that coordinate? The distance from P to Q is |y− x|.
Since s is an isometry and Q is a fixed point, the distance from s(P) to Q
is |y− x| too. That limits the possible coordinates for s(P) to:

y+ |y− x|=
{

y+(y− x) = 2y− x if y− x ≥ 0
y− (y− x) = x if y− x < 0

y−|y− x|=
{

y− (y− x) = x if y− x ≥ 0
y− (−(y− x)) = 2y− x if y− x < 0.

Since P is not on �, it is not a fixed point, so s(P) is not at the coordinate
x. The only other possibility, then, is that s(P) is at the coordinate 2y− x.
Note that this formula still works even if P is on �. In that case P is
fixed, so s(P) should also be at coordinate x. And that is what the formula
reveals: if P is on �, y = x, and so 2y− x = x. Having this little formula in
hand will make it a little easier to compose parallel reflections.

P
x Q

y

O

0
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THM: PROPERTIES OF A TRANSLATION
Suppose that t is the translation s2 ◦ s1 where s1 and s2 are reflections
across parallel lines �1 and �2 that are separated by a distance d. Then
for any point P, t(P) is located

1) on the line through P that is perpendicular to both �1 and �2,
2) in the direction of the ray that points from �1 to �2,
3) at a distance 2d from P.

Proof. Take a point P, and let �⊥ be the line through P that is perpendic-
ular to �1 and �2. By definition, s1(P) will still be on �⊥, and then so will
s2(s1(P)). Let’s just look along this line then, and, as in the preceding dis-
cussion, lay out a number line along it. It does not matter where you put
the origin on the line, but it does help the discussion to choose the positive
direction so that going from �1 to �2 moves in the positive direction. Then
mark these coordinates:

x: coordinate of P
y1: coordinate for the intersection of �⊥ and �1
y2: coordinate for the intersection of �⊥ and �2

According to our previous calculations, s1(x) will be at coordinate 2y1 −x
and s2 ◦ s1(x) will be at coordinate

2y2 − (2y1 − x) = x+2(y2 − y1) = x+2d.

Therefore s2 ◦ s1(P) will be 2d farther along the line �⊥ than P, in the
direction pointing from �1 to �2.

P
x y

O

0

1 2

s2 ◦ s1(P)

s1(P)

d
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1 2

P
Q

So you see, a translation moves all points along lines that are perpendic-
ular to �1 and �2. They all move in parallel, in the same direction, over
the same distance. All of that– the parallel lines, the direction, and the
distance– can be determined by looking at the effect of the translation on
a single point. That means that a translation is completely determined by
its behavior on a single point. And because of that, we can get a very
precise idea of how many translations there are.

THM: THERE ARE JUST ENOUGH TRANSLATIONS
Given any two distinct points P and Q, there is exactly one translation
t so that t(P) = Q.

Proof. Existence: Let’s just take the most straightforward approach and
describe a translation that maps P to Q. The two reflections, s1 and s2,
will be across lines that are perpendicular to PQ (and hence are parallel to
one another). Let s1 be the reflection across the line through P. Let s2 be
the reflection across the line through the midpoint of PQ. Then s2 ◦ s1 is a
translation and

s2 ◦ s1(P) = s2(P) = Q.

Uniqueness: Since a translation is completely determined by its behavior
on one point, there can be only one translation taking P to Q.

d

2d
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In the long run, it is cumbersome to try to think of a translation as a com-
position of reflections. The properties derived above give a much better
sense of the effects of a translation, and those properties can be formal-
ized as follows. A directed segment is a line segment that distinguishes
between the two ends: one is called the initial endpoint, the other the ter-
minal endpoint. We can define an equivalence relation on the set of all
directed segments as follows: two directed segments σ1 and σ2 are equiv-
alent if there is a translation t mapping σ1 to σ2, so that initial point is
mapped to initial point, and terminal point is mapped to terminal point.

DEF: VECTOR
A vector is an equivalence class of directed segments.

Associated to any transformation t is the vector that is represented by di-
rected segments of the form Pt(P) with initial point P and terminal point
t(P). That vector is both defined by and defines t. It is called the transla-
tion vector of t. It is almost always more convenient and natural to think
about a translation in terms of its translation vector rather than as a com-
position of reflections. For instance, if you think of a translation t as a
composition of reflections, it might not be that clear that t has no fixed
points. If you think of that translation in terms of its translation vector, it
is clear that no point P can be fixed by t, since Pt(P) is always a directed
segment with two distinct endpoints.

Some equivalence class representatives of the vector 〈1,2〉 (one over, two up).
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The transport of orientation

An orthonormal frame F= {PPx,PPy} is an ordered pair of perpendicular,
unit length segments that share a common endpoint. One such frame, F+,
centered at the origin with

P = (0,0) Px = (1,0) Py = (0,1),

is at the very heart of the coordinate system. There is another such frame,
F−, that shares the same first segment as F+, but that has Py = (0,−1). In
general, any frame can be viewed as a way to represent information about
orientation, the distinction between clockwise and counterclockwise. To
this point, we have only made that choice at the origin: in F+, the directed
minor arc from Px to Py points in the counterclockwise direction; in F−,
the directed minor arc from Px to Py points in the clockwise direction. But
translation now provides a vehicle to propagate that choice consistently
across the rest of the plane. For any point P, let t be the translation that
maps the origin to P. Then t(F+) is a frame centered at P indicating the
counterclockwise direction and t(F−) is a frame centered at P indicating
the clockwise direction.

P

t

(0,0)

(0,1)

(1,0)
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Rotations

The illustrations at the start of this lesson suggest that when �1 and �2
intersect, the rotation r = s2 ◦ s1 acts by turning points around the inter-
section point O. To measure the effect of this turning, we need to establish
an angular coordinate system around O (just as we established a linear co-
ordinate system on �⊥ when �1 and �2 were parallel). Choose a ray with
endpoint O– this marks the “zero angle”– and an orientation (clockwise
or counter-clockwise). After making those choices, every ray from O will
form an angle with r and we can then associate each point on the ray with
that angle measure. Before attempting two reflections, let’s back up and
try to understand how the angular coordinates of a point behave when hit
with just one reflection s across a line �. Pick a point O on �, and set up an
angular coordinate system as described. Let P be an arbitrary point that is
not on �. Then label

θ : the angular coordinate at P
φ : the angular coordinate of one of the rays from O that make up �.

The two choices of φ will be of the form θ and π + θ , but as far as this
calculation goes, it makes no difference which one you pick. The angle
between � and OP has a measure of |φ − θ |. Since isometries preserve
angle measure and the whole line � is fixed by s, the angle between � and
Os(P) also has a measure of |φ − θ |. That severly limits the possibilities
for the angular coordinates of s(P):

φ + |φ −θ |=
{

2φ −θ if φ −θ ≥ 0
θ if φ −θ < 0

φ −|φ −θ |=
{
θ if φ −θ ≥ 0
2φ −θ if φ −θ < 0.

P

O 0
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Since P is not on �, it is not fixed, and therefore s(P) will not be at angle
θ . The only other possibility, then, is that s(P) is at angle 2φ−θ . Further-
more, this formula still holds when P is on �. In that case, P is fixed, so
s(P) should also be at angle θ . That is indeed what the formula indicates:
if P is on �, then φ = θ , and so 2φ − θ = θ . Now let’s take that formula
and use it to figure out what happens when we compose two intersecting
reflections.

THM: PROPERTIES OF A ROTATION
Suppose that r is the rotation s2 ◦ s1 where s1 and s2 are reflections
across lines �1 and �2 that intersect at a point O at an angle of θ to
one another. For any point P, r(P) is located

1) on the circle centered at O that passes through P
2) so that OP and Os(P) form an angle with measure 2θ ,
3) in the direction indicated by the arc from �1 to �2.

Proof. Since s2 ◦s1 preserves distances and O is a fixed point, the distance
from O to s(P) is the same as the distance from O to P. That places s(P)
on the circle centered at O passing through P. Now where precisely is it
on that circle? As in the discussion above, set up an angular coordinate
system centered at O. Mark these coordinates:

α : the angular coordinate for P,
φ1: the angular coordinate for �1,
φ2: the angular coordinate for �2.

P

1

2

1

2

s2 ◦ s1(P)

s1(P)
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The intersection of �1 and �2 forms two vertical angle pairs. It is helpful
to make the clockwise/counterclockwise choice so that the directed angle
from �1 to �2 is the smaller of those two pairs (if �1 and �2 intersect at right
angles, then it doesn’t matter which orientation you choose). According
to the previous discussion, s1(P) will have the coordinate 2φ1 −α . Then
s2(s1(P)) will have the angular coordinate

2φ2 − (2φ1 −α) = α+2(φ2 −φ1) = α+2θ .

Therefore OP and Os(P) do form an angle of 2θ , measured in the direction
from �1 to �2.

It is generally just a lot more convenient to think of a rotation in terms of
the angle 2θ , the rotation angle, and the fixed point, the center of rotation,
rather than as a composition of reflections. For instance, by thinking of a
rotation in terms of its rotation angle and center, it is clear that a rotation
only has one fixed point– the center of rotation.

This viewpoint also gives a good perspective on just how common rota-
tions are. The proof of the following result is left to the reader.

THM: THERE ARE JUST ENOUGH ROTATIONS
For a given point O and angle measure 0 < θ < 2π , there is exactly
one clockwise rotation and exactly one counterclockwise with rota-
tion center O and rotation angle θ . When θ = π , the clockwise and
counterclockwise rotations coincide (this is called a half-turn).

A counterclockwise rotation by π/6 centered at O.

O
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The analytic viewpoint

From the analytic point of view, translations are the simplest of the isome-
tries. If we break the translation vector of a translation T down into a
horizontal component h and a vertical component k, then

T
(

x
y

)
=

(
x+h
y+ k

)
.

The equations for rotations are a little more challenging. In fact, for now,
let’s restrict our attention to rotations that are centered at the origin.

EQN: ROTATION AROUND THE ORIGIN
The analytic equation for a rotation r around the origin by an angle
θ in the counterclockwise direction is

r
(

x
y

)
=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)
.

Proof. We can realize this rotation as a composition of two reflections
across lines through the origin. For convenience sake, let’s choose the re-
flections s1 across �1 and s2 across �2, where:

�1 is the x-axis and
�2 forms an angle of θ/2 (counterclockwise) with the x-axis

1

2

(x,y)

(a,b)

(1,0)/2
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Then s2 ◦s1 will be a rotation by an angle of 2 ·θ/2 = θ . In the last lesson,
we found out that equations for these types of reflections take the form

s
(

x
y

)
=

(
a2 −b2 2ab

2ab b2 −a2

)

where (a,b) marks the intersection of the line and the unit circle. We can
put that equation to good use now. The first line intersects the unit circle
at (1,0), so

s1

(
x
y

)
=

(
1 0
0 −1

)(
x
y

)
.

The second line intersects the unit circle at (cosθ/2,sinθ/2), and so

s2

(
x
y

)
=

(
cos2(θ/2)− sin2(θ/2) 2cos(θ/2)sin(θ/2)

2cos(θ/2)sin(θ/2) sin2(θ/2)− cos2(θ/2)

)(
x
y

)
.

We can use the double angle formulas to rewrite

cos2(θ/2)− sin2(θ/2) = cos(θ),
2cos(θ/2)sin(θ/2) = sin(θ),

which simplifies the matrix considerably to

s2

(
x
y

)
=

(
cosθ sinθ
sinθ −cosθ

)(
x
y

)
.

To compute the composition of the transformations, just multiply the ma-
trices:

r
(

x
y

)
=

(
cosθ sinθ
sinθ −cosθ

)(
1 0
0 −1

)(
x
y

)

=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)
.
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Exercises

1. Prove that every isometry T can be written as a composition t1 ◦ t2
where t1 is a translation (or the identity) and t2 is an isometry that fixes
the origin.

2. Find the analytic equations for reflections across lines x = a and x = b.
Then verify that the composition of those reflections has the form of a
translation.

3. Suppose that r1 and r2 are counterclockwise rotations about the origin,
by angles of θ1 and θ2 respectively. Working from the matrix equations
for r2 and r1, show that the matrix equations for r2 ◦ r1 have the form
of a rotation or the identity.

4. Suppose that � is an invariant line of a rotation r. That is, if P is any
point on �, then r(P) is also on �. Show that � passes through the center
of rotation and the angle of rotation is π (r is then called a half-turn).

5. Take a vector �a,b�. Let S be the set consisting of the identity isometry
and all translations whose translation vectors have the form �ma,nb�.
Show that the composition of two elements of S is an element of S.
Show that the inverse of an element of S is an element of S. This
makes S a subgroup of the group of isometries.
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27 ORIENTATION
MIND YOUR p’S AND q’S.
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Earlier, we used translations to transport orientation (clockwise versus
counterclockwise) from the origin to the rest of the plane. This is not
a completely trivial issue because not all surfaces can be oriented consis-
tently like this. The most famous non-orientable surface is the Möbius
strip. It is formed by taking a strip, giving it a half-twist, and then joining
the two ends. A frame F on the Möbius strip can be translated from one
point to another in two different ways, t1 and t2, and the resulting frames
t1(F) and t2(F) are not oriented the same way. Fortunately, we do not
have this problem in the plane because there is only one translation from
one point to another.

In this lesson we look at how isometries interact with orientation. Since
all isometries are compositions of reflections, we can begin the process by
looking at reflections. Once we understand their effect on orientation, the
rest is pretty easy.

LEM: CONSISTENCY OF ORIENTATION
Let s be a reflection. If F1 and F2 are frames at a point P that are
oriented in the same direction, then s(F1) and s(F2) are frames at a
point s(P) that are oriented in the same direction.

One lap aroud the Möbius strip flips orientation.
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Proof. A frame is composed of two length one segments that form a right
angle. Since a reflection changes neither the length of a segment, nor the
angle between a pair of them, the reflection of a frame is a frame. The
issue of orientation is a bit more delicate. Let’s suppose that F1 and F2 are
oriented in the same direction, and then compare the orientations of s(F1)
and s(F2). To do that, label the components of each frame:

F1 =
{

v1
x, v1

y
}

s(F1) =
{

w1
x, w1

y
}

F2 =
{

v2
x, v2

y
}

s(F2) =
{

w2
x, w2

y
}

Let θ denote the angle between v1
x and v2

x . Since F1 and F2 are oriented in
the same direction, θ is also the angle between v1

y and v2
y . Now move on

over to the frames after the reflection. The angle between w1
x and w2

x still
has to be θ . And the angle between w1

y and w2
y has to be θ . Remember that

the orientation of a frame is essentially a choice: given the first segment,
there will always be two directions perpendicular to it. If we make the
wrong choice for w2

y (that is, we orient s(F1) and s(F2) oppositely), then
the angle between w1

y and w2
y will be π − θ , not θ . Generally, speaking,

that cannot happen, and that is sufficient to show that s(F1) and s(F2) must
be oriented in the same direction.

v1
y

The right and wrong choice for w2
y

v1
x

v2
x

v2
y

w1
x

w2
x

w1
y
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There is still ambiguity in one case though: the previous argument hinged
upon the fact that the angle between w1

y and w2
y must be θ , not π − θ ,

but those two angle measures could be the same, when θ = π − θ , so
when θ = π/2. The illustrations above show the possible scenarios. In
the first, the wrong choice of w2

y maps two distinct segments, v1
x and v2

y ,
to the same segment, which is not permitted since a reflection is one-to-
one. In the second, the wrong choice of w2

y maps one segment, v1
x = w2

y
to two different segments– again not permitted since a reflection is well-
defined.

THM: REFLECTIONS REVERSE ORIENTATION
A reflection s reverses the orientation of any frame F .

Proof. Let s be any reflection and � be the fixed line of that reflection.
While the theorem itself claims that s reverses any frame, the previous
lemma gives us a way to focus on a particularly well-suited subset. That
subset consists of frames of the form F = {vx,vy} where

1) vx is parallel to � (or runs along �), and
2) vy is perpendicular to �, pointing away from it.

At any point P, there are two frames that meet these conditions, one ori-
ented in the clockwise direction, the other in the counterclockwise direc-
tion. Therefore, for every frame f we can find a frame F of the form
described above which has the same orientation as f . According to the
previous lemma, s( f ) and s(F) must have the same orientation, so if we
can show that F and s(F) are oriented oppositely, then that will mean that
f and s( f ) are too. Essentially, the previous lemma lets us rotate f into
the more convenient position of F .

v1
x

v2
x

v2
y

v1
y

w1
x

w2
x

w1
y

v1
x

v2
x

v2
y

v1
y

w2
x

w1
y

w1
x
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To see whether s really does reverse orientation, we need to compare s(F)
to t(F), where t is the translation from the point P to its reflection s(P).
Note that t will map vx to s(vx)– that is the advantage of this particular
subset of frames– so the question of whether s(F) and t(F) have the same
orientation really just comes down to a comparison of s(vy) and t(vy). To
that end, label the endpoint of vy as Q. Let d be the distance from � to P so
that t is a translation by 2d. Set up a coordinate axis on the line through
vy and s(vy) so that � intersects it at the origin and the ray vys(vy)� points
in the positive direction. Compare coordinates:

Q : −d −1
s(Q) : d +1
t(Q) : (−d −1)+2d = d −1.

f
F

–d

–d–1

d–1

d+1

d

P

Q

s

t
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If s were to preserve the orientation of F , then s(Q) and t(Q) would be the
same so s(Q) and t(Q) would have the same coordinates:

d +1 = d−1 =⇒ 2 = 0.

This cannot happen.

DEF: ORIENTATION PRESERVING/REVERSING
An isometry is orientation-preserving if it maps clockwise frames to
clockwise frames and counterclockwise frames to counterclockwise
frames. A isometry is orientation-reversing if it swaps clockwise and
counterclockwise frames.

Because reflections are orientation reversing, and because every isome-
try is a composition of reflections, determining what an isometry does to
orientation is essentially just a matter of counting flips.

COR: ORIENTATION AND COMPOSITION
A composition of two orientation-preserving maps is orientation pre-
serving; a composition of two orientation-reversing maps is orien-
tation preserving; a composition of one orientation-preserving map
and one orientation-reversing map is orientation-reversing.

COR: CLASSIFICATION OF ISOMETRIES BY ORIENTATION
Translations, rotations and the identity map are orientation-preserving.
They are the only orientation-preserving isometries.

Let’s now recap our progress in the classification of isometries.

# of refns isometry orientation fixed pts
1 reflection reversing line
2 identity preserving all

translation .. none
rotation .. point

3 ? reversing ?

In the next lesson we find what goes in place of those questions marks.
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Exercises

1. Show that if τ is an orientation-preserving isometry which fixes two
points, then it must be the identity. Show that if τ is an orientation-
preserving isometry which has at least one fixed one point, and at least
one non-fixed point, then it must be a rotation.

2. Let τ1 be a counterclockwise rotation by π/2 about the origin. Let τ2
be a counterclockwise rotation by π/2 about the point (1,0). Show
that τ1 ◦ τ2 is a rotation.
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So now let’s look at a composition of three reflections. The first two re-
flections will get us to either the identity map, a translation, or a rotation.
We are going to add another reflection to that. Composing a reflection
with the identity will, of course, give a reflection. What about composing
a reflection with a translation or a rotation? That is the subject of this
lesson.

Glide reflections

Straight off, we can see that, yes, there is a fundamentally new type of
isometry here. Just take a reflection s across a line � followed by a transla-
tion t whose translation vector is parallel to �. The composition t ◦s swaps
the two sides of � and translates along �. Therefore it has no fixed points.
We have only seen one type of isometry that has no fixed points so far– a
translation. But this isometry, a composition of three reflections, will be
orientation-reversing, so it can’t be a translation.

DEF: GLIDE REFLECTION
A glide reflection is a composition of a translation t followed by a
reflection s across a line that is parallel to the translation vector.

The path of a few points under a glide reflection.
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The quadrilaterals share two sides, Ps(P) and Pt(P), and since the reflec-
tion and translation are perpendicular motions, both quadrilaterals have
right angles at three of the four vertices, at P, s(P), and at t(P). That of
course means that the fourth angle must also be a right angle, and so the
two quadrilaterals are in fact rectangles. Well, there is only way to build
a rectangle given two of its adjacent sides. Therefore s◦ t(P) and t ◦ s(P)
must be the same.

In general, you can’t just switch the order that you compose isometries
and expect to get the same answer. But the s and t that make up a glide
reflection are interchangeable.

LEM: SWAPPING GLIDE COMPONENTS
Let s be a reflection across a line � and let t be a translation parallel
to �. Then s◦ t = t ◦ s.

Proof. If P is a point on the reflecting line �, then so is its translation t(P),
and in that case, the reflection has no effect on either one of them, so

s◦ t(P) = t(P) = t ◦ s(P).

