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Axiom

Let’s start with some very basic things. This book is about plane geometry,
and in plane geometry you can’t get much more basic than points and
lines. So let’s start there. The first thing to realize is that both of these
things, points and lines, are abstractions. You will not find them in the
real world. Oh sure, there are point-like things out there– atoms might
be a good example. There are line-like things too– laser beams come to
mind. But these physical manifestations fall short of “true” points and
lines. Points and lines, in other words, are not things we can point to in
the real world. In a casual setting, that may not be a big deal. After all, the
whole of human experience requires us to deal with abstraction in a variety
of contexts on a daily basis. But to try to develop a precise mathematical
system from these abstractions– well, that is a little bit more problematic.
Consider the opening statements in Euclid’s Elements,

Definition 1. A point is that which has no part.
Definition 2. A line is breadthless length.

I have to admit, I do like those definitions. They are kind of poetic (at
least as poetic as mathematics is permitted to be). But let’s be honest–
how much information do they really convey? Euclid doesn’t define a
part, nor does he define breadth or length. Were he to define those terms,
they would be have to be described using other terms, which would in turn
need their own definition, and so on. It isn’t that Euclid’s definitions are
bad. It is that this is a hopeless situation. You can’t define everything.

Modern geometry takes an entirely different approach to the issue of
elementary definitions. In truth, I think it would be fair to say that modern
geometry dodges the question. But it does so in such an artful way that
you almost feel foolish for asking the question in the first place. Like
its classical counterpart, modern geometry is built upon a foundation of a
few basic terms, such as point and line. Unlike the classical approach, in
modern geometry no effort is made to define those basic terms. In fact,
they are called the undefineds of the system. Well, you may ask, what can
I do with terms that have no meaning? This is where the axioms of the
geometry come into play. All the behavior, properties and interactions of
the undefined terms are described in a set of statements called the axioms
of the system. No effort is made to argue for the truth of the axioms.
How could you do so?– they are statements about terms which themselves
have no meaning. As long as the axioms do not contradict one another,
they will define some kind of geometry. It may be quite different from
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the Euclidean geometry to which we are accustomed, but it is a geometry
none the less.

Model

Okay, you say, I see what you are saying, but I have done geometry before,
and I really like those pictures and diagrams. They help me to understand
what is going on. Well, I agree completely! Sure, a bad diagram can be
misleading. Even a good diagram can be misleading at times. On the
whole, though, I believe that diagrams lead more often than they mislead.
The very thesis of this book is that illustrations are an essential part of the
subject.

In that case, what is the relationship between illustrations and axioms?
First of all, we have to accept that the illustrations are imperfect. Lines
printed on paper have a thickness to them. They are finite in length. Points
also have a length and width– otherwise we couldn’t see them. That’s just
the way it has to be. But really, I don’t think that is such a big deal. I think
the focus on those imperfections tends to mask an even more important
issue. And that is that these illustrations represent only one manifestation
of the axioms. Points and lines as we depict them are one way to interpret
the undefined terms of point and line. This intepretation happens to be
consistent with all of the standard Euclidean axioms. But there may be a
completely different interpretation of the undefineds which also satisfies
the Euclidean axioms. Any such interpretation is called a model for the
geometry. A geometry may have many models, and from a theoretical
point of view, no one model is more right than any other. It is important,
then, to prove facts about the geometry itself, and not peculiarities of one
particular model.
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Fano’s Geometry

To see how axiomatic geometry works without having our Euclidean intu-
ition getting in the way, let’s consider a decidely non-Euclidean geometry
called Fano’s geometry (named after the Italian algebraic geometer Gino
Fano). In Fano’s geometry there are three undefined terms, point, line,
and on. Five axioms govern these undefined terms.

Ax 1. There exists at least one line.
Ax 2. There are exactly three points on each line.
Ax 3. Not all points are on the same line.
Ax 4. There is exactly one line on any two distinct points.
Ax 5. There is at least one point on any two distinct lines.

Fano’s geometry is a simple example of what is called a finite projective
geometry. It is projective because, by the fifth axiom, all lines intersect
one another (lines cannot be parallel). It is finite because, as we will see,
it only contains finitely many points and lines. To get a sense of how an
axiomatic proof works, let’s count the points and lines in Fano’s geometry.