Now suppose that P is not on �. In that case, let’s compare the two quadri-
laterals

1) with vertices P, s(P), t(P), and s◦ t(P);
2) with vertices P, s(P), t(P), and t ◦ s(P).

t(P)

s(P)

P

t ◦ s(P)

s◦ t(P)
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Proof. Look at the effect of the composition of τ and t−1 on the points of
the line �:

t−1 ◦ τ(P) = t−1 ◦ t(P) = P.

It fixes all the points on �. Assuming τ �= t, t−1 ◦ τ cannot be the iden-
tity map. The only other isometry that fixes an entire line is a reflection.
Therefore t−1 ◦ τ = s where s is the reflection across the line �, and so
τ = t ◦ s = s◦ t is a glide reflection.

By itself, that lemma is already useful, but we can punch it up even more
by combining it with the next one.

LEM: RECOGNIZING GLIDE REFLECTIONS II
Let τ be an isometry and let t be a translation. Suppose that for two
distinct points P and Q, τ(P) = t(P) and τ(Q) = t(Q). Then τ = t
for all points on the line �PQ�.

For what we are going to do, we need an easy way to recognize glide
reflections in the field. The key is that if you narrow your focus down to
just the reflecting line, a glide reflection looks just like a translation. I call
this line of reflection the “glide line”, and the distance of translation along
that line the “glide distance”.

LEM: RECOGNIZING GLIDE REFLECTIONS I
Let τ be an isometry, and suppose that there is a line � and a transla-
tion t so that τ(P) = t(P) for all points P on �. If τ �= t, then τ is a
glide reflection.

P t−1

t = τ
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Proof. Again look at the composition t−1 ◦ τ :

t−1 ◦ τ(P) = P t−1 ◦ τ(Q) = Q.

Since t−1 ◦ τ fixes these two points, it must fix all points on �PQ�. That
is, t−1 ◦τ(R) = R for all points R on �PQ�. Composing t with both sides
of this equation, τ(R) = t(R) for all R points on �PQ�. Therefore τ and
t agree for all points on �PQ�.

By combining those two lemmas we get: an orientation-reversing isom-
etry that agrees with a translation on two distinct points must be a glide
reflection.

Compositions of three reflections

Let’s start the hunt by looking at what happens when we compose a trans-
lation and a reflection. If the translation is parallel to the line of reflection,
of course, then that is the very definition of a glide reflection. But what if
the translation is not along the reflecting line?

THM: TRANSLATION AND REFLECTION
Let t be a translation with translation vector v, let s be a reflection
across line �, and let θ be the angle between v and �. Then s ◦ t
is a glide reflection whose glide line is parallel to �, at a distance
(|v|sinθ)/2 from �, and whose glide distance is |v|cosθ .

P

Q

1 2 3

A composition of three reflections
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Proof. As the previous lemmas suggest, if we want to show that s◦ t is a
glide reflection, then we need to find its glide line. The best way to do that
is to experiment around with the translation-reflection combination. You
are looking for a line along which s ◦ t acts as a translation– first t will
move the points off the glide line, and then s will move them back, shifted
from their original location.

It turns out that the glide line �� is a line that runs parallel to �. It is
on the opposite side of � from the direction that v points, and is separated
from � by a distance of (|v|sinθ)/2. Let’s verify that �� really is the glide
line, and therefore that s◦ t is a glide reflection. Take a point P on ��. We
can break the translation t(P) down into two steps: first a translation by
|v|cosθ along ��, and then a translation by |v|sinθ perpendicular to ��.
The second translation means that t(P) is located on the opposite side of
� from P, at a distance of (|v|sinθ)/2 from �. Therefore, when we apply
the reflection s to t(P), the result s◦ t(P) is back on the line ��, but shifted
up from P a distance of |v|cosθ . All the points on �� exhibit this behavior,
so s◦ t acts as a translation along ��. Since s◦ t is orientation-reversing, it
cannot be a translation. According to the lemma above, it must be a glide
reflection.

P

v

2

1

|v|sinθ|v|cosθ1 2
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We have taken care of combinations of a translation with a reflection–
what happens when we combine a reflection and a rotation? There really
are two scenarios, depending upon whether or not the reflecting line passes
through the center of rotation. The scenario where the reflecting line does
pass through the rotation center is a little bit easier, so let’s start with that
one.

THM: ROTATION AND REFLECTION I
Let r be a rotation by an angle of θ centered at a point O, and let
s be a reflection across a line � that passes through O. Then s ◦ r is
a reflection across a line that passes through O and forms a (signed)
angle of −θ/2 with �.

Proof. First notice that O is a fixed point of s ◦ r. If we can find just one
other fixed point, then that will mean that the entire line between them is
fixed. As a result, s ◦ r will either be the identity or a reflection, and s ◦ r
can’t be the identity since it is orientation-reversing. So really, this is just
a matter of finding a point where the action of the reflection undoes the
action of the rotation. Take a point P on � other than O and rotate it by
−θ/2 about O (that is, rotate it in the opposite direction from r) to a point
Q. This point Q is the one we want: Or(Q)� will form an angle of θ/2
with �. Reflecting back across �, Os◦ r(Q)� will again form an angle of
−θ/2 with �. Since its distance from O remains unchanged throughout
this whole operation, that means s◦ r(Q) = Q.

θ/2

P

Q

O

r(Q)
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If the reflecting line does not pass through the center of rotation, then the
situation is more complicated.

THM: ROTATION AND REFLECTION II
Let r be a rotation by an angle of θ centered at a point O, let s be a
reflection across a line � that does not pass through O, and let Q be
the closest point on � to O. Then s◦r is a glide reflection along a line
that passes through Q at an angle of θ/2 to �.

Proof. This theorem claims that s◦ r is a glide reflection, and if that is the
case, then we need to find its glide line. Let’s use the following labels:

P = (s◦ r)−1(Q)
R = (s◦ r)(Q)
R� = r(Q)
FP: the foot of perpendicular from P to �
FR: the foot of perpendicular from R to �

Note that the labels are set up so that s ◦ r will move P to Q and Q to
R. It turns out that the glide line is the line through P, Q, and R. Now,
ultimately there are a two things to do to show that. First, we need to show
that P, Q, and R are in fact collinear. Second, we need to show that s ◦ r
moves P and Q in the same way that a translation does– that it moves P
and Q the same distance in the same direction– essentially this means we
need to show that |PQ|= |QR|. If we can show both of those things, then
that means s◦ r will have to be a glide reflection.

P

Q

R

FP

FR R

O
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We can do it– we just need to use some congruent triangles.

1. By S·A·S, �OQP ��OQR�.
2. By A·A·S, �PQFP ��R�QFR.
3. By S·A·S, �R�QFR ��RQFR.

Therefore, �PQFP and �RQFR are congruent. Their corresponding an-
gles ∠PQFP and ∠RQFR are congruent, and since FP, Q, and FR are
collinear, that means that P, Q, and R must be collinear too. Furthermore,
by comparing the lengths of the hypotenuses of these congruent triangles,
|PQ| = |QR|. Therefore s ◦ r acts like a translation for the two points P
and Q. It follows that s◦ r acts like a translation for all points on that line.
Since s◦r is not a translation (it is orientation-reversing), it must be a glide
reflection.

P

Q

R

FP

FR Q

R
R

P

Q

O

R

FR

1 2 3
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That’s it! We have looked at all possible combinations of at most three
reflections and seen the following types of isometries: the identity, reflec-
tions, translations, rotations, and glide reflections. Let’s put it all together
in a convenient table.

THE ISOMETRIES OF THE EUCLIDEAN PLANE.

# of refns isometry orientation fixed pts
1 reflection reversing line
2 identity preserving all

transation .. none
rotation .. point

3 glide reflection reversing none

The four non-identity Euclidean isometries.

Reflection Translation Rotation Glide
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Exercises

1. Give analytic equations for the glide reflection formed by reflecting
across the line y = mx and then translating a distance d along this line
(choose the translation vector so that it points from the origin into the
first quadrant).

2. We saw that the composition of a rotation and a reflection is a glide
reflection if the center of rotation is not on the line of reflection. What
is the glide distance in this case (in terms of the rotation center, the
rotation angle, and the line of reflection)?

3. Let r be a counterclockwise rotation by π/4 about the origin. Let s
be the reflection across the line y = x+ 1. What is the equation of the
glide line of the glide reflection s◦ r?

4. Let g be a glide reflection. What is the minimum number of points
required to completely determine g (to find both its glide line and glide
distance)?

5. Describe the isometries τ that satisfy the condition τ2 = id. Describe
the isometries that satisfy the condition τn = id for n > 2.

6. Show that the composition of a glide reflection and reflection is either a
rotation or a translation. Give specific examples in which each outcome
occurs.

7. Show that the composition of two glide reflections is either the identity,
a rotation, or a translation. Give specific examples in which each of
these outcomes occurs.
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Vector arithmetic

In the lesson on translation and rotation, I introduced vectors, but did little
more than define them. Let’s take a more detailed look at vectors now. In
general, a vector holds two pieces of information: a length and a direction.
It is represented by a directed segment, and it is common to distinguish the
two endpoints of that segment with the names “tail” and “head”, so that
the segment points from the tail to the head. There is one exception: the
zero vector is a vector with length zero and no direction. You can think
of it as the degenerate case that occurs when a segment shrinks all the
way down to a point and the head and tail merge. It is common practice
to conflate a vector with one of its representative directed segments, and
there is generally no problem with that. For now, I think it is probably a
good idea to maintain a little distance between the two: for this section
I will write �v for a vector, and v for one of its representative directed
segments. Once we are out of this section, I will do as everyone else does,
and just mix up the two notions.

One of the strengths of vectors is that they have an inherent arithmetic
that points do not. Any two vectors can be added together using a “head-
to-tail” procedure as follows. Given any two vectors �u and �v, their sum
�u+�v is the vector which is represented by a directed segment u+ v that
is defined as follows. Let u be any representative of �u and let v be the
representative of�v whose tail is located at the head of u. Then u+ v is the
directed segment from the tail of u to the head of v.

v

v

2v

–v

–2vu

u+v

Vector addition Scalar multiplication
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Any vector �v can be multiplied by any real number r. The resulting
vector r ·�v is represented by a directed segment that

1) has the same tail as v and is on the same line as v,
2) has length |r| · |v|, and
3) is in the same direction as v if r > 0 and in the opposite if r < 0.

Note that each of these calculations requires a choice of representatives.
This raises a potential issue: these operations may not be well-defined–
different choices for the representatives could conceivably lead to different
answers. It’s not too hard to see that this is not the case. I will leave it as
an exercise.

There is an analytic side of the story too. Let�v be a vector represented
by a directed segment v, and mark:

(tx, ty): the coordinates of the tail of v;
(hx,hy): the coordinates of the head of v.

Then hx − tx is called the horizontal component or x-component of �v, and
hy − ty is called the vertical component or y-component of �v. Note that
these values do not depend upon the choice of v. We write the vector �v in
terms of its components as�v = �hx − tx,hy − ty�.

v

hx − tx

hy − ty

(tx, ty)

(hx,hy)

The horizontal and vertical components of a vector.
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LEM: ADDITION
Let �u = �ux,uy� and�v = �vx,vy�. Then �u+�v = �ux + vx,uy + vy�.

Proof. Position u and v head-to-tail. Label the coordinates of the tail of u
as (px, py), of the head of v as (qx,qy), and of the head of u, which is the
tail of v, as (rx,ry). Then the horizontal component of �u+�v is

qx − px = (qx − rx)+ (rx − px) = ux + vx,

and the vertical component of �u+�v is

qy − py = (qy − ry)+ (ry − py) = uy + vy.

LEM: SCALAR MULTIPLICATION
Let�v = �vx,vy� and k be a real number. Then

k ·�v = �kvx,kvy�.

Proof. From the previous part, we can break�v down into two vectors, one
containing the horizontal component, the other the vertical:

�v = �vx,0�+ �0,vy�.

v

u

P

R

Q

rx − px

ry − py

qy − ry

qx − rx
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These two vectors, together with �v itself, form a right triangle. Similarly,
we can form a right triangle from k ·�v and its horizontal and vertical com-
ponents. Now note that these two triangles are similar. Comparing the
two hypotenuses, the (signed) scaling factor between those triangles is k.
Scaling the legs by the same amount, k ·�v has a horizontal component of
kvx and a vertical component of kvy.

THM: PROPERTIES OF VECTOR ARITHMETIC
The following are true for all vectors �u,�v and �w and for all real num-
ber k and l:

1. Additive associativity: (�u+�v)+�w =�u+(�v+�w)
2. Additive commutativity: �u+�v =�v+�u
3. Additive identity: the sum of the zero vector and�v is�v
4. Additive inverse: every vector �v has an additive inverse �w so

that�v+�w is the zero vector
5. Distributive 1: k(�u+�v) = k�u+ k�v
6. Distributive 2: (k+ l)�v = k�v+ l�v
7. Multiplicative associativity: kl(�v) = k(l�v)
8. Multiplicative identity: 1(�v) =�v

These properties are really more linear algebra than geometry, so I will
not take the time to verify them.

k>0 k<0

kv

kv

v

v



398 LESSON 29

Vectors and points are not the same thing, so point coordinates (x,y)
should not be equated with vector components �x,y�. There is, however, a
useful conduit between the two. If �v = �x,y�, then the representative of �v
that has its tail at the origin will have its head at the point with coordinates
(x,y). In fact, I have already used this correspondence: to be proper, the
input of a matrix equation for an isometry is a vector �x,y�, not a point’s
coordinates (x,y).

Before moving on, there is one more term to define. The norm (or
length, or size, or magnitude) of a vector�v, written |�v|, is the length of any
of its representative segments. Using the distance formula, the norm of a
vector may be calculated from its components to be

|�vx,vy�|=
√

(vx)2 +(vy)2.

Change of coordinates

Our study of the analytic side of geometry began with choices about where
to put the origin, and how to point the x- and y-axes. A frame provides
that same information– the vertex of the frame is the origin, and the two
segments vx and vy point in the directions of the positive x- and y-axes. In
essence, then, each frame F determines a coordinate system CF . In prac-
tice, there are times when it is convenient to switch from one coordinate
system, say CF , to another coordinate system, say CG. To do that, we need
to understand how a point’s CF coordinates are related to its CG coordi-
nates. As you might expect, the key to this is an isometry that maps the
frame F to the frame G.

vx

v vy
|v|=

√
(vx)

2 +(vy)
2
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There are a few more things that we need to know before we can proceed.
First, we need to know that there is an isometry from F to G. Second, in
the course of the proof, we will need to use a linearity property of matrices
(that you may have seen in, say, a linear algebra course).

THM: THERE ARE JUST ENOUGH ISOMETRIES
There is a unique isometry from any frame to any other frame.

THM: THE LINEARITY OF MATRIX OPERATIONS
If M is a matrix, v1 and v2 are vectors, and k is a constant, then

1. M(v1 + v2) = Mv1 +Mv2
2. M(kv1) = kM(v1)

I will leave the proofs of both of these results to you. For the first, you
should be able to model your proof on the argument I gave in Lesson 24
where I computed a general form of the analytic equations of all isome-
tries. For the second, you are only really obligated to deal with 2× 2
matrices (since that is all we will be using), in which case the calculations
are not hard at all. Now back to business.

THM: CHANGE OF COORDINATES
Let CF and CG be the coordinate systems determined by the frames
F and G respectively, and let T be the isometry from F to G. Then
the CG coordinates of a point P are the same as the CF coordinates of
T−1(P).

Coordinates of three points in three systems

(4,1)
(2,6)

(–2,3)

(5,3)
(0,7)

(–3,1)
x

x

x

y

y

y

(–4,2)
(1,–2)

(6,2)
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Proof. Start by taking a look at the isometry T and its inverse. From our
work on analytic isometries, we know quite specifically what forms the
equations of T can have. In general, we can write

T
(

x
y

)
= M

(
x
y

)
+

(
e
f

)

where M is some 2× 2 matrix. Note that since we want to know about
the CF coordinates of T−1(P), this matrix M must be set up in the CF
coordinate system (for instance, if M represents a rotation about the origin,
then it is the CF origin). This equation for T is a matrix manifestation of an
equation of the form Y = MX +B. To find the inverse of such an equation,
you switch the X and Y , then solve for the Y :

X = MY +B =⇒ Y = M−1(X −B).

Thus T−1 can be written in the form

T−1
(

x
y

)
= M−1 ·

((
x
y

)
−
(

e
f

))
.

Now let’s turn our attention to the frames F and G and the coordinate
systems that they define. Let F = {vx,vy} and G = {wx,wy} and let OF
and OG be the vertices of the frames F and G, respectively. They serve
as the origins of the CF and CG coordinate systems. Note that T (OF) =
OG and and that, in the CF coordinate system, OF has coordinates (0,0).
Therefore, in the CF coordinate system, the coordinates of OG are

T
(

0
0

)
= M

(
0
0

)
+

(
e
f

)
=

(
e
f

)
.

OF : (0,0)

OG : (e, f )

vx

vy

wx

wy

T
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Finally, we can talk about the coordinates of a general point P. When
we say that P has coordinates (x,y) in the CG coordinate system, what
that means is that the vector from OG to P can be written as the linear
combination x�wx + y�wy (where �wx and �wy are the vectors represented by
the segments wx and wy directed to point away from OG). In terms of the
CF coordinate system, then, the vector from OF to P can be written as

x�wx + y�wy+

(
e
f

)
.

From that, we can now compute T−1(P). Along the way, we will use the
fact that the matrix multiplication acts linearly, as discussed right before
the start of this proof.

T−1(P) = T−1
(

x�wx + y�wy +

(
e
f

))

= M−1
((

x�wx + y�wy+

(
e
f

))
−
(

e
f

))

= M−1(x�wx + y�wy)

= M−1(x�wx)+M−1(y�wy)

= x ·M−1(�wx)+ y ·M−1(�wy)

Now T maps the segments vx and vy to wx and wy respectively. It therefore
maps the vectors �vx and �vy to �wx and �wy. In fact, though, the situation with
the vectors is a little simpler. The map T has two components: a matrix
component M and a translation component B. The translation compo-
nent has no effect on the vectors– translating a representative of a vector
just gives another representative of the same vector– as far as vectors are
concerned, all the effect of T is contained in the matrix M. Therefore
M(�vx) = �wx and M(�vy) = �wy, and so M−1(�wx) = �vx and M−1(�wy) = �vy.
Plugging those in,

T−1(P) = x�vx + y�vy,

and so the coordinates for T−1(P) in the CF coordinate system are (x,y),
the same as the coordinates for P in the CG system.
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The real value of this theorem is in situations where calculations are dif-
ficult to work out in one coordinate system, but easy in another. In order
for you to get a more concrete sense of this result, though, let me look at
a few examples where coordinates of a point can be easily determined in
both systems.

Example 1. Let G be the frame {wx,wy} where in CF coordinates,

◦ wx has endpoint (3,4) and (4,4), and
◦ wy has endpoint (3,4) and (3,5).

Consider a point P with CF coordinates (6,3). It is clear that its CG coor-
dinates should be (3,−1). Let’s see if the previous theorem confirms that.
The isometry T that maps F to G is a translation by �3,4�. Its inverse is
the translation in the opposite direction:

T−1
(

x
y

)
=

(
x
y

)
−
(

3
4

)
,

and so, as anticipated,

T−1
(

6
3

)
=

(
6
3

)
−
(

3
4

)
=

(
3
−1

)
.

wx

wy

T

(6,3)

(0,0)

(3,4)
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Example 2. Let G be the frame {wx,wy} where in CF coordinates,

◦ wx has endpoint (2,0) and (1,0), and
◦ wy has endpoint (2,0) and (2,1).

Consider a point P with CF coordinates (3,2). Again, we can see that the
CG coordinates should be (−1,2). This time, the isometry that maps F to
G is a reflection that is given by the equation

T
(

x
y

)
=

(−1 0
0 1

)(
x
y

)
+

(
2
0

)
=

(−x
y

)
+

(
2
0

)
=

(
2− x

y

)
.

Since it is a reflection, it is its own inverse and we can calculate

T−1
(

3
2

)
=

(
2−3

2

)
=

(−1
2

)
.

In the last few lessons, we worked out the matrix equations for some,
but not all, isometries– in particular, we only gave equation for rotations
about the origin and reflections across lines through the origin. With the
right change of basis, we can now move the origin around, and so get
equations for any rotation or reflection. Let’s consider an example.

wx

wy

T

(3,2)

(0,0) (2,0)
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Example. Suppose we want to find the matrix equation of a counterclock-
wise rotation by π/2 around the point (3,1). Begin with the coordinates
(x,y) of an arbitrary point P. Now, the only formula we have for a rotation
is one for rotation about the origin. In order to use that formula, we are
going to have to switch to a coordinate system with (3,1) as its origin. We
can do it with a translation. There are three steps to the process:

1. Find the coordinates of P in the new coordinate system.
The translation T : (x,y) �→ (x + 3,y + 1) takes the current coordinate
frame to one with the origin at (3,1). To find the coordinates of P in
the new system, we just need to calculate T−1(P).

2. Calculate the rotation of this point.
The matrix for this rotation is

(
cosπ/2 −sinπ/2
sinπ/2 cosπ/2

)
=

(
0 −1
1 0

)
.

3. Write the the result in the original coordinate system.
Going the other direction, we now need to apply T to the result.

Combining those three steps gives the equation of the rotation:

R
(

x
y

)
=

(
0 −1
1 0

)[(
x
y

)
−
(

3
1

)]
+

(
3
1

)

=

(
0 −1
1 0

)(
x−3
y−1

)
+

(
3
1

)

=

(
1− y
x−3

)
+

(
3
1

)

=

(
4− y
x−2

)
.

This single example illustrates the general procedure. Let τ be an isom-
etry. Suppose F and G are frames and that S is the matrix equation of
the isometry that maps F to G (written in terms of the F-coordinate sys-
tem). Suppose that τ can be expressed as a matrix equation T in the
G-coordinate system. Then τ can be expressed as the matrix equation
S◦T ◦S−1 in the F-coordinate system.
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Exercises

1. Verify that vector addition is commutative and associative.

2. Prove that there is a unique isometry from any (orthonormal) frame to
any other (orthonormal) frame.

3. Prove the theorem in the lesson called “The Linearity of Matrix Oper-
ations”. You may assume that M is a 2× 2 matrix and that v1 and v2
are vectors in the plane.

4. What is the image of the point (3,0) under the counterclockwise rota-
tion by an angle π/6 about the point (1,1)?

5. What is the matrix equation for a glide reflection whose glide line is
y = 2x+ 1 and whose glide distance is 5 (and the glide vector points
from the origin into the first quadrant)?

6. Use a change of coordinates to find the general form for the counter-
clockwise rotation by an angle θ about a point (h,k).

7. Use a change of coordinates to find the general form for the reflection
across the line y = mx+b.

8. (a) Show that the composition of two translations is either a translation
or the identity.
(b) Show that the composition of a translation and a rotation is a rota-
tion.
(c) Show that the composition of two rotations is: (1) a translation or
the identity if the sum of the rotation angles is a multiple of 2π; (2) a
rotation otherwise.
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Similarity mappings

Throughout our study of Euclidean geometry, we have dealt with two fun-
damentally important equivalence relations for triangles– congruence and
similarity. The isometries of the last few lessons are closely tied to the
congruence relation: if T is any triangle and τ is any isometry, then τ(T )
is congruent to T . In this lesson, we will look at mappings that are tied to
the similarity relation.

DEF: SIMILARITY MAPPING
Def. A bijective mapping σ of the Euclidean plane is called a sim-
ilarity mapping if for every triangle T , T and its image σ(T ) are
similar.

The first and most important thing to do is to understand the effect that a
similarity mapping will have on distance.

THM: SIMILARITY MAPPINGS AND DISTANCE
A bijection σ is a similarity mapping if and only if it scales all dis-
tances by a constant. That is, σ is a similarity mapping if and only
if there is a positive real number k so that |σ(AB)| = k|AB| for all
segments AB.

Proof. =⇒ First suppose that σ scales all distances by a constant k. Then
given any triangle �ABC,

|σ(AB)|= k|AB| |σ(AC)|= k|AC| |σ(BC)|= k|BC|.

σ(C)

σ(B)

σ(A)

B

C

x y

ky kz

kx

zA
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By the S·S·S similarity theorem, �ABC and σ(�ABC) are similar, and
so σ meets the requirements of a similarity mapping.

⇐= Now suppose that σ is a similarity mapping. We need to show
that σ scales all distances by a constant– suppose instead that there are
two segments s1 and s2 that are not scaled by the same amount. From that,
we will try to get to a contradiction. This proof uses some triangles, and
in order to guarantee that the triangles will be properly formed, I need s1
and s2 to be in “general position”, so that no three endpoints of s1 and
s2 are collinear. Of course it is possible that s1 and s2 are not in general
position– what to do in that case? Choose another segment, s3, and get
it right this time: choose one whose two endpoints are not on any of the
lines formed by a pair of endpoints from s1 and s2. This new segment
may be scaled by the same amount as s1, or it may be scaled by the same
amount as s2, or it may be scaled by an entirely different amount. In any
case, s3 can’t be scaled by the same amount as both s1 and s2 since they
themselves differ. So now we have a setup with two segments in general
position with different scaling constants. Label them AB and CD.

Consider �ABC. Since σ is a similarity mapping, σ(�ABC) is similar to
�ABC. There is, then, a constant k so that

|σ(AB)|= k|AB| & |σ(BC)|= k|BC|.

Second, σ(�BCD) is similar to �BCD. We already know that |σ(BC)|=
k|BC|, and so |σ(CD)|= k|CD|. But that then means that AB and CD are
scaled by the same amount, a contradiction.

σ(A)
A

C

B

D
σ(D)

σ(C)

σ(B)s1

s2

s3

Fix a bad arrangement by replacing s2 with s3. Then look at similar triangles.
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Let’s investigate some of the properties of a similarity mapping σ .

LEM: SEGMENT CONGRUENCE
If AB � A�B�, then σ(AB)� σ(A�B�).

Proof. This follows immediately from the previous theorem since seg-
ments are congruent when they are the same length, and since

|σ(AB)|= k|AB|= k|A�B�|= |σ(A�B�)|.

LEM: ANGLE CONGRUENCE
1. For any angle ∠A, σ(∠A)� ∠A.
2. If ∠A � ∠A′, then σ(∠A)� σ(∠A′).

Proof. 1. Mark points B and C on the two rays forming A to make a tri-
angle �ABC. Since σ is a similarity mapping, σ(�ABC) is similar to
�ABC. The corresponding angles in similar triangles are congruent, so
σ(∠A)� ∠A.

2. If ∠A � ∠B, then using the first part,

σ(∠A)� ∠A � ∠A′ � σ(∠A′).

B

A A

B CB

A A

Congruence of segments. And of angles.
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Note that this property together with the distance scaling property means
that a similarity mapping will map any polygon to a similar polygon, not
just triangles.

LEM: INCIDENCE AND ORDER
If A∗B∗C, then σ(A)∗σ(B)∗σ(C).

Proof. Since A∗B∗C, |AC|= |AB|+ |BC|. Multiply through by the scal-
ing constant k to get

k|AC|= k|AB|+ k|BC|
|σ(AC)|= |σ(AB)|+ |σ(BC)|.

This is the degenerate case of the triangle inequality. The only way it can
be true is if σ(A), σ(B), and σ(C) are all collinear, and σ(B) is between
σ(A) and σ(C).

More generally, the images of any number of collinear points are collinear,
and their order is retained. Essentially, while similarity mappings distort
distances, they do so in a relatively tame way, and the key synthetic rela-
tions of incidence, order, and congruence, are preserved.

B

C

A

The image of B has to be at the intersection of the circles.
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Dilations

We have looked at some properties of similarities without ever really ask-
ing whether there are in fact mappings (other than isometries) that meet
this condition. There are, of course– we use them daily whenever we use
a map, or a blueprint, or a scale model.

DEF: DILATION
Let O be a point and k be a positive real number. The dilation by a
factor of k centered at O is the map d of the Euclidean plane so that
1. d(O) = O, and
2. for any other point P, d(P) is the point on OP� that is a distance
k|OP| from O.

Dilations are also called scalings, dilatations, and occasionally homoth-
eties. First of all, it is clear that a dilation is a bijection (that it is both
one-to-one and onto). In fact, it is easy to describe its inverse: if d is the
dilation by k centered at O, its inverse is another dilation centered at O,
this time by a factor of 1/k. When k = 1, d is the identity map. Otherwise,
a dilation will not be an isometry– it will alter distance.

0 x kx kyydist. from O:
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THM: DILATIONS AND DISTANCE
A dilation is a similarity mapping.

Proof. Let d be a dilation centered at O with a scaling factor of k. By def-
inition, any segment with one endpoint on O will be scaled by k. To show
that d is a similarity mapping, we need to show that any other segment AB
is scaled by that same amount. There are a handful of cases to consider.

1. Suppose that A and B are on the same ray from O, and for the sake
of convenience, let’s suppose that A is between O and B. Then d(A) and
d(B) are still on that same ray from O, at respective distances of k|OA|
and k|OB|, and so d(A) is still between O and d(B). Therefore

|d(AB)|= |d(OB)|− |d(OA)|
= k|OB|− k|OA|
= k(|OB|− |OA|)
= k|AB|.

2. Suppose that A and B are on opposite rays from O. Then d(A) and d(B)
are also on those same opposite rays, and so

|d(AB)|= |d(OA)|+ |d(OB)|
= k|OA|+ k|OB|
= k(|OA|+ |OB|)
= k|AB|.

O

O

A

A

B

B

k|OA|

k|OB|

k|OA|

O∗A∗B

A∗O∗B
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3. Surely the most common case, though, is when A and B are neither
on the same ray, nor on opposite rays from O. Compare then the tri-
angles �AOB and d(�AOB). Since d(O) = O, and d(A) and d(B) are
on the same rays from O as A and B, ∠AOB = d(∠AOB). In addition,
|d(OA)| = k|OA| and |d(OB)|= k|OB|. By the S·A·S similarity theorem,
then, �AOB and d(�AOB) are similar. Comparing the third sides of those
triangles, |d(AB)|= k|AB|.
As with isometries, the effect of a dilation can be described with a matrix
equation.

EQN: SCALING ABOUT THE ORIGIN
The matrix equation for a dilation d by a factor of k centered at the
point (0,0) is

d
(

x
y

)
=

(
kx
ky

)
.

Proof. We need to show that the mapping d that is given by the equation
has the same effect on points as a dilation by k does. There are three things
to show:

1. that d fixes the origin O;
2. that for any other point P, d(P) is on OP�; and
3. that the distance from O to d(P) is k|OP|.

O

A

B
k|OB|

k|OA|
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1. d
(

0
0

)
=

(
k ·0
k ·0

)
=

(
0
0

)
.

2. The slope of the line through the origin and (kx,ky) is (ky)/(kx) = y/x,
the same as the slope of the line through the origin and (x,y). Therefore
(kx,ky) and (x,y) are on the same line through the origin. Furthermore,
since we specified that the scaling constant k of a dilation is a positive
number, kx and ky will have the same signs as x and y, respectively. There-
fore (kx,ky) and (x,y) will be the in same quadrant, and so they are on the
same ray from the origin.

3. The distance from (0,0) to (kx,ky) is
√
(kx−0)2 +(ky−0)2 =

√
k2(x2 + y2) = k

√
(x−0)2 +(y−0)2.

It is k times the distance from the origin to (x,y).

As we did earlier with isometries, we can now use a change of coordinates
to describe dilations about any point.

EQN: DILATION ABOUT AN ARBITRARY POINT
The matrix equation for a dilation d by a factor of k centered at the
point (a,b) is

d
(

x
y

)
=

(
kx+(1− k)a
ky+(1− k)b

)
.
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Proof. Let P be an arbitrary point with coordinates (x,y). The strategy of
this proof is simple– follow the procedure that we developed in the lesson
on changing coordinates:

1. convert (x,y) to a coordinate system whose origin is at (a,b);
2. perform the scaling by a factor of k; and then
3. convert the result back to the original coordinate system.

1. The translation t(x,y) = (x + a,y+ b) shifts the standard coordinate
frame centered at (0,0) to one that is centered at (a,b). To compute the
coordinates of P in the new coordinate system, then, apply t−1:

(
x
y

)
�→

(
x−a
y−b

)

2. Now scale by k, using the special formula from the previous theorem.

�→
(

k(x−a)
k(y−b)

)

3. Convert back to the original coordinate system by applying t:

�→
(

k(x−a)+a
k(y−b)+b)

)
=

(
kx+(1− k)a
ky+(1− k)b

)
.

(a, b)

t
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Preserving incidence, order, and congruence

Dilations and isometries are similarity mappings. It is natural to wonder
what other types of similarity mappings there might be, but I actually
want to investigate what is in theory a slightly more general question.
Every similarity mapping preserves the relations of incidence, order and
congruence. We have seen two such types of mappings– dilations and
isometries. What other types of bijections will preserve these structures?
It all hinges on the congruence relation. In the next three lemmas, f is a
bijection that preserves incidence, order, and congruence.

LEM: HALVING SEGMENTS
Let s1 and s2 be segments. If |s1| = 1

2 |s2|, and f scales s2 by k, then
f scales s1 by k as well.

Proof. Label the two endpoints of s2 as A and B, and its midpoint as M.
Then all three segments s1, AM, and BM are congruent and so their images
must be as well. Then

| f (s1)|= (| f (s1)|+ | f (s1)|)/2
= (| f (AM)|+ | f (BM)|)/2
= | f (AB)|/2
= k|AB|/2
= k ·2|s1|/2
= k|s1|.

A
M

Bs1 s2
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LEM: CHAINING SEGMENTS TOGETHER
If A∗B∗C and if f scales both AB and BC by k, then f scales AC by
that same constant.

Proof. Since f preserves the order of points, f (A)∗ f (B)∗ f (C), and so

| f (AC)| = | f (AB)|+ | f (BC)|
= k|AB|+ k|BC|
= k(|AB|+ |BC|)
= k(|AC|).

LEM: DYADIC LENGTHS
If |s1| = (m/2n) · |s2| where m and n are positive integers, and if f
scales s2 by k, then f scales s1 by k as well.

Proof. The first lemma tells us that a segment of length (1/2) · |s2| will be
scaled by k. Applied again, it tells us that a segment of length (1/4) · |s2|
will be scaled by k. And so on, so that for all positive integers n, a segment
of length (1/2n) · |s2| will be scaled by a factor of k. Then we can line up
m segments of length (1/2n) · |s2|, to get a segment of length (m/2n) · |s2|.
By repeatedly applying the second lemma, we can see that it too must be
scaled by k.

k
k

A CB
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THM: THAT IS ALL, PART I
Any bijection of the Euclidean plane that preserves incidence, order,
and congruence is a similarity mapping.

Proof. Let f be a bijection that preserves incidence, order, and congru-
ence. Since f maps congruent segments to congruent segments, all seg-
ments of a given length will be scaled by the same amount. Let k be the
scaling constant for a segment of length one. By subdividing and chaining
together (as described above), k is the scaling constant for all segments of
length m/2n. We need to show that k is the scaling constant for segments
of all other lengths as well. Suppose that segment OA has a length of x and
that | f (OA)|= k�|OA|. To get an idea of k�, we can use dyadic approxima-
tions to pin OA between segments that are scaled by k. For each n, there
is an mn so that

mn

2n ≤ x ≤ mn +1
2n .

Along the ray OA �, mark off points M<
n and M>

n bracketing A so that
|OM<

n | = mn/2n and |OM>
n | = (mn + 1)/2n. Reading off the points in

order, then O ∗M<
n ∗A ∗M>

n . The distance between M<
n and M>

n is 1/2n,
so as n increases, the bracketing of A gets tighter and tighter. Since f
preserves incidence and order, when we apply it to these points, we get a
bracketing of f (A) that can give us an idea of the scaling of OA:

f (O)∗ f (M<
n )∗ f (A)∗ f (M>

n )

| f (OM<
n )| ≤ | f (OA)| ≤ | f (OM>

n )|
k ·mn/2n ≤ k� · |OA| ≤ k · (mn +1)/2n.

A

O

M<
n M>

n
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To find k�, divide through by |OA|

k · mn/2n

|OA| ≤ k� ≤ k · (mn +1)/2n

|OA| .

This set of inequalities is true for all values of n. Notice that as n increases,
both of the terms (mn/2n)/|OA| and ((mn + 1)/2n)/|OA| approach one.
The only way that this inequality can be satisfied for all n, then, is for k�
to be equal to k. Therefore f scales all distances by the same constant k–
this means that f is a similarity mapping.

THM: THAT IS ALL, PART II
Any bijection that preserves incidence, order, and congruence can be
written as a composition of an isometry and a dilation.

Proof. Let f be such a bijection. As we have just seen, that means f is
a similarity mapping, which in turn means that f scales all distances by
some constant k. Let d be the dilation centered at the origin by a factor of
k. Its inverse, d−1 is a dilation by a factor of 1/k, so for any segment s,

|d−1 ◦ f (s)| = (1/k) · | f (s)| = (1/k) · k · |s| = |s|.

Therefore d−1 ◦ f is an isometry. Writing τ for this isometry, d−1 ◦ f = τ .
Hit both sides of this equation with the dilation d to get

d ◦d−1 ◦ f = d ◦ τ =⇒ f = d ◦ τ ,

and we have just written f as a composition of an isometry and a dilation.
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Exercises

1. What is the image of the point (2,3) under the scaling by a factor of 4
centered at the point (1,5)?

2. Show that if d1 and d2 are transformations with the same scaling factor,
then there is an isometry τ so that d2 = τ ◦d1.

3. Show that if d1 is a scaling by a factor of k1 and d2 is a scaling by a
factor of k2, then d1 ◦d2 is a scaling by a factor of k1 · k2.

4. Write an equation for the similarity mapping that is formed by
1. first dilating by a factor of 1/2 about the point (1,1), and then
2. reflecting across the x-axis.
Does this transformation have any fixed points?

5. Prove that if �ABC ∼ �A�B�C�, then there is a similarity mapping σ
so that σ(A) = A�, σ(B) = B�, and σ(C) =C�.

6. Consider the similar triangles �ABC and �A�B�C� with vertices at the
following coordinates:

A = (0,0) B = (1,0) C = (0,1)
A� = (2,0) B� = (0,2) C� = (0,−2)

Find the equation of the similarity mapping that maps �ABC to �A�B�C�.
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31 APPLICATIONS OF 
TRANSFORMATIONS
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We have spent the last several lessons building up a theory of Euclidean
transformations. To do that, we drew upon some of the Euclidean the-
ory that we had previously developed. Now in this lesson we will turn
the tables and use the theory of transformations to prove three results of
classical Euclidean geometry.

Varignon’s Theorem

The first result, Varignon’s Theorem, discovers a parallelogram that hides
inside of any quadrilateral. The proof of this theorem uses half-turns.
Recall from Lesson 26 (on rotations) that

DEF: HALF-TURN
A half-turn is a rotation with a rotation angle of π .

Note that a half-turn is its own inverse. Because of that, this is the one in-
stance where we don’t have to specify whether the rotation is clockwise or
counterclockwise– they are the same. In the exercises at the end of Lesson
29 (change of coordinates), I asked you to investigate what happens when
you compose two rotations. In particular, you were supposed to verify that
if the two angles of rotation add up to a multiple of 2π , then their com-
position is either the identity or a translation (it is a fairly straightforward,
albeit messy, calculation using the matrix equations for a rotation). Be-
cause of that, when we compose any two half-turns, their rotation angles
add up to π + π = 2π , and the result must be either a translation or the
identity.

LEM: COMPOSING FOUR HALF-TURNS
Let rA, rB, rC, and rD be half-turns around four distinct points A, B,
C, and D. If the composition rA ◦ rB ◦ rC ◦ rD is the identity map, then
the quadrilateral ABCD is a parallelogram.
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Proof. Let’s break that four-part composition into two pieces: rA ◦ rB is
one and rC ◦ rD is the other. If we assume that their composition is the
identity, then they must be inverses of each other. That is

rC ◦ rD = (rA ◦ rB)
−1 = r−1

B ◦ r−1
A .

Each of rB and rA is its own inverse, though, since they are half-turns.
Thus rC ◦ rD = rB ◦ rA. In that case, we can apply both of these maps to
the point A, chasing it in two directions around the quadrilateral, and we
should end up in the same place. Label that ending point P, and along the
way label one more point, Q = rD(A). That is,

rC ◦ rD(A) = rC(Q) = P & rB ◦ rA(A) = rB(A) = P.

The points A, P, and Q form a triangle around the original quadrilateral.
This triangle is particularly well-balanced with respect to ABCD. You see,
because rD is an isometry, |AD| = |DQ|; and because rC is an isometry,
|QC|= |CP|; and because rB is an isometry, |PB|= |AB|. Thus,

|AQ|= 2|DQ|, |QP|= 2|CQ|= 2|CP|, |PA|= 2|PB|.

By S·A·S similarity we have created two sets of similar triangles: �AQP
is similar to �DQC, and �QPA is similar to �CPB. Matching up angles
in them, ∠DCQ � ∠P and ∠A � ∠PBC. Finally, the Alternate Interior
Angle Theorem tells us that CD � AB and AD � BC and so ABCD is, by
definition, a parallelogram.