THM
Fano’s geometry has exactly seven points and seven lines.

Proof. I have written this proof in the style I was taught in high school
geometry, with a clear separation of each statement and its justification
(in this case, an axiom). It is my understanding that geometry is rarely
taught this way now. A shame, I think, since I think that this is a good
way to introduce the idea of logical thought and proof.

1
1
2
3
4

2 3 4
PT

LN Ax 1 There is a line �1.
Ax 2 On �1, there are three points.

Label them p1, p2 and p3.
Ax 3 There is a fourth point p4 that

is not on �1.
Ax 4 There are lines: �2 on p1 and

p4, �3 on p2 and p4, and �4
on p3 and p4. Each of these
lines is distinct.

1
This chart tracks the incidences of 
points on lines through the proof.
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1
1
2
3
4
5
6
7

2 3 4
PT

LN 1
1
2
3
4
5
6
7

2 3 4 5
PT

LN

1
1
2
3
4
5
6
7

2 3 4 5 6
PT

LN 1
1
2
3
4
5
6
7

2 3 4 5 6 7
PT

LN

Ax 4 There must be a line �5 on
p1 and p6.

Ax 2 The line �5 must have one
more point on it.

Ax 4 That point cannot be either
p3 or p4.

Ax 5 For �5 and �4 to intersect, the
third point of �5 must be p7.

Ax 4 There must be a line �6 on
p2 and p5.

Ax 2 The line �6 must have a third
point on it.

Ax 4 That point cannot be p3 or
p4.

Ax 5 For �6 and �4 to intersect, the
third point of �6 must be p7.

Ax 2 Each of these lines has a third
point on it.

Ax 4 They are distinct and differ-
ent from any of the previously
declared points. Label them:
p5 on �2, p6 on �3, and p7 on
�4.

2 3

4 5
Ax 4 There must be a line �7 on

p3 and p5.
Ax 2 The line �7 must have one

more point on it.
Ax 4 That point cannot be p2 or

p4.
Ax 5 For �7 and �3 to intersect, the

third point of �7 must be p6.
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We now have seven points and seven lines as required. Could there be
more? Let’s suppose there were an eighth point p8.

Ax 4 Then there would be a line �8 on p1 and p8.

Ax 3 Line �8 would have to have another point on it.

Ax 4 This other point would have to be distinct from each of p2 through
p7.

Ax 5 Then �8 would not share a point with �3 (and other lines as well).
Thus there cannot be an eighth point.

Ax 4 There is now a line on every pair of points. Therefore there can be
no more lines.

A model for Fano’s geometry.
The nodes of the graph represent the 
points. The six segments and the circle 
represent the lines.
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Further reading

Euclid’s Elements is still a fantastic read. There are several editions avail-
able, both in text form and online, including, for instance, [3]. If you want
to know more about projective geometry in general, I would recommend
Coxeter’s book [2]. For a finite projective planes, I have found a nice set
of online notes by Jurgen Bierbrauer [1]. At the time of this writing they
are available at the web address:

http://www.math.mtu.edu/∼jbierbra/HOMEZEUGS/finitegeom04.ps.

[1] Jürgen Bierbrauer. Finite geometries: MA5980. Lecture notes dis-
tributed on World Wide Web, 2004.

[2] H.S.M. Coxeter. Projective Geometry. Blaisdell Publishing Co., New
York, 1st edition, 1964.

[3] Euclid. The Thirteen Books of Euclid’s Elements. Dover Publications,
New York, 2nd edition, 1956. Translated from the text of Heiberg,
with introduction and commentary by Sir Thomas L. Heath.
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1NEUTRAL GEOMETRY   

The goal of this book is to provide a pleasant but thorough introduction
to Euclidean and non-Euclidean (hyperbolic) geometry. Before I go any
further, let me clear up something that could lead to confusion on down
the road. Some mathematicians use the term non-Euclidean geometry to
mean any of a whole host of geometries which fail to be Euclidean for
any number of reasons. The kind of non-Euclidean geometry that we will
study in these lessons, and the kind that I mean when I use the term non-
Euclidean geometry, is something much more specific– it is a geometry
that satisfies all of Hilbert’s axioms for Euclidean geometry except the
parallel axiom.