A
E

H

G

F

D

Q

P

C

ABCD is a parallelogram EFGH is not a parallelogram
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THM: VARIGNON’S THEOREM
Let A1A2A3A4 be any quadrilateral and label the midpoints of the
four sides B1, B2, B3 and B4, so that Bi is the midpoint of AiAi−1
(subscripts are taken “mod 4”). Then B1B2B3B4 is a parallelogram.

Proof. The strategy should be pretty obvious– use the last lemma! That
means we need to look at the composition r1 ◦ r2 ◦ r3 ◦ r4 of half-turns
around the four midpoints B1, B2, B3, and B4. We need to show it is the
identity. For starters, let’s take the four half-turns in pairs again, as r1 ◦ r2
and r3 ◦r4. Each of these is a translation, and so their composition is either
a translation or the identity. Now the easiest way to show that a map is the
identity rather than a translation is to find a fixed point– translations don’t
have any. In the case of r1 ◦ r2 ◦ r3 ◦ r4 there is one fixed point that is easy
to find:

r1 ◦ r2 ◦ r3 ◦ r4(A4)

= r1 ◦ r2 ◦ r3(A3)

= r1 ◦ r2(A2)

= r1(A1)

= A4.

A1

A2

A3

A4

r2

r1

r4

r3

B2

B3

B4

B1
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Since r1 ◦ r2 ◦ r3 ◦ r4 has a fixed point, it cannot be a translation, and so it
must be the identity. According to the previous lemma, B1B2B3B4 must
be a parallelogram.

Napoleon’s Theorem

Like Varignon’s Theorem, Napoleon’s Theorem reveals an unexpected
symmetry. And yes, it is named after that Napoleon, although there is
some skepticism about whether he in fact discovered it. I guess once you
have conquered half of Europe, no one is going to raise a fuss if you claim
a theorem or two as well.

THM: NAPOLEON’S THEOREM
Given any triangle �ABC, construct three equilateral triangles exte-
rior to it– one on each of the sides AB, BC, and CA. The centers of
these three equilateral triangles are the vertices of another triangle.
This triangle is also equilateral.

Napoleon’s Theorem: two examples

A A B

C CB
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Proof. This proof begins as Varignon’s did, with a composition of rota-
tions whose rotation angles add up to 2π . The fixed point is easy to find,
meaning that the composition is the identity. It may not be immediately
clear how to use that fact in a meaningful way, and so it is admittedly a
bit of a scramble to the finish. Anyway, this time around the fundamental
symmetry of the situation comes from the three equilateral triangles, and
the rotations that capture that symmetry are 1/3-turns around the centers
of the equilateral triangles. To make sure that our labeling is consistent,
let’s do a quick check: I want the path that goes from A to B to C to A to
make a clockwise loop around the triangle. If it instead makes a counter-
clockwise loop, you can just swap two of the labels to fix it. Now label
the centers of those equilateral triangles as a, b, and c, where

a is the center of the triangle
built off of side AB,

b is the center of the triangle
built off of side BC, and

c is the center of the triangle
built off of side CA.

Label the corresponding 2π/3 counterclockwise rotations around these
points as ra, rb, and rc. When we compose these three rotations, their
rotation angles add up to 2π/3+2π/3+2π/3 = 2π , so their composition
rc ◦ rb ◦ ra must be either a translation or the identity. Now take a look
inside one of the equilateral triangles, say the one centered at a, and notice
that in it |aA|= |aB|, and (∠AaB) = 2π/3. That means that ra sends A to
B. Likewise, rb sends B to C and rc sends C to A. In combination,

rc ◦ rb ◦ ra(A) = rc ◦ rb(B) = rc(C) = A,

and so rc ◦ rb ◦ ra has a fixed point. Well, it can’t be a translation then, so
it must be the identity.

A

a

b

c

C B
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Now for the scrambling part. Let’s see what happens when we plug the
point a into this composition (that is really just the identity):

rc ◦ rb ◦ ra(a) = a =⇒ rc ◦ rb(a) = a =⇒ rb(a) = r−1
c (a)

This gives us one last point to label: d = rb(a). There are two triangles to
look at.

The first is �abd. Since rb maps
the segment ba to the segment bd,
ba and bd are congruent. Thus
�abd is an isosceles triangle. Fur-
thermore, at vertex b, we know
the angle measure is 2π/3. The
other two angles in this triangle
must add up to π − 2π/3 = π/3.
According to the Isosceles Trian-
gle Theorem, they are congruent,
though, so they each measure π/6.

The second triangle is �acd. The
map r−1

c is also a rotation by
2π/3– it is just a clockwise rota-
tion by that amount. It maps the
segment ca to the segment cd, and
so they must be congruent. There-
fore, �acd is also isosceles, its
angle at vertex c has a measure
of 2π/3, and that means its other
two angles also must each measure
π/6.

Finally, when we put the two pieces together, we get

(∠bac) = (∠bad)+ (∠cad) = π/6+π/6 = π/3.

a

d b

c

2π/3
π/6
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This angle at a is no more special than the angles at vertices b and c,
though. A similar argument (in which the the compositions of ra, rb, and rc
are taken in different orders) will show that the other two angles of �abc
also measure π/3. Therefore �abc is equiangular and so it is equilateral.

The Nine Point Circle

For the last part of this lesson, let’s look back at the Nine Point Circle
Theorem. We proved this theorem way back in Lesson 20 without using
transformation methods– the key then was to find a diameter of the nine-
point circle. This time, the key is to find a transformation that maps the
nine-point circle to the circumcircle. In the Lesson 20 proof, we also
needed to know that the diagonals of a parallelogram bisect one another.
In this proof, we will need the converse of that.

LEM: BISECTING DIAGONALS
If segments AC and BD bisect each other, then the quadrilateral ABCD
is a parallelogram.

Proof. Let h be the half-turn around the point of intersection of AC and
BD. Then h interchanges A and C, and it interchanges B and D. Therefore
h(∠BAC) = ∠DCA. That means that ∠BAC must be congruent to ∠DCA,
and according to the Alternate Interior Angle Theorem, then, AB is par-
allel to CD. Similarly, h(∠CAD) = ∠ACB, meaning ∠CAD is congruent
to ∠ACB, so AD is parallel to BC. Quadrilateral ABCD has two pairs of
parallel sides– it must be a parallelogram.

A
D

C
B
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THM: THE NINE POINT CIRCLE THEOREM, REVISITED
For any triangle, the following nine points all lie on the same circle:
(1) the feet of the three altitudes, (2) the midpoints of the three sides,
and (3) the midpoints of the three segments connecting the orthocen-
ter to each vertex. This circle is called the nine-point circle associated
with that triangle.

Proof. Given a triangle �A1A2A3 with orthocenter R, label

Li, the foot of the altitude which passes through Ai,
Mi, the midpoint of the side that is opposite Ai, and
Ni, the midpoint of the segment AiR.

Let d be the dilation by a factor of two centered at the orthocenter. We
will show that d(Li), d(Mi), and d(Ni) are all on the circumcircle C. [Note
that this proof does not handle a few degenerate cases: when Mi = R, the
quadrilateral described in (2) cannot be formed, and when Li = Mi, the
right angle described in (3) cannot be formed. Those case are easily re-
solved though, so I have omitted them to keep the proof as streamlined as
possible.]

The points Ni. Since Ni is halfway from R to Ai, d maps each of the points
Ni to the corresponding vertex Ai. All three of the vertices are, of course,
on C.

N1

A1

A2 A3

R
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The points Mi. This is the difficult one. Take for example M1, the midpoint
of A2A3. The dilation d maps M1 to a point D that is twice as far away from
R as M1, and so M1 is the midpoint of RD. Thus M1 is the intersection of
two bisecting diagonals, A2A3 and RD. As we just proved, this means that
the quadrilateral RA2DA3 is a parallelogram. Therefore

1. DA3 is parallel to RA2, the altitude perpendicular to A1A3. Hence
DA3 is perpendicular to the side A1A3.

2. DA2 is parallel to RA3, the altitude perpendicular to A1A2. Hence
DA2 is perpendicular to the side A1A2.

In other words, both ∠A1A2D and ∠A1A3D are right angles. According to
Thales’ Theorem, both A2 and A3 have to be on the circle with diagonal
A1D. Well, there is only one circle through the three points A1, A2, and
A3– it is the circumcircle C. Therefore D = d(M1) must be on C. It is
just a matter of shuffling around the indices to show that d maps M2 and
M3 to points of C as well. Furthermore, each of the segments Aid(Mi) is
a diameter of C. Note that this is in keeping with the Lesson 20 proof–
in that proof, we showed directly that NiMi is a diameter of the nine point
circle. Here we see that its scaled image d(NiMi) = Aid(Mi) is a diameter
of the circumcircle.

A1

M1A2 A3

R

D
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The points Li. The intersection of each altitude with its corresponding
side forms a right angle ∠NiLiMi. Now apply the dilation: the result,
d(∠NiLiMi), will still be a right angle. As we just saw, d(NiMi) is a diam-
eter of C. By Thales’ Theorem, d(Li) must be on C as well.

In conclusion, the dilation d maps the nine points Li, Mi, and Ni to nine
points of C. In reverse, d−1 will map nine points of C to Li, Mi, and Ni.
Since d−1 is a Euclidean transformation, it will map the points of one
circle, such as C, to the points of another circle. Therefore Li, Mi and Ni
must all be on the same circle.

These transformations provide a fundamentally different perspective on
the problems of geometry. I hope that these few examples give you a little
sense of that. Going forward, transformations will be a critical weapon in
our arsenal.

A1

N1

L1 M1A2 A3
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Exercises

1. Prove that the composition of two half-turns around distinct points sep-
arated by a distance x is a translation by a distance 2x.

2. Let r be a rotation around point P. Prove that every line through P is
invariant (that is, r(�) = �) if and only if r is a half-turn.

3. Given a triangle �ABC, let
rA be the half-turn around the midpoint of BC,
rB be the half-turn around the midpoint of AC, and
rC be the half-turn around the midpoint of AB.
Then rA ◦ rB ◦ rC is a half-turn as well. What is its center of rotation?
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4. Show that if ABCD is a parallelogram, then the composition rA ◦ rB ◦
rC ◦ rD of half-turns around A, B, C, D is the identity (the converse of
what we proved in the lesson).

5. Consider a triangle �ABC whose vertices are located at the following
coordinates: A= (0,0), B= (2,0), and C = (1,3). Find the diameter of
the circumcircle of �ABC, and from that, the radius of the nine point
circle.
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The area function

It took us long enough, but we have finally gotten around to talking about
area. Fundamentally, when we talk about the area of a polygon, we are
talking about a number, a positive real number. So you can think of area as
a function from the set of all polygons to the set of positive real numbers

A : {polygons} −→ (0,∞).

That’s not all though– if this area function is going to live up to our ex-
pectations, it needs to meet a few other requirements as well.

1. If two polygons are congruent, their areas should be the same. This
statement can also be interpreted in terms of isometries. Remember
that if P is any polygon and τ is any isometry, then τ(P) and P are
congruent. Therefore area should be an invariant of any isometry.

2. If a polygon can be broken down into smaller pieces, then the area
of the polygon should be the sum of the areas of the pieces. More
precisely, let int (P) denote the set of points in the interior of a poly-
gon P, and let P denote that set of interior points together with the
points on the edges of P. A set of polygons {Pi} is a decomposition
of P if

∪Pi = P (the pieces cover P), and

int (Pi)∩ int(Pj) = /0 if i �= j (the pieces don’t overlap).
In this context, if {Pi} is a decomposition of polygon P, then A(P)
should equal ∑A(Pi).

Congruent polygons have the same area.
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3. Finally, we need something to get us started, and it is this: the area
of a rectangle with a base b and a height h is A = bh.

The congruence and decomposition conditions allow us to cut apart and
rearrange polygons, starting with rectangles, to find the areas of other,
more exotic shapes. We will start that process in the next few results.
Because these early results are just a few steps removed from the formula
for the area of a rectangle, these formulas also involve bases and heights,
so let me first clarify what is meant by “base” and “height” in each of
these shapes.

Three convex shapes. Since they can be decomposed into the same set of 
congruent pieces (the tangram tiles), they must have the same areas.

b

h bh
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Parallellogram: Any side of a parallelogram can serve as its base. The
height is a segment that is perpendicular to the base; one of its endpoints
is on the line containing the base and the other is on the line through the
opposite side. Usually you will want to use a vertex of the parallelogram
as one of the endpoints for the height.

Trapezoid: The two parallel sides are both considered bases (the area for-
mula uses them both). The height is as in the parallelogram– a segment
perpendicular to, and connecting, the lines through the two parallel sides.

Triangle: Any of the sides of a triangle can serve as its base. The height is
the segment from the opposite vertex to the line containing the base, per-
pendicular to that base (the height runs along the altitude, but I originally
defined an altitude to be a line, not a segment).

Let’s start cutting and gluing to find some area formulas.

THM: AREA OF A PARALLELOGRAM
A parallelogram with base b and height h has area A = bh.

Proof. With a well-mannered parallelogram, you just need to cut off the
triangular end and shift it to the other side. Since adjacent angles in a
parallelogram are supplementary, the two pieces will fit perfectly to form
a rectangle with base b and height h. Since cutting and rearranging pieces
doesn’t change the total area, the area of the parallelogram is the same as
the area of the rectangle.

h h h

b bb1

b2
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If the parallelogram is particularly narrow, this simple approach may not
work– the height line along which you need to cut may slip outside the
parallelogram. In this case, you can lay out congruent copies of the par-
allelogram next to each other to form a wider parallelogram. Do this
enough times (let’s say n times) and eventually the result will be wide
enough to fall in the well-behaved scenario described above. It is a par-
allelogram with a base of nb and a height of h, so its area is A = nbh. It
is made up of n congruent pieces, each of which must then have an area
A = (nbh)/n = bh.

h

b
b

h h

b nb
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This formula for the area of a parallelogram raises an important issue:
there are two choices for what will be the base of the parallelogram (ac-
tually, any of the four sides could be the bases, so there are really are four
choices, but since the opposite sides of a parallelogram are congruent,
there are two different choices). In order for the area of a parallelogram to
be well-defined, it must not depend upon which of those choices we make.

THM: THE ILLUSION OF CHOICE I
The area of a parallelogram does not depend upon the choice of base.

Proof. Consider a parallelogram with sides of length a and b. Let ha be
the height corresponding to the base of length a, and let hb be the height
corresponding to the base of length b.

Then we can write the area of the parallelogram as either A = aha or
A = bhb. Note, though, that if θ is the angle between the sides of the
parallelogram (take the acute angle for convenience), then ha = bsinθ
and hb = asinθ , so either way, A = absinθ .

a

b

hb

ha
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THM: AREA OF A TRIANGLE
A triangle with base b and height h has area A = 1

2bh.

Proof. Begin with a triangle �ABC. Identify the base b of this triangle as
the segment AB, and the corresponding height h. Consider a half-turn r
through the midpoint of BC. The resulting triangle r(�ABC) is congruent
to the original and r swaps the points B and C– that means the alternate
interior angles at B and C are congruent, so the sides AB and Cr(A) are
parallel, as are the sides AC and Br(A). We have created a parallelogram!
It has a base b and a height h, so its area is bh. The area of each of the two
triangles forming it, then, must be half of that– they will have an area of
bh/2.

As with the parallelogram, this raises the issue: there is an apparent choice
of base– does that choice effect the result?

THM: THE ILLUSION OF CHOICE II
The area of a triangle does not depend upon the choice of base.

Proof. Start with a triangle �ABC. There are three choices of base here,
and each can potentially lead to a different, non-congruent, parallelogram.

A

r

C

B

h

r(A)
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Label the corresponding heights:

hA: the height associated with BC,
hB: the height associated with AC, and
hC: the height associated with AB.

But look more closely. The two parallelograms formed by turning across
AB and AC both have base BC and height hA, so they have the same area.
And the two parallelograms formed by turning across AB and BC both
have base AC and height hB, so they too have the same area. So yes, the
parallelograms may not be congruent, but they do have the same area.

AREA OF A TRAPEZOID
A trapezoid with bases b1 and b2 and height h has area

A =
b1 +b2

2
·h.

I will leave it to you to prove this one.

A

CB

hA

hB

hB

hA

hC

hC
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Laws of Sines and Cosines

Standard trigonometry provides functions that describe the relationships
between the sides and angles of a right triangle. Out of the box, though,
those relationships are limited to right triangles. The Law of Sines builds
from those elementary relationships to describe some of the connections
between the angles and the sides of an arbitrary triangle. We could have
derived the Law of Sines way back when we first looked at the trigono-
metric functions, but we didn’t. So now let’s do it by thinking in terms of
area.

THM: THE LAW OF SINES
In a triangle �ABC, let a denote the length of the side opposite ∠A,
b denote the length of the side opposite ∠B, and c denote the length
of the side opposite ∠C. Then

sinA
a

=
sinB

b
=

sinC
c

.

Proof. We know that each of the three sides of the triangle can serve as the
base in the calculation of its area, and that no matter which side is chosen,
the result is the same. Doing that calculation with each of the sides:

1
2 ahA = 1

2bhB = 1
2chC

where hA, hB, hC are the heights corresponding to the bases a, b, and c
respectively.

C C CB B B

A

c c

a a

A A

hA hB
hC
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Work with the first equality and note that we can write hA = csin B and
hB = csinA. Therefore

1
2acsin B = 1

2bcsin A
asinB = bsin A
sinB

b
=

sinA
a

.

That gets the first half of the Law of Sines, and working with the second
equality is similarly productive: with hB = asinC and hC = asin B,

1
2basinC = 1

2casin B
bsinC = csinB
sinC

c
=

sin B
b

.

I am pretty sure that the first proof I ever saw in my life was a proof of
the Pythagorean Theorem that I stumbled across while flipping through
my parent’s copy of Bronowski’s The Ascent of Man. It was a proof based
upon calculating the areas of triangles and squares. Of course, we have al-
ready seen one proof of the Pythagorean Theorem, but (1) the Pythagorean
Theorem is fairly important; (2) this proof is personally significant to me;
and (3) it suggests a way to use area to prove the Law of Cosines.

THM: THE PYTHAGOREAN THEOREM
In a right triangle with legs of length a and b, and hypotenuse of
length c,

c2 = a2 +b2.

Proof. Position four congruent copies of the triangle around a square with
sides of length c as shown. Now look at how the angles come together at
each corner of the square– the two acute angles of the right triangle, and
then the right angle of the square. Taken together, these three angles add
up to π– that means the edges of the triangles join up in a straight line.
The pieces fit perfectly to form a square with sides of length a+ b. We
can calculate the area of the big square in two ways.
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1. Directly in terms of its sides:

(a+b)2 = a2 +2ab+b2.

2. By adding the areas of the center square and surrounding triangles:

c2 +4 · 1
2ab = c2 +2ab

Set the two equal, subtract 2ab from both sides, to get c2 = a2 + b2, the
Pythagorean Theorem.

The Pythagorean Theorem only applies to right triangles. There is, how-
ever, an extension of the Pythagorean Theorem called the Law of Cosines
that can be used in any triangle.

THM: THE LAW OF COSINES
Given a triangle with sides of length a, b, and c, and angle θ opposite
side c,

c2 = a2 +b2 −2abcosθ .

b a

a b

a

c

c

c

c

b

b

a
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Proof. As in the last proof, what we want to do is to build four congruent
copies of the triangle around a square with sides c. If ∠θ is a right angle,
then the 2abcosθ term in the equation is zero, and this really is just the
Pythagorean Theorem. In terms of the proof, it is when ∠θ is right that
the sides of the two neighboring triangles line up with each other to form
a square. If ∠θ is not a right angle, this does not happen, and so we will
have to work a little harder. That special Pythagorean arrangement neatly
splits the more general problem into two cases– one when ∠θ is acute
and one when ∠θ is obtuse. I will take the acute case, and leave you the
obtuse case.

The four congruent copies of the triangle form a pinwheel shape around
the square. We can build a square that frames that pinwheel by drawing
lines through each pinwheel tip parallel to the “a” sides of the triangle.
Since adjacent triangles in the pinwheel are turned at right angles to each
other, these new lines will also intersect at right angles. So we have a big
square which is divided into four trapezoids, four triangles and a smaller
square. Now let’s calculate the dimensions of these shapes.

4= + 4+

b

a

a

c
bsinθ

bcosθbcosθ

b

(alternate interior angles)
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Area of the big square:

(a+b(sinθ + cosθ))2

= a2 +2ab(sinθ + cosθ)+b2(sinθ + cosθ)2

= a2 +2absinθ +2abcosθ +b2 +2b2 sinθ cosθ .

Area of the small square: c2.

Area of one of the four triangles: 1
2absinθ .

Area of one of the four trapezoids:

1
2(a+(a+bsinθ)) ·bcosθ

= 1
2 (2abcosθ +b2 sinθ cosθ)

= abcosθ +
1
2

b2 sinθ cosθ .

asinθ

b

a

c

b

a

absinθ

bcosθ
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Since the area of the whole is the sum of the areas of the parts

a2+2absinθ +2abcosθ +b2 +2b2 sinθ cosθ
= c2 +4

(1
2 absinθ

)
+4

(
abcosθ + 1

2b2 sinθ cosθ
)
.

Simplify and cancel out common terms to get the Law of Cosines,

a2 +b2 −2abcosθ = c2.

Hint: if you are interested in proving the obtuse case, then I would suggest
you build the triangles inside the square with sides c, as shown in the
following illustration, rather than out around it.

Heron’s formula

To close out this lesson, I want to use the Law of Cosines to derive an-
other formula for the area of a triangle called Heron’s Formula. The S·S·S
Triangle Congruence Theorem says that a triangle is uniquely determined
by the lengths of its three sides. That means there should be a formula to
calculate the area of a triangle using the just the lengths of its sides. The
formula A = bh/2 does not do that, since it also requires a height. But
Heron’s Formula does.

b

a
c
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DEF: SEMIPERIMETER
The semiperimeter s of a triangle is half its perimeter. If a triangle
has sides of length a, b, and c, then its semiperimeter is

s = 1
2(a+b+ c).

THM: HERON’S FORMULA
The area of a triangle with sides of length a, b, and c, and semiperime-
ter s is

A =
√

s(s−a)(s−b)(s− c).

Proof. This theorem is not difficult from a theoretical point of view. It is a
nuisance, however, on the calculation side. Label the sides of the triangle
so that side a is the base and the angle θ between a and b is acute (at least
two angles in any triangle have to be acute, so this is no problem).

Then the area of the triangle is

A =
1
2

absinθ .

We want to get that θ out of the picture. The Law of Sines might seem
like the obvious choice, but it always relate an {angle & side} to another
{angle & side}, so it doesn’t help eliminate angles entirely. The Law of
Cosines does give a way to relate an angle to the three sides– that’s what
we need to use– so we have to write the area in terms of cosine, not sine.
Use the Pythagorean Identity:

sin2θ + cos2 θ = 1 =⇒ sin2 θ = 1− cos2 θ .

b

a

a/2 c/2

b/2
s

c
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Normally at this point, taking the square root of both sides would yield
two solutions. In this case, since I required that θ be an acute angle, sinθ
will be a positive number, and we can go with the positive root

sinθ =
√

1− cos2 θ ,

so the area of the triangle is

A = 1
2ab

√
1− cos2 θ .

Now use the Law of Cosines

c2 = a2 +b2 −2abcosθ =⇒ cosθ =
c2 −a2 −b2

2ab
,

and substitute into the area formula to get a big algebra problem:

A = 1
2ab

√
1−

[
c2 −a2 −b2

2ab

]2

= 1
2ab

√
4a2b2 − (c2 −a2 −b2)2

4a2b2

= 1
2ab · 1

2ab

√
4a2b2 − (c4 −2a2c2 −2b2c2 +a4 +2a2b2 +b4)

= 1
4

√
−(a4 −2a2b2 +b4)+2(b2c2 + c2a2)− c4

= 1
4

√
−(a2 −b2)2 +2c2(a2 +b2)− c4

= 1
4

√
−(a2 −b2)2 +(a2 +b2)2 − (a2 +b2)2 +2c2(a2 +b2)− c4

= 1
4

√
(−a4 +2a2b2 −b4 +a4 +2a2b2 +b4)− ((a2 +b2)2 − c2)2
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= 1
4

√
4a2b2 − ((a2 +b2)− c2)2

= 1
4

√
(2ab− (a2 +b2 − c2))(2ab+(a2 +b2 − c2))

= 1
4

√
((−a2 +2ab−b2)+ c2)((a2 +2ab+b2)− c2)

= 1
4

√
(c2 − (a−b)2)((a+b)2 − c2)

= 1
4

√
(c+(a−b))(c− (a−b))((a+b)+ c)((a+b)− c)

=

√
(a−b+ c)(−a+b+ c)(a+b+ c)(a+b− c)

16

=

√
a−b+ c

2
· −a+b+ c

2
· a+b+ c

2
· a+b− c

2

=

√[
a+b+ c

2
−b

]
·
[

a+b+ c
2

−a
]
·
[

a+b+ c
2

]
·
[

a+b+ c
2

− c
]

=
√

(s−b)(s−a)s(s− c).

In this lesson, we started from area of a rectangle and worked our way
down to area of a triangle. In the next lesson, we will build up from the
area of a triangle to the area of polygons in general.
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Exercises

1. We took as definition that the area of a rectangle is given by the formula
A= bh. That can be derived from a much more minimal condition– that
the area of a 1×1 square is one. Derive the general formula for the area
of a rectangle from this.

2. In a parallelogram with sides of length a and b, and acute interior angle
θ , describe the number of strips n required to cut and form a rectangle
(as described in the proof of the parallelogram area formula) in terms
of a, b, and θ .

3. Prove the area formula for the trapezoid.

4. The Penrose tiles are a pair of rhombuses that in conjunction tile the
Euclidean plane in an aperiodic manner (they are named after Roger
Penrose, who discovered their aperiodicity). One of the tiles has inte-
rior angles measuring 2π/5 and 3π/5. The other has interior angles
measuring π/5 and 4π/5. Find the areas of the two Penrose tiles as-
suming the lengths of each side of a tile is 1.
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5. Consider a triangle �ABC whose vertices are located at the following
coordinates: A=(0,0), B=(3,1), and C = (4,2). Calculate the area of
�ABC, first using the formula A = bh/2, then using Heron’s Formula.

6. Find a formula for the area of an equilateral triangle in terms of the
length s of one of its sides.

7. Prove the obtuse case of the Law of Cosines.

8. Consider a regular n-sided polygon inscribed in a circle with radius r.
By dividing the polygon into triangles, find a formula for its area in
terms of n and r. [We will take a different approach to this problem in
the next lesson].
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Areas of polygons

The goal of this section is to establish a formula for the area of a general
simple polygon. Ultimately, we will use a proof by induction to prove this
formula. We need two things to make this proof work. (1) We need a way
to decompose a polygon into smaller pieces– this is handled by the next
result, which states that any simple polygon has a diagonal that cuts it into
two smaller pieces. (2) We need a working formula for the “base” case–
the area of a triangle. We found a few formulas for the area of a triangle in
the last lesson, but none of those are really appropriate for this problem,
so we will derive another one, this time in terms of the coordinates of its
vertices. Those two steps are the hard work of this section– once they are
done, it is easy to slot those pieces into the induction proof.

THM: EXISTENCE OF A DIAGONAL
Every simple polygon P has a diagonal that lies entirely in its interior.

Proof. If P is convex, then any diagonal will work. If P is not convex, the
situation becomes a little more complicated– some of the diagonals will
not be contained entirely in P. We need to show, then, that even the most
contorted polygon has at least one diagonal that lies entirely inside it. To
do that, let’s consider the coordinates of P– we are looking for the “low-
est” point on the polygon– the vertex with the smallest y-coordinate. Call
this point Pi. Now consider the segment that connects Pi’s two neighbors,
Pi−1 and Pi+1. If Pi−1Pi+1 lies entirely inside of P, then we have found our
diagonal, easy enough.
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What if it doesn’t? In that case, it is because at least some of the remain-
ing vertices of P lie inside the triangle �Pi−1PiPi+1. From this subset of
vertices, let Pj be the lowest one– the one with the smallest y-coordinate.
I claim that the segment PiPj lies entirely inside P, so that it can serve
as our diagonal. To see why, you need to remember that a point Q is in-
side a polygon P if any ray from Q crosses the polygon an odd number of
times (counting multiplicities). In this case, if Q is any point on PiPj, it is
lower than any of the vertices of P except for Pi, and possibly Pi−1 or Pi+1.
Therefore the ray QPi� only intersects the sides Pi−1Pi and PiPi+1 once at
the shared endpoint Pi, and it does not intersect any of the other sides of
P at all. Since Pj is inside the triangle �Pi−1PiPi+1, the ray QPi � splits
the polygon at Pi (the adjacent vertices Pi−1 and Pi+1 are separated by the
line PiPj). Therefore, there is one intersection of QPi � with P and it has
multiplicity one– that’s an odd number of intersections, so Q is inside P.
That is true for all points on the segment PiPj, so PiPj is a diagonal that
lies entirely inside P.

Pi–1Pi+1 is a diagonal. Pi–1Pi+1 is not, but PiPj  is.

Pi Pi

Pj
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Now compute

�v×�w =

∣∣∣∣∣∣
i j k

x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣∣∣∣∣∣

= [(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)]k

= [(x2y3 − x2y1 − x1y3 + x1y1)− (x3y2 − x3y1 − x1y2 + x1y1)]k

= [(x1y2 − x2y1)+ (x2y3 − x3y2)+ (x3y1 − x1y3)]k

=

(∣∣∣∣
x1 y1
x2 y2

∣∣∣∣+
∣∣∣∣
x2 y2
x3 y3

∣∣∣∣+
∣∣∣∣
x3 y3
x1 y1

∣∣∣∣
)

k.

Now let’s go back to the question of the area of a triangle. Let me first try
to motivate this new area formula from the perspective of vector calculus.
For any two three-dimensional vectors�v= �vx,vy,vz� and �w= �wx,wy,wz�,
the cross product�v×�w is given by the determinant

�v×�w =

∣∣∣∣∣∣
i j k

vx vy vz
wx wy wz

∣∣∣∣∣∣
.

Furthermore, it is a well-known fact from calculus that the length of�v×�w
is the area of the parallelogram formed by�v and �w, so half of that would be
the area of the triangle with sides �v and �w. Let’s use that idea to calculate
the area of the triangle with vertices at (x1,y1), (x2,y2), and (x3,y3). We
can make vectors out of two of the sides and embed them in 3-dimensional
space by setting the last coordinate equal to zero:

�v = �x2 − x1,y2 − y1,0� & �w = �x3 − x1,y3 − y1,0�.

v×w

v

w
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It is easy to read off the length of �v×�w, and half that amount gets you
a formula for the area of a triangle. And while all of this may be familiar
to you, it does take us out of the plane, and it does draw upon some facts
about vectors that we have not yet developed. So let me give a more
elementary proof of this formula.

THM: DETERMINANT FORMULA FOR THE AREA OF A TRIANGLE
Label the three vertices of a triangle in counterclockwise order: P1 =
(x1,y1), P2 = (x2,y2), and P3 = (x3,y3). The area of �P1P2P3 is

A =
1
2

(∣∣∣∣
x1 y1
x2 y2

∣∣∣∣+
∣∣∣∣
x2 y2
x3 y3

∣∣∣∣+
∣∣∣∣
x3 y3
x1 y1

∣∣∣∣
)
.

Proof. Designate the side P1P2 to be the base of the triangle, and put
b = |P1P2|. With the right isometry (and remember that isometries do
not alter areas of shapes), we can reposition the triangle so that its base
lies along the x-axis. Then it is easy to read off the height. The necessary
isometry is composed of two pieces.

1) The first piece is a translation t to move P1 to the origin:

t
(

x
y

)
=

(
x− x1
y− y1

)

t(P1) = (0,0)
t(P2) = (x2 − x1,y2 − y1)

t(P3) = (x3 − x1,y3 − y1)
P1

P3

P2

O

t
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2) The second piece is a rotation r about the origin to move t(P2) onto the
x-axis. To find the angle for this rotation, look at the angle θ between the
x-axis and the line from the origin through t(P2).

In particular, the sine and cosine values of this angle are

cosθ =
x2 − x1

b
& sinθ =

y2 − y1

b
.

In order to put the base of the triangle along the x-axis, then, we need to
rotate by −θ . The matrix equation for that rotation is

r
(

x
y

)
=

(
cos(−θ) −sin(−θ)
sin(−θ) cos(−θ)

)(
x
y

)

=

(
cosθ sinθ
−sinθ cosθ

)(
x
y

)

=
1
b

(
x2 − x1 y2 − y1
y1 − y2 x2 − x1

)(
x
y

)
.

O

r

b

t(P2)

t(P3)

(x2 − x1,y2 − y1)
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The point t(P1) stays at the origin, while the point t(P2) rotates around to
(b,0). The key to finding the height of the triangle, though, lies with the
third point:

r ◦ t(P3) =
1
b

(
x2 − x1 y2 − y1
y1 − y2 x2 − x1

)(
x3 − x1
y3 − y1

)

=
1
b

(
[x2 − x1][x3 − x1]+ [y2 − y1][y3 − y1]
[x3 − x1][y1 − y2]+ [x2 − x1][y3 − y1]

)
.

Since r◦ t is a composition of a rotation and a translation, it is orientation-
preserving. Since the points P1, P2, P3 are listed in counterclockwise or-
der, their images under r ◦ t must also be in counterclockwise order. That
means r ◦ t(P3) must lie above the x-axis, and so the height of the triangle
is just the y-coordinate of r ◦ t(P3):

h =
1
b
[(x3 − x1)(y1 − y2)+ (x2 − x1)(y3 − y1)] .

The rest is algebra

A =
1
2

bh

=
1
2

b · 1
b
[(x3 − x1)(y1 − y2)+ (x2 − x1)(y3 − y1)]

=
1
2
(x3y1 − x1y1 − x3y2 + x1y2 + x2y3 − x2y1 − x1y3 + x1y1)

=
1
2
((x1y2 − x2y1)+ (x2y3 − x3y2)+ (x3y1 − x1y3))

=
1
2

(∣∣∣∣
x1 y1
x2 y2

∣∣∣∣+
∣∣∣∣
x2 y2
x3 y3

∣∣∣∣+
∣∣∣∣
x3 y3
x1 y1

∣∣∣∣
)
.
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With this new area formula in hand, we can now turn back to the bigger
question of polygon area.

THM: AREA OF A POLYGON
Let P1 = (x1,y1), P2 = (x2,y2), P3 = (x3,y3), . . . , Pn = (xn,yn) be the
coordinates of the vertices of simple polygon listed in counterclock-
wise order For notational convenience, put xn+1 = x1 and yn+1 = y1.
Then the area of the polygon is

A =
1
2

n

∑
k=1

∣∣∣∣
xk yk

xk+1 yk+1

∣∣∣∣ .

Proof. The proof I will give uses induction on n, the number of sides of
the polygon. In the base case, when n = 3, the polygons are just triangles,
and the area formula given here is really just the coordinate formula for
triangular area that we proved above. Now move to the inductive step:
suppose that this formula does give the proper area for every polygon with
at most n sides, and let P be an arbitrary polygon with n+1 sides. As we
saw at the start of the lesson, P can be cut in two along a diagonal ∆.

Pj

PnP1

P2

Pj+1

Pj–1
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In the interest of keeping indices as simple as possible, let’s relabel the
points Pi and the corresponding coordinates (xi,yi) so that one end of ∆
is the vertex P1 = (x1,y1). Continue around P in the counterclockwise
direction, labeling the remaining vertices P2 = (x2,y2), P3 = (x3,y3), ...,
Pn = (xn,yn) and then loop back around to the start by setting xn+1 = x1
and yn+1 = y1. At some point along the way, we come to the other end
of ∆. Identify that point as Pj = (x j,y j). With those labels, ∆ cuts P into
two smaller polygons with at most n sides, P1P2...Pj and PjPj+1...PnP1.
The area of P is the sum of the areas of these two pieces, and by the
induction hypothesis we know the area formula works for both of those
pieces. Therefore

A(P) = A(P1P2...Pj)+A(PjPj+1...PnP1)

=
1
2

j−1

∑
k=1

∣∣∣∣
xk yk

xk+1 yk+1

∣∣∣∣+
1
2

∣∣∣∣
x j y j
x1 y1

∣∣∣∣

+
1
2

n

∑
k= j

∣∣∣∣
xk yk

xk+1 yk+1

∣∣∣∣+
1
2

∣∣∣∣
x1 y1
x j y j

∣∣∣∣

=
1
2

n

∑
k=1

∣∣∣∣
xk yk

xk+1 yk+1

∣∣∣∣+
1
2
(x jy1 − x1y j)+

1
2
(x1y j − x jy1)

=
1
2

n

∑
k=1

∣∣∣∣
xk yk

xk+1 yk+1

∣∣∣∣ .

By induction, the formula holds for all polygons.

What’s really going on here is that by repeatedly cutting P along diago-
nals, we can eventually break P down into a bunch of triangles– we can
“triangulate” P. The area of each triangle in the triangulation is calculated
by three determinants, one for each edge of the triangle. Different trian-
gulations lead to different edges, but (and this is key) each internal edge is
actually an edge of two triangles, and if the counterclockwise orientation
of one triangle points it in the direction from vi to v j, then the counter-
clockwise orientation of the other triangle points it in the direction from
v j to vi.
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In the end, that internal edge makes a contribution to the overall area com-
putation of

∣∣∣∣
xi yi
x j y j

∣∣∣∣+
∣∣∣∣
x j y j
xi yi

∣∣∣∣= (xiy j − x jyi)+ (x jyi − xiy j) = 0.

The contributions of all the internal edges cancel out, leaving just the con-
tributions from the edges of the polygon! Note that this is what happens
along the internal edge ∆ in the proof above. If you have studied multi-
variable calculus, this internal cancellation may seem familiar. This same
thing happens in Green’s Theorem, where a double integral across a re-
gion is converted to a line integral around the region. In fact, this area
formula is a special case of Green’s Theorem– this connection is explored
more thoroughly in the exercises.

Each internal edge is shared by two neighboring triangles, but is oriented 
oppositely in those triangles. In the overall area calculation, those components 
cancel one another.
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The area of a circle

Time to hit another big landmark– the area of a circle. There are several
ways to derive this famous area formula, but of course I want to incorpo-
rate the coordinate formula we just derived. First we will use this formula
to find the area of a regular polygon. Then we will trap the circle be-
tween circumscribed and circumscribing regular polygons, and use their
areas as upper and lower bounds for the area of the circle (as we did in the
derivation of the circumference formula in Lesson 17).

AREA OF A REGULAR POLYGON
Let P be a regular polygon with n sides and a radius of r (this is the
radius of the circumscribing circle). Then the area of P is

A =
1
2

nr2 sin
(

2π
n

)
.

Proof. All regular polygons with the same radius and the same number of
sides are congruent, so we will just the one that is easiest, and that is when
P is centered at the origin with its n vertices at the coordinates

(
r cos

(
2πk

n

)
, r sin

(
2πk

n

))
, 1 ≤ k ≤ n.

θ

(x2,y2) = (r cos2θ ,r sin2θ)

(x0,y0) = (r cos0,r sin0)

(x1,y1) = (r cosθ ,r sinθ)
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It makes for easier reading if we put θx = 2πx/n. Then the area of P is

A =
1
2

n

∑
k=1

∣∣∣∣
r cosθk r sinθk

r cosθk+1 r sinθk+1

∣∣∣∣

=
1
2

n

∑
k=1

(
r2 cosθk sinθk+1 − r2 sinθk cosθk+1

)
.

Factor out the r2 and play around with the signs, using the fact that sine
is an odd function and that cosine is an even one, to get this into the right
form to use the addition formula for sine:

A =
1
2

n

∑
k=1

r2[cos(−θk)sin(θk+1)+ sin(−θk)cos(θk+1)].

=
1
2

n

∑
k=1

r2 sin(θk+1 −θk)

=
1
2

n

∑
k=1

r2 sin(2π/n)

=
1
2

n · r2 sin(2π/n).

By trapping a circle between circumscribed and circumscribing regular
polygons, it is possible to pin down its area.

THM: AREA OF A CIRCLE
The area of a circle with radius r is A = πr2.

Proof. The radius of the inscribed regular polygon is r. The radius of the
circumscribed regular polygon is r sec(π/n) (as illustrated). By plugging
those radii into the area formula we just derived, we get upper and lower
bounds on the area of the circle itself:

1
2

nr2 sin
(

2π
n

)
≤ A ≤ 1

2
n(r secπ/n)2 sin

(
2π
n

)
.
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This set of inequalities is true for all n, so let’s see what happens to those
pieces when we take the limit as n approaches ∞:

(1) π/n approaches 0, so sec(π/n) approaches 1.

(2) for the term nsin(2π/n), make the substitution m = n/2. As n ap-
proaches ∞, so does m, and so

lim
n→∞

nsin(2π/n) = lim
m→∞

2msin(π/m) = 2 lim
m→∞

msin(π/m).

Back in the lesson on circumference, this limit was the very definition of
π (although we were using degrees instead of radians at the time), so this
term is approaching 2π . Now let’s put it back together:

lim
n→∞

1
2

nr2 sin
(

2π
n

)
≤ A ≤ lim

n→∞

1
2

n(r secπ/n)2 sin
(

2π
n

)
.