It turns out that that parallel axiom is absolutely central to the nature
of the geometry. The Euclidean geometry with the parallel axiom and the
non-Euclidean geometry without it are radically different. Even so, Eu-
clidean and non-Euclidean geometry are not polar opposites. As different
as they are in many ways, they still share many basic characteristics. Neu-
tral geometry (also known as absolute geometry in older texts) is the study
of those commonalities.





1. OUR DUCKS IN A ROW
THE AXIOMS OF INCIDENCE 

AND ORDER
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From Euclid to Hilbert

You pretty much have to begin a study of Euclidean geometry with at
least some mention of Euclid’s Elements, the book that got the ball rolling
over two thousand years ago. The Elements opens with a short list of
definitions. As discussed in the previous chapter, the first few of these
definitions are a little problematic. If we can push past those, we get to
Euclid’s five postulates, the core accepted premises of his development of
the subject.

EUCLID’S POSTULATES

P1 To draw a straight line from any point to any point.
P2 To produce a finite straight line continuously in a straight

line.
P3 To describe a circle with any center and distance.
P4 That all right angles are equal to one another.
P5 That, if a straight line falling on two straight lines makes the

interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.

The first three postulates describe constructions. Today we would proba-
bly reinterpret them as statements about the existence of certain objects.
The fourth provides a way to compare angles. As for the fifth, well, in all
of history, not many sentences have received as much scrutiny as that one.

1

t

2

Euclid’s Parallel Postulate

2

1

Because (∠1)+(∠2) < 180◦,
1 and 2 intersect on this side of t.
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When you look at these postulates, and Euclid’s subsequent develop-
ment of the subject from them, it appears that Euclid may have been at-
tempting an axiomatic development of the subject. There is some debate,
though, about the extent to which Euclid really was trying to do that. His
handling of “S·A·S,” for example, is not founded upon the postulates, and
not merely in a way that might be attributed to oversight. With a cou-
ple thousand years between us and him, we can only guess at his true
intentions. In any case, Euclidean geometry was not properly and com-
pletely axiomatized until much later, at the end of the nineteenth century
by the German mathematician David Hilbert. His 1899 book, The Foun-
dations of Geometry gave an axiomatic description of what we think of as
Euclidean geometry. Subsequently, there have been several other axiom-
atizations, including notably ones by Birkhoff and Tarski. The nice thing
about Hilbert’s approach is that proofs developed in his system “feel” like
Euclid’s proofs. Some of the other axiomatizations, while more stream-
lined, do not retain that same feel.

Neutral Geometry

It might be an obvious statement, but it needs to be said: Euclid’s Fifth
Postulate does not look like the other four. It is considerably longer and
more convoluted than the others. For that reason, generations of geome-
ters after Euclid hoped that the Fifth might actually be provable– that it
could be taken as a theorem rather than a postulate. From their efforts
(which, by the way, were unsuccessful) there arose a whole area of study.
Called neutral geometry or absolute geometry, it is the study of the geom-
etry of the plane without Euclid’s Fifth Postulate.

So what exactly do you give up when you decide not to use Euclid’s
Fifth? Essentially Euclid’s Fifth tells us something about the nature of
parallel lines. It does so in a rather indirect way, though. Nowadays it
is common to use Playfair’s Axiom in place of Euclid’s Fifth because it
addresses the issue of parallels much more directly. Playfair’s Axiom both
implies and is implied by Euclid’s Fifth, so the two statements can be used
interchangeably.

PLAYFAIR’S AXIOM
For any line � and for any point P which is not on �, there is exactly
one line through P which is parallel to �.
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Even without Playfair’s Axiom, it is relatively easy to show that there
must be at least one parallel through P, so what Playfair’s Axiom is re-
ally telling us is that in Euclidean geometry there cannot be more than
one parallel. The existence of a unique parallel is crucial to many of the
proofs of Euclidean geometry. Without it, neutral geometry is quite lim-
ited. Still, neutral geometry is the common ground between Euclidean and
non-Euclidean geometries, and it is where we begin our study.