1
2

2πr2 ≤ A ≤ 1
2

2πr2.

Therefore A is trapped between two values that are both closing in upon
πr2. That means A itself must be πr2.

r sec(π/n)

2π/n
π/n r

r



470 LESSON 33

Exercises

1. Use the determinant formula for area from this lesson to find the area
of the triangle with vertices at (0,0), (3,1), and (4,2).

2. Find the area of a regular five pointed star (Scläfli symbol {5/2}) in-
scribed in a circle of radius one.

3. Give an inductive proof that any simple polygon P can be triangulated.

4. An alternate proof of the formula for the area of the circle involves
cutting n congruent pie pieces, and then rearranging those pieces into
an approximate parallelogram. Work out the details of this approach.

5. (For those who have studied Green’s Theorem in calculus) Let P be
a simple n-sided polygon with vertices (taken in the counterclockwise
direction) at coordinates (xi,yi), for 1 ≤ i ≤ n. Use Green’s Theorem
to show that the area of P is given by the integral

1
2

∮

P
−ydx+ xdy.

Now parametrize each edge of P, and compute this integral to get the
area formula given in the lesson.



34 BARYCENTRIC COORDINATES
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In Lesson 22 we studied the trilinear coordinate system. At the time, I
postponed discussion of the closely-related barycentric coordinate system,
because we hadn’t yet dealt with area. Now that we have looked at area,
we can get some closure on this topic. Barycentric coordinates are closely
connected to the idea of the center of mass – the balance point of a set of
weights. Archimedes has the first word on this topic that is near and dear
to heart of every kindergarten kid.

[The principle of the lever] Place two masses m1 and m2 on a
seesaw at distances d1 and d2 from the fulcrum. The seesaw
balances if

m1d1 = m2d2.

3 2
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Archimedes’ lever is essentially a one-dimensional construct– the points
and the fulcrum are all on one line. For the two-dimensional case, with
points lying in the plane, I think of the work of a more contemporary
figure– the mobiles of Alexander Calder. Let’s think about how he (or
some other mobile maker) would build a very simple mobile – one that
consists of just three equal weights located at points A, B, and C, and
wired together like this:

From a mathematical point of view, the interesting questions are: (1)
where should he put the hook M so that A and B balance?, and (2) where
should he put the hook N so that everything balances when the mobile is
hung from the string? The answer to question (1) is easy: since the two
weights are the same, the principle of the lever says that M needs to be at
the midpoint of AB. The answer to question (2) is just a bit more involved:
since M is now supporting twice the weight of C, the principle of the lever
says that the distance from N to C must be twice the distance from N to
M. In other words, N must be located two-thirds of the way down CM
from C– it is at the centroid of the triangle �ABC. Now this was a simple
system since all three weights were the same, but imagine if we changed
those weights so that they were not all the same. The corresponding bal-
ance point of the system (the N) would move as well. This is the key to
barycentric coordinates– by putting different weights at A, B, and C, we
get different balance points. The barycentric coordinates of a point P are
the weights that make P the balance point.

A

B

C
M

N
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The vector approach

There is a vector approach to this problem as well. Start again with the
two person seesaw, with masses mA and mB at points A and B, respectively.
The balance point occurs at the center of mass M, when the two vectors
ma ·−→MA and mb ·−→MB cancel out:

ma ·−→MA+mb ·−→MB = 0.

More generally, we can consider when a sum of terms of the form mi ·−−→MPi
add up to zero. The quantities mi ·−−→MPi are measures of the the tendency
of the system to turn in the direction of Pi. The balancing point, the center
of mass M, is where all those cancel out:

∑
i

mi ·−−→MPi = 0.

Of course, the idea of mass exists outside of the geometry that we have
developed. For our purposes, it is not really necessary to think of the co-
efficients mi as masses at all– if you want to avoid physics entirely, you
can just think of these as arbitrary scalar coefficients in a vector equa-
tion. Whether you think of them as masses or not, it is these coefficients
that form the basis for barycentric coordinates. Let’s start by investigating
some properties of these centers of mass, beginning with a two mass sys-
tem. Of course, the center of mass of two objects will lie between them,
as long as those two masses both have positive mass.

A:4 A

B:1 C:2 B C

Vectors from P to A,B,C. 4va + vb +2vc = 0

4va

va

vb

vb

vc 2vc

P
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If you are willing to allow for negative mass, then that center of mass
may not be between them, but everything else still “just works”. You do
then have to talk about in terms of signed distance and signed area. I don’t
feel like dealing with that, so I will just work with positive masses and
positive distances.

PROPOSITION I
If M is the center of mass of a two mass system, with mass mA at
point A and mass mB at point B, then

|MA|= mB

mA +mB
· |AB| & |MB|= mA

mA +mB
· |AB|.

Proof. Since M is the center of mass, by definition

mA ·−→MA+mB ·−→MB = 0.

In order for mA · −→MA and mB · −→MB to cancel, they have to be the same
length, so mA|MA|= mB|MB|, so |MA|/|MB|= mB/mA. Now let’s look at
the ratio of |MA| to |AB|:

|MA|
|AB| =

|MA|
|MA|+ |MB| =

1
1+(|MA|/|MB|)

=
1

1+(mA/mB)
=

mB

mA +mB
.

Therefore
|MA|= mB

mA +mB
· |AB|.

The calculation of |MB| is, of course, similar.

A M B

mA mB
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PROPOSITION II
In a triangle �ABC with masses mA at A, mB at B, and mC at C, label:
MAB, the center of mass of A and B; MAC, the center of mass of A and
C; and MBC, the center of mass of B and C. Then the segments AMBC,
BMAC, and CMAB are concurrent.

Proof. This is a straightforward application of Ceva’s Theorem, using the
measurements from the previous calculation. Recall that Ceva’s Theorem
guarantees a point of concurrence if a product of ratios around the edges
of the triangle equals out to one. In this case, that product is

|AMAB|
|MABB| ·

|BMBC|
|MBCC| ·

|CMAC|
|MACA| .

If we focus on just the first ratio in that product and use the previous
proposition,

|AMAB|
|MABB| =

mB/(mA +mB) · |AB|
mA/(mA +mB) · |AB| =

mB

mA
.

Likewise,
|BMBC|
|MBCC| =

mC

mB
&

|CMAC|
|MACA| =

mA

mC
,

and so |AMAB|
|MABB| ·

|BMBC|
|MBCC| ·

|CMAC|
|MACA| =

mB

mA
· mC

mB
· mA

mC
= 1.

By Ceva’s Theorem, the three segments are concurrent.

A

B

C

MAB

MAC

MBC

mA

mB

mC
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PROPOSITION III
The center of mass M of masses mA at A, mB at B, and mC at C, is the
point of concurrence of the segments AMBC, BMAC, and CMAB.

Proof. Let’s show that M is on the segment AMBC. A similar argument
will work to show it is on the other two segments, and therefore that it
is at their mutual intersection. Since M is the center of mass of the three
mass system, we may write

mA
−→
MA+mB

−→MB+mC
−→
MC = 0.

Now a little vector arithmetic gets us

mA
−→
MA+mB(

−−−→MMBC +
−−−→MBCB)+mC(

−−−→MMBC +
−−−→
MBCC) = 0,

mA
−→
MA+(mB+mC)

−−−→MMBC +(mB
−−−→MBCB+mC

−−−→
MBCC) = 0.

The last piece of that is zero since MBC is the center of mass of the system
with masses mB at B and mC at C. Therefore

mA
−→
MA+(mB +mC)

−−−→MMBC = 0.

In order for these two vectors to cancel out like this, they must be oppo-
sitely directed. That is, A, M, and MBC must be collinear.

A

B

C

MAB M

MAC

MBC
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DEF: BARYCENTRIC COORDINATES
Given a triangle �ABC and a point M. A set of barycentric coordi-
nates of M (relative to �ABC) is a triple [ma : mb : mC] (with not all
of mA, mB, and mC equal to zero) so that

ma
−→
MA+mb

−→MB+mc
−→
MC = 0.

The most immediate observation is that barycentric coordinates are de-
fined only up to a constant multiple: if

ma
−→
MA+mb

−→MB+mc
−→
MC = 0

then
k ·ma

−→
MA+ k ·mb

−→MB+ k ·mc
−→
MC = 0

as well. Therefore, the barycentric coordinates of a point are not really a
triple [ma : mb : mc], but instead an equivalence class of triples where [ma :
mb : mc] = [na : nb : nc] if there is a nonzero constant k so that ma = kna,
mb = knb, and mc = knc.

[1:1:1]

[0:0:1][0:1:0] [0:1:1]

[1:1:0] [0:1:1]

[1:0:0]
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The connection to area and trilinears

Barycentric coordinates can be calculated, quite directly, using either ar-
eas of triangles or trilinear coordinates. The key to it is the following
theorem that relates the masses mA, mB and mC to the areas of certain tri-
angles. Throughout the rest of this lesson I will use the notation (�ABC)
to denote the area of �ABC (it appears to be somewhat common to use the
absolute value signs to denote area, but I used that notation for perimeter
a long time ago).

THM: MASS AND AREA
Given a triangle �ABC, with masses mA at A, mB at B, and mC at C,
and a center of mass M. Then

mA

mB
=

(�BCM)

(�ACM)
,

mB

mC
=

(�ACM)

(�ABM)
,

mC

mA
=

(�ABM)

(�BCM)
.

Proof. Let’s look at the first of these (the other two are just a shuffling of
labels). Label

FC: the foot of the altitude from A
FM: the foot of the altitude from M
MAB: the center of mass of AB.

A B

C

M

FMFC MAB



480 LESSON 34

Then

(�CAM) = (�CAMAB)− (�MAMAB)

= |CFC| · |AMAB|− |MFM| · |AMAB|
= |AMAB|(|CFC|− |MFM|).

and

(�CBM) = (�CBMAB)− (�MBMAB)

= |CFC| · |BMAB|− |MFM| · |BMAB|
= |BMAB|(|CFC|− |MFM|)

so
(�CAM)

(�CBM)
=

|AMAB|(|CFC|− |MFM|)
|BMAB|(|CFC|− |MFM|) =

|AMAB|
|BMAB| =

mA

mB
.

Likewise, with the proper interchange of letters,

mB

mC
=

(�ACM)

(�ABM)
&

mC

mA
=

(�ABM)

(�BCM)
.

A B

C

M M

FMFC MAB B

C

FMFC MAB
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As an immediate consequence, we get a way to use triangle areas to cal-
culate barycentric coordinates.

COR: BARYCENTRIC COORDINATES AND AREA
Any point M subdivides a triangles �ABC into three pieces, �ABM,
�ACM, and �BCM. The barycentric coordinates of M can be com-
puted from the the areas of those triangles as

[(�BCM) : (�ACM) : (�ABM)].

Proof. Let [ma : mb : mc] be the barycentric coordinates of M. At least one
of the three coordinates must be nonzero. Let’s assume it is mC. Then
it is a three-step calculation: (1) divide through by mC, (2) use the previ-
ous theorem to make the connection to area, and (3) multiply through by
(�BCM).

[ma : mb : mc] = [ma/mc : mb/mc : 1]
= [(�BCM)/(�ABM) : (�ACM)/(�ABM) : 1]
= [(�BCM) : (�ACM) : (�ABM)]

A

34.1 32.3

33.6
B

C

A

54.3
17.6

28.1
B

C

[32.3 : 34.1 : 33.6] [17.6 : 54.3 : 28.1]
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So just how closely related are barycentric and trilinear coordinates?

THM: BARYCENTRIC COORDINATES AND TRILINEARS
If the trilinear coordinates of a point M relative to �ABC are [a : b : c],
then the barycentric coordinates of M (relative to that same triangle)
are

[a · |BC| : b · |AC| : c · |AB|].

Proof. The barycentric coordinates of M can be computed from the areas
of triangles as

[(�BCM) : (�ACM) : (�ABM)] = [ha|BC| : hb|AC| : hC|AB|].

where ha, hb, and hc are the lengths of the altitudes from M in each of the
three triangles. But the trilinear coordinates of M can be normalized to
measure exactly these lengths. Therefore a = ha, b = hb, and c = hc.

c

ab

A B

C
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Barycentric coordinates of important triangle cen-
ters

Based upon the conversation at the start of the lesson, the barycentric co-
ordinates of the centroid are [1 : 1 : 1]. What about some of the other
triangle centers we have encountered? Of course, we already have a very
easy way to convert from trilinear coordinates to barycentric coordinates,
but what would be the fun in that? So let’s start with the orthocenter.

THM: BARYCENTRIC COORDINATES OF THE ORTHOCENTER
In �ABC, the barycentric coordinates of the orthocenter are

[cot A : cotB : cotC].

Proof. Let MBC be the foot of the altitude which passes through A and
is perpendicular to BC. Look at the two right triangles �ABMBC and
�ACMBC.

In them,

|BMBC|= |AMBC|cot(∠B) & |CMBC|= |AMBC|cot(∠C).

Therefore |BMBC|
|CMBC| =

cot B
cotC

.

A

B

Q

CMBC
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Likewise, if MAC is the foot of the altitude which passes through B and is
perpendicular to AC, then

|AMAC|
|CMAC| =

cot A
cotC

.

Now the masses mA, mB, and mC must be in those same ratios. That is,

cotA
cotC

=
mA

mC
&

cotB
cotC

=
mB

mC
.

That means that the barycentric coordinates of the orthocenter are
[

cotA
cotC

:
cot B
cotC

: 1
]
∼ [cotA : cotB : cotC].

The key to finding the barycentric coordinates of the circumcenter and
incenter is the fact that they are the centers of circles– the circumcircle
and the incircle.

THM: BARYCENTRIC COORDINATES OF THE CIRCUMCENTER
In �ABC, the barycentric coordinates of the circumcenter are

[|BC|cos(∠A) : |AC|cos(∠B) : |AB|cos(∠C)].

A

B C

PI
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Proof. Let P denote the circumcenter and remember that it is the center of
the circumcircle, a circle that passes through each of A, B, and C, so that
|PA|= |PB|= |PC|. Let r be the radius of this circumcircle. The argument
in this proof is essentially a rip-off of the argument in the calculation of the
circumcenter’s trilinear coordinates, so you may want to review that now.
If F is the foot of the perpendicular through P to the line BC, then note
that ∠BPF = 1

2∠BPC =∠A (by the Inscribed Angle Theorem). Therefore

|PF|= r cos(∠A)

and so
(�PBC) = 1

2r cos(∠A)|BC|.
Similarly

(�PAC) = 1
2r cos(∠B)|AC| & (�PAB) = 1

2r cos(∠C)|AB|,

and we have seen that the areas of these triangles determine the barycentric
coordinates of P:

[ 1
2r|BC|cos(∠A) : 1

2r|AC|cos(∠B) : 1
2 r|AB|cos(∠C)

]

∼ [|BC|cos(∠A) : |AC|cos(∠B) : |AB|cos(∠C)].

A

P

r r

B F C
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THM:BARYCENTRIC COORDINATES OF THE INCENTER
In �ABC, the barycentric coordinates of the incenter are

[|BC| : |AC| : |AB|].

Proof. Let P be the incenter of �ABC. Recall that the incenter is equidis-
tant from each of the sides of the triangle– it is the center of the inscribed
circle of �ABC. Let r be the radius of this incircle. Then

(�PBC) = 1
2 r|BC|, (�PAC) = 1

2r|AC|, (�PAB) = 1
2 r|AB|,

so the barycentric coordinates of P are
[ 1

2r|BC| : 1
2r|AC| : 1

2r|AB|]∼ [|BC| : |AC| : |AB|] .

A

r

P

B C
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References

I referenced Clark Kimberling’s web site [3] in an earlier lesson, but it also
includes barycentric coordinates for many, many triangle centers. Once
again, Coxeter’s Introduction to Geometry[2] provides a good perspective
on this topic. There is also a “letter” from John Conway to Steve Sigur[1]
floating around the web that extolls the virtues of barycentric coordinates.

[1] John Conway. Trilinear vs barycentric coordinates. Correspon-
dence, distributed on World Wide Web. Currently available at
http://mathforum.org/kb/message.jspa?messageID=1091956.

[2] H.S.M. Coxeter. Projective Geometry. Blaisdell Publishing Co., New
York, 1st edition, 1964.

[3] Clark Kimberling. Encyclopedia of triangle centers - etc. distributed
on World Wide Web. http://faculty.evansville.edu/ck6/encyclopedia
/ETC.html.

Exercises

1. Consider the triangle �ABC whose vertices are at the coordinates A =
(0,0), B = (2,0) and C = (0,4). Find barycentric coordinates for the
point (1,1).

2. Show that the barycentric coordinates of the excenters of �ABC are
[−|BC| : |AC| : |AB|], [|BC| : −|AC| : |AB|], and [|BC| : |AC| : −|AB|].
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In the last few lessons we classified all of the bijective mappings of the
Euclidean plane that respect incidence, order, and congruence. Now we
are going to have to look for mappings that fall short of that stringent list
of conditions, but that still preserve enough remnants of the Euclidean
structure to tell us something interesting. An optimist would view the ad-
ditional freedom as an opportunity, and indeed I think that this is a time
to be optimistic. The particular type of mapping that we will investigate
in the next couple of lessons is called inversion. Inversions provide inter-
esting insight into some of the classical problems of Euclidean geometry,
particularly those that involve circles. Inversions also play an important
role in the study of non-Euclidean geometry. I think that the most natu-
ral path into the topic of inversion is via stereographic projection. This
means that we will have to momentarily step outside of the plane. Don’t
worry– by the time we get around to formally defining inversions, we will
be comfortably back in the plane.

Stereographic Projection

Ever since map-makers realized that the earth is round, they have sought
ways to project a spherical surface down to a flat plane. One approach
which is nice mathematically (although maybe not so nice cartographi-
cally) is called stereographic projection. It works as follows. First put
the center of the sphere (say of radius r) at the origin of the plane. Then
draw rays out from the north pole through each other point of the sphere.
Those rays will each intersect the plane, establishing a bijection between
the points of the sphere (except the north pole itself) and the points of the
plane. That mapping from the sphere to the plane is called stereographic
projection.
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With a few symbols, we can describe the process more precisely. Label

E: the plane z = 0;

S: the sphere of radius r, centered at the origin;

N: the “north pole”– the point with coordinates (0,0,r);

Φ: the stereographic projection from S to E;

P: any point of S other than N.

Then NP � will intersect E exactly once, and Φ(P) is defined to be this
intersection point. Since Φ is a bijection, it has an inverse, Φ−1, that
is called inverse stereographic projection. For those of you that worry
about a possible northern hemisphere bias, we can do the same kind of
projection equally well from the south pole. In fact, to define inversion,
we will need to work from both poles– first an inverse stereographic from
the north pole, and then a stereographic projection from the south pole. It
is pretty straightforward to work out analytic equations to describe these
mappings, and that is the first task of this lesson.

P

N

Φ(P)
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THM: EQUATIONS FOR STEREOGRAPHIC PROJECTION
The inverse stereographic projection Φ−1

N from the north pole (0,0,r)
is given by the equation

Φ−1
N (x,y) =

(
2xr2

d2 + r2 ,
2yr2

d2 + r2 ,
rd2 − r3

d2 + r2

)

where d =
√

x2 + y2 is the distance from O to the point (x,y). The
stereographic projection ΦS from the south pole (O,O,−r) is given
by the equation

ΦS(x,y,z) =
(

rx
r+ z

,
ry

r+ z

)
.

Proof. I will prove the first of these formulas, and leave the second to
you. The point (x,y) in the plane corresponds to the point (x,y,0) in 3-
dimensional space. Start with a parametrized equation for the line through
(x,y,0) and the north pole, (0,0,r):

s(t) = �0,0,r�+ t�x−0,y−0,0− r� = �tx, ty,r− rt�.

We need to find out when this line hits the sphere. All the points on the
sphere are a distance r from the origin, so this basically boils down to the
equation |s(t)|2 = r2:

(tx)2 +(ty)2 +(r− rt))2 = r2

t2x2 + t2y2 + r2 −2r2t + r2t2 = r2.

P = (x,y)

Φ−1
N (P)

(0,0,r)

d
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Cancel out the r2 on both sides, and factor to solve for t:

t2(x2 + y2)−2r2t + r2t2 = 0
t2d2 + r2t2 −2r2t = 0

t((d2 + r2)t −2r2) = 0.

The first solution, when t = 0, is at the north pole – that’s not the one we
want. The other intersection occurs when

t =
2r2

d2 + r2 .

Plugging that into s(t) gives the vector that points to Φ−1
N (x,y):

〈
2xr2

d2 + r2 ,
2yr2

d2 + r2 ,r−
2r3

d2 + r2

〉
.

You can use a similar argument for the second part– find the equation of
the line through the south pole and the point (x,y,z), and then locate its
intersection with the plane z = 0.

This is a book on plane geometry, so we should really be looking for maps
from the plane to itself. We can get such a map by composing Φ−1

N and
ΦS– the first step in the composition takes the plane to the sphere, but the
second step brings it back. Notice that when we do this, there is clearly
a problem at the origin O, since Φ−1

N (O) = S, and ΦS(S) is undefined. If
we just toss out that one bad point, though, what’s left is a perfectly good
bijection from E−O to itself.

P

Φ−1
N (P)

ΦS ◦Φ−1
N (P)
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Let’s call that bijection σ . Then

σ(x,y) =ΦS ◦Φ−1
N (x,y) =ΦS

(
2xr2

d2 + r2 ,
2yr2

d2 + r2 ,r−
2r3

d2 + r2

)
.

The x and y coordinates of this are similar– we can just focus on the first:

r
(

2xr2

d2 + r2

)

r+
(

r− 2r3

d2 + r2

) .

Multiply through, top and bottom, by d2 + r2 to get

2xr3

2r(d2 + r2)−2r3 =
2xr3

2rd2 +2r3 −2r3 =
2xr3

2rd2 =
xr2

d2 .

The second coordinate works similarly and eventually simplifies down to
yr2/d2, so

σ(x,y) =
(

x · r2

d2 , y · r2

d2

)
.

Note then that σ(x,y) is on the same ray from the origin as (x,y), but its
distance from the origin has been altered– the distance from the origin is
now

√(
xr2

d2

)2
+

(
yr2

d2

)2
=

√
x2r4 + y2r4

d4 =

√
d2r4

d4 =
r2

d
.

PO σ(P)
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There is a more geometric view of this that may be more appealing than
the previous calculations. Take a cross section of the sphere and plane as
illustrated:

By Thales’ Theorem, the two lines
� NP � and � Sσ(P) � intersect
at right angles at Φ−1

N (P). Then by
A·A similarity,

�SNΦ−1
N (P)∼�Sσ(P)O

(since they both have a right angle
and they share the angle at S).

Also by A·A similarity,

�Sσ(P)O ∼�Pσ(P)Φ−1
N (P)

(using the right angles and the ver-
tical angle pair at σ(P)).

P

NN

SS

PO σ(P) O σ(P)

Φ−1
N (P) Φ−1

N (P)

N

O P

S

σ(P)

Φ−1
N (P)
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Therefore
�SNΦ−1

N (P)∼�Pσ(P)Φ−1
N (P).

Matching the corresponding ratios of the two legs of these triangles,

|Oσ(P)|
r

=
r

|OP| =⇒ |Oσ(P)|= r2

|OP| = r2/d.

Inversion

This map σ that we constructed in the previous section is, in fact, an in-
version. Using the above properties, we can now give a proper definition
of inversion that does not stray from the plane. The sphere of radius r is
replaced by its intersection with the plane, a circle of radius r. Further-
more, there is no longer any real advantage to centering the circle at the
origin.

DEF: INVERSION
Let C be a circle with center O and radius r. The inversion σ across
C is the bijection of the points of E−O defined as follows. For any
point P ∈ E−O, σ(P) is the point on the ray OP� that is a distance
r2/|OP| from O.

Inversion of a collection of points across a circle.
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Note that an inversion turns a circle inside out–

1. If P is inside C, then |OP| is less than r, so r2/|OP| is greater than
r, so σ(P) is outside C.

2. If P is outside C, then |OP| is greater than r, so r2/|OP| is less than
r, so σ(P) is inside C.

3. If P is on C, then |OP|= r, so r2/|OP|= r, so σ(P) is again on C.
In fact, since OP� only intersects C once, in this case P = σ(P).

That last observation is an important one– σ fixes all the points of C. In
this regard, an inversion is a little like a reflection. Whereas a reflection
fixes a line and swaps the two sides of it, an inversion fixes a circle and
swaps the interior and exterior of it. Furthermore, it is easy to see that,
like a reflection, an inversion is its own inverse. But it is also important to
note how an inversion differs from a reflection; perhaps most importantly,
an inversion does not scale all distances by a constant– points that are very
close to O may be thrown very apart from one another, while points that
are very far from O will all be squeezed into a tiny space right around O.

Distances are not all scaled by the same amount.
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All is not lost, however. The first sign of hope is a result on similarity.

THM: A SIMILARITY CREATED BY INVERSION
Let σ be the inversion across a circle C with radius r and center O.
Then for any two distinct points P and Q in E−O,

�POQ ∼�σ(Q)Oσ(P).

Proof. First of all, the two triangles in question share an angle at O. Now
take a look at the sides:

|Oσ(P)|= r2/|OP| & |Oσ(Q)|= r2/|OQ|,

so
|Oσ(P)|
|Oσ(Q)| =

r2/|OP|
r2/|OQ| =

|OQ|
|OP| .

By the S·A·S similarity theorem, then, the two triangles are similar. Note
carefully, though, that the sides OP and OQ are “crossed up” by this sim-
ilarity.

σ(Q)

σ(P)

P

Q

O
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Let’s look at some larger structures. We have seen that all Euclidean trans-
formations map lines to lines, but what happens when we invert a line?
One situation is easy– any line that passes through O is mapped to itself.
[Technically, it isn’t quite mapped to itself, because there is a problem at
O. Forgive me, but for the rest of the section, it is just more convenient to
ignore the problems that arise at O.] For a line that does not pass through
O, the situation gets more interesting.

THM: INVERTING A LINE
Let σ be the inversion across a circle C with radius r and center O.
Let � be a line that does not pass through O. Then σ(�) is a circle
that passes through O.

Proof. Let F be the foot of the perpendicular from O to �. I claim that
Oσ(F) is the diameter of the circle σ(�). To see why, take any other
point P on �. Then �OFP is a right triangle with right angle at F . As
we have just seen, �OFP is similar to �Oσ(P)σ(F) which means that
�Oσ(P)σ(F) is a right triangle whose right angle is at σ(P). By Thales’
Theorem, σ(P) must be on the circle with diameter Oσ(P).

σ(P)
σ(F)

F

P

O
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It is easy to play that argument in reverse: any circle which passes through
O inverts to a line (which does not pass through O). But that obviously
leads to another question– what about circles that don’t pass through O?

THM: INVERTING A CIRCLE
Let Let σ be the inversion across a circle C with radius r and center
O. Let c be a circle that does not pass through O. Then σ(c) is again
a circle (that does not pass through O).

Proof. This proof again uses Thales’ Theorem. . . it is just a little more
complicated. The ray from O through the center of c will intersect c twice.
Label those two points P and Q. Then PQ is a diameter of c and I claim
that σ(P)σ(Q) is a diameter of σ(c). Now let R be another point on c.
Then

�OPR ∼�Oσ(R)σ(P) =⇒ ∠OPR � ∠Oσ(R)σ(P)
�OQR ∼�Oσ(R)σ(Q) =⇒ ∠OQR � ∠Oσ(R)σ(Q).

A little angle arithmetic:

(∠σ(P)σ(R)σ(Q)) = (∠Oσ(R)σ(P))− (∠Oσ(R)σ(Q))

= (∠OPR)− (∠OQR).
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Since R is on the circle with diameter PQ, ∠PRQ is a right angle. There-
fore ∠σ(P)σ(R)σ(Q) is a right angle as well, and so σ(R) lies on the
circle with diameter σ(P)σ(Q). A word of warning: while σ(c) is a cir-
cle, σ does not map the center of c to the center of σ(c).

σ(P)

σ(R)

σ(Q)

R

P QO

R

P Q

Note though that ∠OPR is an exterior angle of �PQR, so

(∠OPR) = (∠PQR)+ (∠PRQ).

Substituting that in,

(∠σ(P)σ(R)σ(Q)) = ((∠PQR)+ (∠PRQ))− (∠OQR)= (∠PRQ).
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Since an inversion σ doesn’t map lines to lines, it doesn’t really make
much sense to ask whether σ(∠ABC) � (∠ABC). Instead, let’s take a
page from the book of calculus. In calculus, the angle between intersecting
curves is measured by zooming into the infinitesimal level, at which point
the angle between the curves becomes the angle between their tangent
lines. A mapping that preserves those angles between curves is called a
conformal map. Inversion does preserve angles in this sense.

THM: INVERSION IS CONFORMAL
Let σ be the inversion across the circle C with center O and radius r.
Let �1 and �2 be curves that intersect at some point P other than O.
The curves may be both lines, both circles, or one of each. Let P be
the intersection of �1 and �2. Then the angle between �1 and �2 at P
is the same as the angle between σ(�1) and σ(�2) at σ(P).

Proof. There are a lot of cases here, particularly since the scenarios where
one or both of the curves pass through O require their own attention. I will
do the part where �1 and �2 are lines, but leave the rest as an exercise. Note
first that �1 and �2 cannot both pass through O, for if they did, then their
inversion P would occur at O– it doesn’t make sense to talk of the image
of that point, which is why that scenario was specifically prohibited in the
statement of the theorem.

Suppose that �1 passes through O, but that �2 does not.
Then σ will map �1 to itself and will map �2 to a circle which passes
through O. In the course of the proof of that second fact, we found out
that if F is the foot of the perpendicular to �2 from O, then Oσ(F) will be
a diameter of σ(�2). On the chance that �1 and �2 intersect exactly at F ,
then �1 and �2 will intersect at right angles, and in that case, the diameter
of σ(�2) will lie along the line �1. Thus the tangent line to the circle σ(�2)
at σ(F) will again intersect σ(�1) at a right angle.
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A very special case: two perpendicular lines, one passing through O.

FO 1

2

σ(F)

2

1

F

P
O σ(P)

Suppose that �1 passes through O, but that �2 does not.
Then σ will map �1 to itself and will map �2 to a circle which passes
through O. In the course of the proof of that second fact, we found out
that if F is the foot of the perpendicular to �2 from O, then Oσ(F) will be
a diameter of σ(�2). On the chance that �1 and �2 intersect exactly at F ,
then �1 and �2 will intersect at right angles, and in that case, the diameter
of σ(�2) will lie along the line �1. Thus the tangent line to the circle σ(�2)
at σ(F) will again intersect σ(�1) at a right angle.

More generically, when �1 and �2 intersect at a point P other than F , then
their angle of intersection is ∠OPF, and

�OPF ∼�Oσ(F)σ(P),

so ∠OPF � ∠Oσ(F)σ(P). Let Q be the center of the circle σ(�2). Both
Qσ(F) and Qσ(P) are radii of that circle, so �Qσ(F)σ(P) is isosceles,
and by the Isosceles Triangle Theorem,

∠Qσ(F)σ(P)� ∠Qσ(P)σ(F).
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F

P

Q

O
σ(P)

σ(F)

θ1

θ2
O

P

12

Now focus on what is happening right around σ(P). Both ∠Qσ(P)σ(F)
and the angle between σ(�1) and σ(�2) are complementary to the same
angle. That means they must be congruent.

Suppose that neither �1 nor �2 pass through O.
In this case, the line �OP� splits the angle formed by �1 and �2 into two
pieces. Let θ1 be the angle between �1 and OP, and let θ2 be the angle
between �2 and � OP �. Now � OP � will also split the angle between
σ(�1) and σ(�2). From our previous work, the angle between σ(�1) and
� OP � is the same as the angle between �1 and � OP �, and the angle
between σ(�2) and �OP� is the same as the angle between �2 and �OP�.
Adding the pieces together, the angle between σ(�1) and σ(�2) is the same
as the angle between �1 and �2.
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P

Q

A

A

A

B

B

P

P
Q

Q

B 

[AB : PQ] = 2 [AB : PQ] =
√

3

That’s some good news about angle measure. Unfortunately, we already
know that the news isn’t so good when it comes to measuring distance.
Does inversion have any kind of distance invariant? As a matter of fact,
yes– to find it you have to play around with the similarity property of
inversion. The invariant is something called the cross ratio.

DEF: CROSS RATIO
Let A, B, P and Q be four distinct points. The cross ratio of A, B, P,
and Q, written [AB,PQ] is the product of ratios

[AB,PQ] =
|AP|
|AQ| ·

|BQ|
|BP| .

THM: INVERTING THE CROSS RATIO
The cross ratio is invariant under inversion. That is, for any inversion
σ , and points A, B, P, and Q,

[AB,PQ] = [σ(A)σ(B),σ(P)σ(Q)].

Proof. By the similarity property,

|σ(A)σ(P)|
|AP| =

|Oσ(P)|
|OA|

|σ(B)σ(Q)|
|BQ| =

|Oσ(Q)|
|OB|

|σ(A)σ(Q)|
|AQ| =

|Oσ(Q)|
|OA|

|σ(B)σ(P)|
|BP| =

|Oσ(P)|
|OB|
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A

Q

B

P 

so

|σ(A)σ(P)|
|AP| · |σ(B)σ(Q)|

|BQ| · |AQ|
|σ(A)σ(Q)| ·

|BP|
|σ(B)σ(P)|

=
|Oσ(P)|
|OA| · |Oσ(Q)|

|OB| · |OA|
|Oσ(Q)| ·

|OB|
|Oσ(P)| = 1.

Multiplying across,

|σ(A)σ(P)|
|σ(A)σ(Q)| ·

|σ(B)σ(Q)|
|σ(B)σ(P)| =

|AP|
|AQ| ·

|BQ|
|BP| .

and so
[σ(A)σ(B),σ(P)σ(Q)] = [AB,PQ].

We will see the cross ratio again. It is an essential tool for building non-
Euclidean geometry.
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Exercises

1. Verify the equation for stereographic projection from the south pole
that is given in the chapter:

ΦS(x,y,z) =
(

rx
r+ z

,
ry

r+ z

)
.

2. Verify that if two circles intersect at points P and Q, then their angle of
intersection as measured at P is the same as the angle of intersection as
measured at Q.

3. Complete the proof that inversion is conformal. There are two cases to
consider: (a) where both �1 and �2 are circles; and (b) where one is a
circle and the other is a line.

4. There are 4! = 24 permutations of the four letters in the cross ratio.
Some of those rearrangements ultimately give the same result:

[PQ,AB] =
|PA|
|PB| ·

|QB|
|QA| = [AB,PQ],

but others do not. Determine which of the 24 permutations do yield the
same result.
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Matrix/vector arithmetic is the natural language of isometries, but it does
not do so well when it comes to describing inversion. For that, it is bet-
ter to translate the problem into the language of complex arithmetic. We
will start off this lesson with a review of that complex arithmetic. I as-
sume that readers who have made it this far have some experience work-
ing with complex numbers– if not, then this cursory overview is probably
not sufficient– our needs here are pretty minimal, but they are not non-
existent. Any standard text on complex numbers will get you up to speed
in next to no time.

Complex numbers, complex arithmetic

A complex number has the form a+ bi where a and b are real numbers
and i is a solution to the equation x2 =−1. The set of complex numbers C
contains all the real numbers in the form a+0i, but since the square of any
real number is positive, i is not itself a real number. Thus C is properly
an extension of the real numbers. There is a bijection between complex
numbers and points (or vectors) in R2 via

a+bi ←→ (a,b).

This correspondence is what allows us to translate problems in R2 into
problems in C. Why would we want to do that? Well, the basic advantage
of C over R2 is that C is a field– any two numbers in it can be added,
subtracted, multiplied, and (except in the case of 0) divided. In contrast,
while the vectors of R2 are equipped with addition, subtraction, and scalar
multiplication, there is no natural way to multiply or divide vectors. It is
the multiplication and division operations that make it worth the effort.
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Addition and subtraction in C are essentially the same as vector addition
and subtraction. Multiplication in C is just “FOIL” together with the fact
that i2 =−1. Division is done by multiplying by the “complex conjugate”.

COMPLEX ARITHMETIC

(a+bi)+ (c+di) = (a+ c)+ (b+d)i
(a+bi)− (c+di) = (a− c)+ (b−d)i

(a+bi)(c+di) = ac+adi+bci+bdi2 = (ac−bd)+ (ad +bc)i
a+bi
c+di

=
a+bi
c+di

· c−di
c−di

=
ac+bd
c2 +d2 +

bc−ad
c2 +d2 i.

The complex conjugate of z = a+bi (mentioned above) is z = a−bi. The
norm (or length or absolute value) of a complex number z = a+ bi is its
distance from 0,

|z|=
√

a2 +b2.

The argument of a complex number z is the measure of the angle that it
forms with the real axis (as measured in the counterclockwise direction),
so

tan(arg(a+bi)) = b/a.

0

z

z

arg(z)

|z|

Argument, norm, and complex 
conjugate.
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The standard presentation of a complex number in the form a+ bi is dis-
tinctly rectangular in its construction. Complex numbers can also be ex-
pressed in a “polar form”– if r = |z| and θ = arg(z), then a = r cosθ and
b = r sinθ , so

a+bi = (r cosθ)+ (r sinθ)i = r(cosθ + isinθ).

For our purposes, this polar form is really just a stepping stone toward
the ultimate goal– an “exponential form”. If you have only ever been
exposed to real-valued functions, then the trigonometric functions sin x
and cosx probably seem vastly different from the exponential function ex.
For instance, sin x and cosx are bounded and periodic; the exponential
function is neither bounded nor periodic. In the more expansive world of
complex numbers, though, there are deep connections between these three
functions. The easiest way to see those connections is by looking at their
Taylor series.

Taylor series: a quick and dirty review

Let f (x) be a function whose derivatives at a point a are all defined. The
nth Taylor polynomial of f (x), expanded about the point a, is a specific
degree n polynomial pn that approximates f (x) in a region right around
a. Its coefficients are calculated by matching the function value and the
first n derivatives at a of pn with those of f (x). Now all these deriva-
tives at a give local information about the function right around the a
(they tell us whether the function is increasing or decreasing, concave
up or concave down). It makes sense that taking more derivatives would
improve that approximation around a and perhaps extend the region
for which the approximation is “fairly close”. Taken to its natural ex-
treme, then, if we want the best approximation, we’ve got to let n → ∞,
and look at the Taylor series p∞ that approximates f (x). Matching up
derivatives gives the formula

p∞(x) =
∞

∑
n=0

p(n)(a)
n!

(x−a)n.

Even with an infinite sum, there is in general no guarantee that p∞(x)
will be a good approximation of f (x) as you move away from a (in fact,
there is now the additional question of whether the series converges at
all).
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Here’s the good news: the Taylor series of ex, sin x, and cosx do con-
verge to exactly the function value for all x (no matter what a value is
chosen). The Taylor series expansions about a = 0 for these functions
are

ex =
∞

∑
n=0

1
n!

xn

cosx =
∞

∑
n=0

(−1)n

(2n)!
x2n

sinx =
∞

∑
n=0

(−1)n

(2n+1)!
x2n+1

ex =
∞

∑
n=0

1
n!

xn

cosx =
∞

∑
n=0

(−1)n

(2n)!
x2n

sinx =
∞

∑
n=0

(−1)n

(2n+1)!
x2n+1

ex =
∞

∑
n=0

1
n!

xn

cosx =
∞

∑
n=0

(−1)n

(2n)!
x2n

sinx =
∞

∑
n=0

(−1)n

(2n+1)!
x2n+1

2468
10

:n

2468

10

:n

39

612

15

:n

:n
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Now let’s see how that allows us to relate the sine and cosine functions to
the exponential. Cosine is an even function and sine is an odd function, so
if we take the series expansion of eiθ and segregate the even powers from
the odd powers:

eiθ =
∞

∑
n=0

(iθ)n

n!

=
∞

∑
n=0

(iθ)2n

(2n)!
+

∞

∑
n=0

(iθ)2n+1

(2n+1)!

=
∞

∑
n=0

i2nθ2n

(2n)!
+

∞

∑
n=0

i · i2nθ2n+1

(2n+1)!

=
∞

∑
n=0

(−1)nθ2n

(2n)!
+ i

∞

∑
n=0

(−1)nθ2n+1

(2n+1)!

= cosθ + isinθ .

Therefore the polar form of a complex number z can be rewritten in an
exponential form

z = r(cosθ + isinθ) = reiθ .

All the rules of exponents still apply, so this is a very powerful alternative
to the rectangular form for a complex number.

z = x+ iy0 x

yr

z

z = r cosθ + ir sinθ

θ

z = reiθ

RECT.

TRIG.

EXP.



515INVERSION II

The geometry of complex arithmetic

Adding the complex number z = a + bi to another complex number w
has the effect of translating w by the vector �a,b�. Subtracting z from w
has a similar effect, but the translation is in the opposite direction. For
multiplication and division it is best to look at the exponential form: write
z = reiθ and w = seiφ . Then

zw = reiθ · seiφ = rsei(θ+φ).