In the first part of this book, we are going to develop neutral geometry
following the approach of Hilbert. In Hilbert’s system there are five unde-
fined terms: point, line, on, between, and congruent. Fifteen of his axioms
are needed to develop neutral plane geometry. Generally the axioms are
grouped into categories to make it a bit easier to keep track of them: the
axioms of incidence, the axioms of order, the axioms of congruence, and
the axioms of continuity. We will investigate them in that order over the
next several chapters.

Incidence

Hilbert’s first set of axioms, the axioms of incidence, describe the inter-
action between points and lines provided by the term on. On is a binary
relationship between points and lines so, for instance, you can say that a
point P is (or is not) on a line �. In situations where you want to express
the line’s relationship to a point, rather than saying that a line � is on a
point P (which is technically correct), it is much more common to say that
� passes through P.

THE AXIOMS OF INCIDENCE

In 1 There is a unique line on any two distinct points.
In 2 There are at least two points on any line.
In 3 There exist at least three points that do not all lie on the same

line.

Incidence

1 Two points on a line. 
2 A line on two points.
3 And there’s more.

1
2

3 Incidence

1 Two points on a line
2 A line on two points
3 And there’s more.
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By themselves, the axioms of incidence do not afford a great wealth of
theorems. Some notation and a few definitions are all we get. First, the
notation. Because of the first axiom, there is only one line through any
two distinct points. Therefore, for any two distinct points A and B, we
use the notation � AB � to denote the line through A and B. As you
are probably all aware, this is not exactly the standard notation for a line.
Conventionally, the line symbol is placed above the points. I just don’t
like that notation in print– unless you have lots of room between lines of
text, the symbol crowds the line above it.

Now the definitions. Any two distinct points lie on one line. Three or
more points may or may not all lie on the same line.

DEF: COLINEARITY
Three or more points are colinear if they are all on the same line and
are non-colinear if they are not.

According to the first axiom, two lines can share at most one point. How-
ever, they may not share any points at all.

DEF: PARALLEL AND INTERSECTING
Two lines intersect if there is a point P which is on both of them. In
this case, P is the intersection or point of intersection of them. Two
lines which do not share a point are parallel.

Lines 1 and 2 intersect. Both are parallel to line 3. Because there are two 
lines through P parallel to line 3, this is not a Euclidean geometry.

1
2

3 P

Lines 1 and 2 intersect. Both are parallel to line 3. Because there appear to be 
two lines through P parallel to line 3, this does not look like Euclidean geometry.
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Order

The axioms of order describe the undefined term between. Between is a
relation between a point and a pair of points. We say that a point B is, or
is not, between two points A and C and we use the notation A ∗B ∗C to
indicate that B is between A and C. Closely related to this “between-ness”
is the idea that a line separates the plane. This behavior, which is explained
in the last of the order axioms, depends upon the following definition.

DEF: SAME SIDE
Let � be a line and let A and B be two points which are not on �.
Points A and B are on the same side of � if either � and �AB� do not
intersect at all, or if do they intersect but the point of intersection is
not between A and B.

So now, without further delay, the Axioms of Order describing the prop-
erties of between.

THE AXIOMS OF ORDER

Or 1 If A ∗ B ∗C, then the points A, B, C are distinct colinear
points, and C ∗B∗A.

Or 2 For any two points B and D, there are points A, C, and E,
such that A∗B∗D, B∗C ∗D and B∗D∗E.

Or 3 Of any three distinct points on a line, exactly one lies be-
tween the other two.

Or 4 The Plane Separation Axiom. For any line � and points A,
B, and C which are not on �: (i) If A and B are on the same
side of � and A and C are on the same side of �, then B and C
are on the same side of �. (ii) If A and B are not on the same
side of � and A and C are not on the same side of �, then B
and C are on the same side of �.

1

A

A

AB C

B
B

C
P

C

D E

2 3 4i 4ii

Order

1 Points in order 
2 Between and beyond
3 But no circularity

PSA

A line separates 
the plane. A point 
separates a line.
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The last of these, the Plane Separation Axiom (PSA), is a bit more to digest
than the previous axioms. It is pretty critical though– it is the axiom which
limits plane geometry to two dimensions. Let’s take a closer look. Let �
be a line and let P be a point which is not on �. We’re going to define two
sets of points.

S1: P itself and all points on the same side of � as P.
S2: all points which are not on � nor on the same side of � as P

By the second axiom of order both S1 and S2 are nonempty sets. The first
part of PSA tells us is that all the points of S1 are on the same side; the
second part tells us that all the points of S2 are on the same side. Hence
there are two and only two sides to a line. Because of this, we can refer to
points which are not on the same side of a line as being on opposite sides.

Just as a line separates the remaining points of the plane, a point on a
line separates the remaining points on that line. If P is between A and B,
then A and B are on opposite sides of P. Otherwise, A and B are on the
same side of P. You might call this separation of a line by a point “line
separation”. It is a direct descendent of plane separation via the following
simple correspondence. For three distinct points A, B, and P on a line �,

A, B on the same side of P ⇐⇒ A, B are on the same side of
any line through P other than �

A, B on opposite sides of P ⇐⇒ A, B are on opposite sides of
any line through P other than �

Because of this, there is a counterpart to the Plane Separation Axiom for
lines. Suppose that A, B, C and P are all on a line. (1) If A and B are on
the same side of P and A and C are on the same side of P, then B and C
are on the same side of P. (2) If A and B are on opposite sides of P and A
and C are on opposite sides of P, then B and C are on the same side of P.
As a result, a point divides a line into two sides.

1

A

A

AB C

B
B

C
P

C

D E

2 3 4i 4ii

Order

1 Points in order 
2 Between and beyond
3 But no circularity

PSA

A line separates 
the plane. A point 
separates a line.
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With between, we can now introduce some a few of the main characters
in this subject.

DEF: LINE SEGMENT
For any two points A and B, the line segment between A and B is the
set of points P such that A∗P∗B, together with A and B themselves.
The points A and B are called the endpoints of the segment.

DEF: RAY
For two distinct points A and B, the ray from A through B consists of
the point A together with all the points on � AB � which are on the
same side of A as B. The point A is called the endpoint of the ray.

The notation for the line segment between A and B is AB. For rays, I write
AB� for the ray with endpoint A through the point B. As with my notation
for lines, this is a break from the standard notation which places the ray
symbol above the letters.

DEF: OPPOSITE RAY
For any ray AB�, the opposite ray (AB�)op consists of the point A
together with all the points of �AB� which are on the opposite side
of A from B.

Putting Points in Order

The order axioms describe how to put three points in order. Sometimes,
though, three is not enough. It would be nice to know that more than three
points on a line can be ordered in a consistent way. Thankfully, the axioms
of order make this possible as well.

THM: ORDERING POINTS
Given n ≥ 3 colinear points, there is a labeling of them P1, P2, . . . , Pn
so that if 1 ≤ i < j < k ≤ n, then Pi ∗Pj ∗Pk. In that case, we write

P1 ∗P2 ∗ · · · ∗Pn.
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Proof. This is a proof by induction. The initial case, when there are just
three points to put in order, is an immediate consequence of the axioms
of order. Now let’s assume that any set of n colinear points can be put in
order, and let’s suppose we want to put a set of n+ 1 colinear points in
order. I think the natural way to do this is to isolate the first point (call it
Q), put the remaining points in order, and then stick Q back on the front.
The problem with this approach is that figuring out which point is the first
point essentially presupposes that you can put the points in order. Getting
around this is a little delicate, but here’s how it works. Choose n of the
n+1 points. Put them in order and label them so that p1 ∗ p2 ∗ · · ·∗ pn. Let
q be the one remaining point. Now, one of the following three things must
happen:

q∗ p1 ∗ p2 or p1 ∗q∗ p2 or p1 ∗ p2 ∗q.

In the first case, let Q = q and let P1 = p1, P2 = p2, . . . , Pn = pn. In the
second and third cases, let Q = p1.Then put the remaining points p1, . . . ,
pn and q in order and label them P1, P2, . . . ,Pn. Having done this, we have
two pieces of an ordering

Q∗P1 ∗P2 and P1 ∗P2 ∗ · · · ∗Pn.

Q

q

q

q

... ...

1

2

3

p1

p1

p1

p2

p2

p2

p3

p3

p3

P1 P3P2 Pn

pn

pn

pn

The three possible positions of q in relation to p1 and p2.