The effect of multiplying by z, then, is to scale from the origin by r and to
rotate counterclockwise around the origin by θ . Division works similarly,

w/z = seiφ/reiθ = (s/r)ei(φ−θ ),

but this time the scaling is by 1/r and the rotation by θ is in the clockwise
direction. For this reason, some Euclidean isometries can be described
quite naturally in terms of complex arithmetic.

The translation

t
(

x
y

)
=

(
x+a
y+b

)

becomes

t(z) = z+(a+bi).

The reflection across the real (x-) axis

s
(

x
y

)
=

(
x
−y

)

becomes
s(z) = z.

z

z+(a+bi)

z

z

Re
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The dilation by k about the origin

d
(

x
y

)
=

(
kx
ky

)

becomes
d(z) = kz.

The rotation by θ about the origin

r
(

x
y

)
=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)

becomes

r(z) = eiθ · z.

For any complex number a and positive
real number r, the equation |z− a| =
r describes a circle with center a and
radius r.

For any two complex numbers z1 and
z2, the function r : R→ C defined by

r(t) = z1 + t(z2 − z1)

describes the line through z1 and z2.

z

kz

z

eiθ z

a r

z1
z2
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The whole point of this, remember, was to find a workable equation for
inversion.

THM: AN EQUATION FOR INVERSION
The inversion σ across |z| = r, the circle of radius r centered at the
origin, is given by the equation

σ(z) = r2/z.

Proof. Write z= Reiθ . According to the definition of inversion, σ(z) is on
the ray from the origin passing through z and its distance from the origin
is r2/R. The points on this ray all have an argument of θ . Therefore

σ(z) =
r2

R
eiθ =

r2

Re−iθ = r2/z.

Inverting a grid.
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More generally, we can use a change of coordinates to find the equation
of an inversion across a circle that is not centered at the origin.

COR: GENERAL FORM FOR AN INVERSION
The inversion σ across |z− a| = r, the circle of radius r centered at
a, is given by the equation

σ(z) =
r2

z−a
+a.

Proof. To use the previous formula, we need to work with a change of
coordinates that repositions the origin at a. We can use the translation
t(z) = z+ a. If we label σ0 as the inversion across the circle of radius r
centered at the origin, then

σ(z) = t ◦σ0 ◦ t−1(z)
= t ◦σ0(z−a)

= t
(

r2

z−a

)

=
r2

z−a
+a.

0

a

t
t−1

σ0
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Properties of the norm and conjugate

A lot of the arithmetic of complex numbers plays on a few simple proper-
ties of the norm and the conjugate. I am providing the proof of a couple
of these properties but leaving the rest to you.

THM: PROPERTIES OF THE CONJUGATE
For complex numbers z, z1, and z2

(z) = z
z1 + z2 = z1 + z2

z1 − z2 = z1 − z2

If z = reiθ , then z = re−iθ .
z1 · z2 = z1 · z2

z1/z2 = z1/z2 (if z2 �= 0)

Proof. Let me just take the claim that z1 · z2 = z1 · z2. Writing z1 = r1eiθ1

and z2 = r2eiθ2 , then

z1 · z2 = r1eiθ1r2eiθ2

= r1r2ei(θ1+θ2)

= r1r2e−i(θ1+θ2)

= r1e−iθ1r2e−iθ2

= z1 · z2.

THM: PROPERTIES OF THE NORM
For complex numbers z, z1, and z2

zz = |z|2
|z|= |z|
|z1 · z2|= |z1| · |z2|
|z1/z2|= |z1|/|z2| (z2 �= 0)
|z1 ± z2| ≤ |z1|+ |z2|.
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Proof. For example, the first one is easy to verify: write z = reiθ . Then

zz = reiθ · re−iθ = r2 = |z|2.

Exercises

1. Let r be the counterclockwise rotation by π/2 around the point 1+2i.
Write a complex equation describing r.

2. Let s be the reflection across the line r(t) = t +(1+ t)i. Write a com-
plex equation describing s.

3. Find the equation for the inversion through the circle with radius 2 and
center 1+5i.

4. Let C1 be the circle with radius one centered at the complex number a1
and let C2 be the circle with radius one centered at the complex number
a2. Let i1 be the inversion across C1 and i2 be the inversion across C2.
Describe the fixed point(s) of the composition map i2 ◦ i1 in terms of a1
and a2.

5. Verify the remaining properties of the conjugate.

6. Verify the remaining properties of the norm.
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In the last two lessons we came to some understanding of the basic work-
ings of inversion. In the long run, this should smooth the transition into
non-Euclidean geometry. Before we make that transition, though, let’s
take a brief vacation, and look at two nice little theorems that can be
proved with the help of a well-placed inversion. Both results involve a
chain of mutually tangent circles. In the first, the chain of circles is inside
a shape called an arbelos; in the second, it is wedged between two circles.

A typical inversion proof begins by applying a particular inversion to
what appears to be a complicated picture. The inversion transforms that
complicated picture into a simpler one with much more apparent symme-
try than the original. With this newfound symmetry, the rest of the proof is
easy. So if that’s all there is to it, then the trick is to find the right inversion
to start with. A good place to start looking is with orthogonal circles.

Orthogonal circles

Recall that the angle between two intersecting circles is measured by the
angle between their tangent lines.

DEF: ORTHOGONAL CIRCLES
Two intersecting circles C1 and C2 are orthogonal if the angle be-
tween them is a right angle.

A chain of pairwise orthogonal circles.
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The reason why orthogonal circles may be worth a look is this:

THM: ORTHOGONAL CIRCLES ARE INVARIANT UNDER INVERSION
Suppose that C1 and C2 are orthogonal circles and that σ is the inver-
sion across C1. Then σ(C2) = C2.

Proof. Orthogonal circles will intersect twice, and both points of intersec-
tion are fixed by σ (since they are on C1). So we know a couple of points
on σ(C2) already, but we can close the door on this problem by finding
the center of σ(C2). Labels:

P1 , P2: the intersections of C1 and C2;
O1, O2: the centers of C1 and C2; and
Q: the center of σ(C2).

Remember that σ is conformal– the angle between C1 and C2 is a right
angle, so the angle between σ(C2) and σ(C1) = C1 must be a right angle
too. That means Q must be on both the line through P1 that is perpendicu-
lar to O1P1 and on the line through P2 that is perpendicular to O2P2. Well,
only one point meets those criteria– it is O2. So σ(C2) is a circle centered
at Q = O2 and passing through P1 and P2– σ(C2) is C2.

Note that while this theorem does say that C2 is invariant, it does not say
that all the points of C2 are fixed. In fact, σ fixes only two points of C2–
the points of intersection of C1 and C2. More subtly, while σ(C2) still has
center O2, σ(O2) �= O2.

P1

P2

O1 O2
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If these orthogonal circles are going to play key roles in our proofs, we
need to have some idea about how prevalent they are. The next two results
address that issue.

THM: ON THE PREVALENCE OF ORTHOGONAL CIRCLES
Let C be a circle and P be a point outside C. Then there is a unique
circle centered at P which is orthogonal to C.

Proof. It is easier to play this argument in reverse. Say that C has center O
and radius r, and suppose that P is in fact the center of a circle orthogonal
to C. What would its radius R be? Well, inside of every pair of orthog-
onal circles is a right triangle. Two of its vertices are the centers of the
circles; the third is one the points of intersection of the two circles. By the
Pythagorean Theorem,

r2 +R2 = |OP|2 =⇒ R = [|OP|2 − r2]1/2.

Since P is outside C, |OP| is greater than r, so this equation does have a
solution. But the Pythagorean Theorem is a bi-directional– that is, since
this equation does have a solution, this right triangle can be constructed
with hypotenuse OP. In fact, it can be constructed in two ways– one on
each side of OP. In either case, the leg with length R is the radius of the
one circle that centered at P and orthogonal to C.

P

O

r

R
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What about pairs of circles– given circles C1 and C2, are there any circles
that are orthogonal to both? Generally the answer to this question is yes,
but not always. The exception is this: if C1 and C2 are concentric circles
(that is, they have the same center), then there are no circles orthogonal to
both C1 and C2. [This is actually a particularly good, rather than a partic-
ularly bad, case: if C1 and C2 are concentric, then it is the lines through
their mutual center that will intersect both circles at right angles.] But as
long as C1 and C2 are not concentric, there are circles orthogonal to both.
They are more scarce now, though, and the conditions for a point P to be
the center of an orthogonal circle are more demanding. Label

r1: the radius of C1,
r2: the radius of C2,
d1: the distance from the center of C1 to P,
d2: the distance from the center of C2 to P.

Suppose C is a circle with radius r and center P which is orthogonal to
both C1 and C2. By the Pythagorean Theorem,

r2 + r2
1 = d2

1 & r2 + r2
2 = d2

2 .

Solving for r2 in this pair, and then setting them equal,

d2
1 − r2

1 = d2
2 − r2

2 =⇒ r2
1 − r2

2 = d2
1 −d2

2 .

P

r2

r1

d1 d2

r

r
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Since both r1 and r2 are given by the circles C1 and C2, there are only
certain combinations of d1 and d2 which will make this equation work.
The points that satisfy this condition form the radical axis of C1 and C2.
That is all well and good, but what does the radical axis look like?

THM: THE RADICAL AXIS
The radical axis of a pair of non-concentric circles is a line that is
perpendicular to the line through the circle’s centers.

[axis does not exist]

The radical axis: examples.
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Proof. Let O1 and O2 be the centers of the two circles in question. If the
radical axis really is a line perpendicular to O1O2 as claimed, then it must
intersect O1O2. Let’s start by looking for that intersection. To do so, set
up a coordinate system measuring signed distance along the line O1O2.
Center the coordinate system at O1, so that O1 is at coordinate 0, and label
the corresponding coordinate for O2 as α .

In order for the point at coordinate x to be on the radical axis, it must
satisfy the equation

r2
1 − r2

2 = x2 − (x−α)2

= x2 − (x2 −2αx+α2)

= 2αx−α2.

Now solve this equation for x to get x = (r2
1 − r2

2 +α2)/(2α). As long
as the circles are not concentric, α will not be zero and this equation will
have a (unique) solution. Therefore, exactly one point of � O1O2 � is
on the radical axis– call this point Q. Let’s label some distances too:
D1 = |QO1| andD2 = |QO2|. Label the line which passes through Q and
is perpendicular to O1O2 as �. Of course,

D2
1 −D2

2 = r2
1 − r2

2,

since Q is on the radical axis. We want to show that the other points that
satisfy this condition are all on � (it is really an “if and only if” statement,
which I think will be apparent in the proof). Take another point P and put
d1 = |O1P|, and d2 = |O2P|.

x

r1

0
O1 Q r2O2

α
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Look at the two triangles �O1QP and �O2QP. According to the Law of
Cosines,

d2
1 = D2

1 + |PQ|2 −2D1|PQ|cos(∠O1QP)

d2
2 = D2

2 + |PQ|2 −2D2|PQ|cos(∠O2QP).

Therefore

d2
1 −d2

2 =
[
D2

1 + |PQ|2 −2D1|PQ|cos(∠O1QP)
]

−
[
D2

2 + |PQ|2−2D2|PQ|cos(∠O2QP)
]

= (D2
1 −D2

2)−2|PQ| ·
[
D1 cos(∠O1QP)−D2 cos(∠O2QP)

]
.

In order for P to be on the radical axis, d2
1 −d2

2 needs to equal r2
1 − r2

2, but
the term (D2

1 −D2
2) already equals this by itself. Therefore, P will be on

the radical axis when

d1 cos(∠O1QP)−d2 cos(∠O2QP) = 0.

There are now two scenarios to consider, depending upon the position of
P relative two O1 and O2. If P is between O1 and O2, then ∠O1QP and
∠O2QP are supplementary, so

cos(∠O2QP) =−cos(∠O1QP).

O1 Q

P

O2

d1 d2

D1 D2

The picture when Q is between circle centers.
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Then

d1 cos(∠O1QP)−d2 cos(∠O2QP)
= d1 cos(∠O1QP)+d2 cos(∠O1QP)
= (d1 +d2)cos(∠O1QP).

Since d1 + d2 > 0, the only way this can be zero is if cos(∠O1QP) = 0;
that is, (∠O1QP) = π/2. If P is not between O1 and O2, then ∠O1QP and
∠O2QP are equal, so

d1 cos(∠O1QP)−d2 cos(∠O2QP)
= d1 cos(∠O1QP)−d2 cos(∠O1QP)
= (d1 −d2)cos(∠O1QP).

In this case, d1 and d2 cannot be equal because then the circles would
be concentric. Therefore d1 − d2 �= 0, so again cos(∠O1QP) = 0; that is,
(∠O1QP) = π/2. Either way, then, the angle at Q is a right angle. That
places P on �.

That wraps up the preliminaries. Orthogonal circles will play a key role
in our model for non-Euclidean geometry, but for now it is on to the theo-
rems.

O1 Q

P

O2

d1
d2

D1

D2

The picture when Q is not between circle centers.
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The arbelos

An arbelos is a shape built from three semicircles. Let me give the con-
struction. Start with a semicircle with radius AC. Locate a point B any-
where between A and C. Now form two more semicircles on the same
side of AC, with diameters AB and BC respectively. The resulting shape is
called an arbelos.

As with triangles, it is pretty common to use the term to mean either the
edges (the semicircles themselves) or the interior region bounded by them.
This shape has a long history in classical geometry, going all the way back
to the ancient Greeks. The name comes from them: apparently arbelos is a
Greek word for a particular type of knife that was used by shoemakers. Its
curved blade resembled the geometric shape that now bears its name. A
lot of interesting relationships have been found inside the arbelos, mainly
in the form of hidden tangent circles. Our next theorem is in that vein– it
presents a chain of mutually tangent circles.

A B C

Five arbeloses (arbeli?)
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THM: A CHAIN OF CIRCLES IN THE ARBELOS
Given an arbelos formed from three circles, with diameters AC, AB,
and BC, where A∗B∗C, label

CA: the semicircle with radius AC
CB: the semicircle with radius BC
C0: the semicircle with radius AB

Then there is a circle C1 that is tangent to each of CA, CB, and C0;
there is a circle C2 that is tangent to CA, CB, and C1; there is a circle
C3 that is tangent to CA, CB, and C2; and in general, for any n ≥ 1,
there is a circle Cn that is tangent to CA, CB, and Cn−1.

Proof. This proof is easy– once you have the right inversion. Recall the
previous discussion of orthogonal circles: since C is outside the circle
C0, there must be a circle centered at C which is orthogonal to C0. Let
σ be the inversion across that circle. Then σ(C0) is C0 (but note that σ
interchanges A and B). Both CA and CB pass through C, so σ inverts them
to lines: σ(CA) is the line through B which is perpendicular to AB, and
σ(CB) is the line through A which is perpendicular to AB.

A B C
B0

1

2
3
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Now C0 is mutually tangent to two parallel lines, and in this more appar-
ently symmetric configuration, it is easy to build a stack of circles on top
of σ(C0), each tangent to the lines σ(CA) and σ(CB) and the circle imme-
diately below it. Apply σ again, sending this stack tumbling down: σ(CA)
back to CA, σ(CB) back to CB, C0 staying put, but the circles stacked on
top of it mapping to C1, C2, C3 . . . .

Steiner’s porism

Jakob Steiner was a nineteenth century geometer with a particular inter-
est in inversion and a particular disdain for analytic geometry. This next
chain of circles is named in his honor. Start with two circles CA and CB,
with CB contained entirely in the interior of CA. Now we will build a chain
of mutually tangent circles between CA and CB. First choose a circle C1
which is tangent to both CA and CB. Then:

– There is a circle C2 which is tangent to CA, CB, and C1.
– There is a circle C3 which is tangent to CA, CB, and C2.
– In general, there is a circle which is tangent to CA, CB, and Cn−1.

A B C
BA 0

σ(A)σ(B)

σ
σ
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This is very similar to the chain of circles constructed in the arbelos. The
difference this time is that eventually the circles inside this Steiner chain
will loop around back to C1. The natural question to ask is: when the chain
does get back around to C1, will it join up perfectly? Will the last circle
in the chain be tangent to C1? That sure would be nice, but in general it
does not happen. However, if conditions are so that the chain does close
perfectly, then this will happen no matter what circle C1 you use as the
starting point. In other words, whether the chain closes perfectly depends
only on CA and CB, not on C1. In the course of this discussion, I have made
two claims that need proof.

THM: STEINER’S PORISM
Suppose circle CB is contained in the interior of CA, and that a third
circle C1 in CA is tangent to both CA and CB.

1. There is a chain of circles C2, C3, . . . , where each Cn is tangent to
CA, CB, and Cn−1.

2. If {C1,C2, . . . ,CN} is such a chain of circles and CN is tangent to
C1, then for any such chain of circles {D1,D2, . . . ,DN}, DN will be
tangent to D1.

B

A

A Steiner chain between two circles.
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Proof. There is one scenario where these statements are fairly obvious–
when CA and CB are concentric. In that case, let O be the mutual centers
of the circles, and let rA and rB be the respective radii. Then each circle
in the chain Ci has its center on a circle halfway between CA and CB– on
the circle with center O and radius (rA + rB)/2 to be precise. All of the
circles in the chain are the same size– they all have radii of (rA − rB)/2.
Regarding the question of whether the chain will close up neatly, look at
the angle θ at O that any one of these circles subtends. If you slice that
angle in half, there is a right triangle in there– one with an opposite side
of (rA − rB)/2 and a hypotenuse of (rA + rB)/2. Therefore

sin(θ/2) =
rA − rB

rA + rB
=⇒ θ = 2sin−1

(
rA − rB

rA + rB

)
.

Then the question of whether the chain closes up is just: is 2π divisible by
θ? And of course the answer to this question depends only on rA and rB,
not on where the starting circle C1 is.

If CA and CB are not concentric– that is they have distinct centers OA and
OB– then the circles in the chain will not all be the same size, as they are
forced to adjust to fit in between CA and CB. That makes both claims a
bit more difficult. Fortunately, there is an inversion out there to help– an
inversion that maps CA and CB to a concentric configuration.

rA − rB

2

rA + rB

2
rA rB

rA

rB

The concentric case.
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The right inversion is an inversion across a circle whose center is the in-
tersection of two circles CX and CY which are both orthogonal to CA and
CB. First of all, we know that there are circles that are orthogonal to both
CA and CB. They are all centered along the radical axis. Of course, not any
two of those circles will intersect each other, so you will need to choose
carefully. As long as you choose two circles CX and CY whose centers
on the radical axis are the same small distance ε on either side of OAOB,
then CX and CY will intersect. I will leave the details of the precise place-
ment of these two circles as an exercise. Once you have them, let σ be an
inversion across a circle centered at the intersection of CX and CY . Then
σ(CX) and σ(CY ) are intersecting lines, and σ(CA) and σ(CB) are circles
perpendicular to σ(CX) and σ(CY ). That means both σ(CX) and σ(CY )
run through the centers of σ(CA) and σ(CB). Of course, there is only
one point on both σ(CX)and σ(CY ). That point has to be the center of
both σ(CA) and σ(CB). Therefore, σ(CA) and σ(CB) are concentric. We
know we can construct a chain of circles between σ(CA) and σ(CB), and
that whether it closes or not depends only on σ(CA) and σ(CB). Apply σ
again to a chain of circles between σ(CA) and σ(CB)– the result is a chain
of circles between CA and CB, and whether that chain closes up neatly does
not depend upon the location of the first circle in the chain.

Inversion turns the general configuration into a concentric one.

BA

X

Y



536 LESSON 37

Exercises

1. Let C1 and C2 be two non-concentric circles. Prove that if the circles in-
tersect, then their radical axis passes through the intersection point(s).
Prove that if the circles don’t intersect, then their radical axis lies out-
side both of them.

2. Given A ∗B ∗C, form an arbelos by removing half-circles with diam-
eters AB and BC from the half-circle with diameter AC. Label these
half-circles as C0, CB, and CA (as in the proof of the arbelos chain).
The line � which passes through B and is perpendicular to AC inter-
sects CA at a point D. The circle with radius BD intersects both C0
and CB one more time– label those points E and F . Prove that the
quadrilateral BEDF is a rectangle.

3. The proof of Steiner’s porism uses a pair of intersecting orthogonal cir-
cles. We had previously proved that those orthogonal circles do exist–
their centers are on the radical axis Prove that it is always possible to
find a pair of such orthogonal circles that do intersect.

4. Let σ be the inversion across circle C with center O, and let P be a point
other than O. Find a compass and straight edge construction of σ(P).
Hint: the distance from O to σ(P) is the key, and that is governed by
the equation |Oσ(P)| = r2/|OP|. To get that kind of ratio, consider a
configuration of right triangles where �ABC has right angle at C, and
D is the foot of the altitude from C.

5. Given a circle C and two points P and Q in the interior of C which are
not on the same diameter, give a compass and straight edge construc-
tion of the circle which passes through both P and Q, and is orthogonal
to C.