Proof. This is a proof by induction. The initial case, when there are just
three points to put in order, is an immediate consequence of the axioms
of order. Now let’s assume that any set of n colinear points can be put in
order, and let’s suppose we want to put a set of n+ 1 colinear points in
order. I think the natural way to do this is to isolate the first point (call it
Q), put the remaining points in order, and then stick Q back on the front.
The problem with this approach is that figuring out which point is the first
point essentially presupposes that you can put the points in order. Getting
around this is a little delicate, but here’s how it works. Choose n of the
n+1 points. Put them in order and label them so that p1 ∗ p2 ∗ · · ·∗ pn. Let
q be the one remaining point. Now, one of the following three things must
happen:

q∗ p1 ∗ p2 or p1 ∗q∗ p2 or p1 ∗ p2 ∗q.

In the first case, let Q = q and let P1 = p1, P2 = p2, . . . , Pn = pn. In the
second and third cases, let Q = p1.Then put the remaining points p1, . . . ,
pn and q in order and label them P1, P2, . . . ,Pn. Having done this, we have
two pieces of an ordering

Q∗P1 ∗P2 and P1 ∗P2 ∗ · · · ∗Pn.
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The proof is not yet complete, though, because we still need to show that
Q is ordered properly with respect to the remaining P’s. That is, we need
to show Q∗Pi ∗Pj when 1 ≤ i < j ≤ n. Let’s do that (in several cases).

Case 1: i = 1.
The result is given when j = 2, so let’s
suppose that j > 2. Then:
1. Q∗P1 ∗P2 so Q and P1 are on the

same side of P2.
2. P1 ∗P2 ∗Pj so P1 and Pj are on op-

posite sides of P2.
3. Therefore Q and Pj are on oppo-

site sides of P1, so Q∗P1 ∗Pj.

Case 2: i = 2.
1. Q∗P1 ∗P2 so Q and P1 are on the

same side of P2.
2. P1 ∗P2 ∗Pj so P1 and Pj are on op-

posite sides of P2.
3. Therefore Q and Pj are on oppo-

site sides of P2, so Q∗P2 ∗Pj.

Case 3: i > 2.
1. P1 ∗P2 ∗Pi so P1 and Pi are on op-

posite sides of P2.
2. Q∗P1 ∗P2 so Q and P1 are on the

same side of P2.
3. Therefore Q and Pi are on oppo-

site sides of P2, so Q∗P2 ∗Pi.
4. Consequently, Q and P2 are on the

same side of Pi.
5. Meanwhile, P2 ∗Pi ∗Pj so P2 and

Pj are on opposite sides of Pi.
6. Therefore, Q and Pj are on oppo-

site sides of Pi, so Q∗Pi ∗Pj.

Q P1 P2 Pj

Q P1 P2 Pj

Q P1 P2 Pi Pj
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Exercises

1. Prove that if A∗B∗C then AB ⊂ AC and AB�⊂ AC�.

2. Prove that if A∗B∗C ∗D then AC∪BD = AD and AC∩BD = BD.

3. Prove that the points which are on both AB� and BA� are the points
of AB.

4. Use the axioms of order to show that there are infinitely many points
on any line and that there are infinitely many lines through a point.

5. The familiar model for Euclidean geometry is the “Cartesian model.”
In that model, points are interepreted as coordinate pairs of real num-
bers (x,y). Lines are loosely interpreted as equations of the form

Ax+By =C

but technically, there is a little bit more to it than that. First, A and B
cannot both simultaneously be zero. Second, if A′ = kA, B′ = kB, and
C′ = kC for some nonzero constant k, then the equations Ax+By =C
and A′x+B′y = C′ both represent the same line [in truth then, a line
is represented by an equivalence class of equations]. In this model, a
point (x,y) is on a line Ax+By=C if its coordinates make the equation
true. With this interpretation, verify the axioms of incidence.

6. In the Cartesian model, a point (x2,y2) is between two other points
(x1,y1) and (x3,y3) if:
1. the three points are distinct and on the same line, and
2. x2 is between x1 and x3 (either x1 ≤ x2 ≤ x3 or x1 ≥ x2 ≥ x3), and
3. y2 is between y1 and y3 (either y1 ≤ y2 ≤ y3 or y1 ≥ y2 ≥ y3).
With this interpretation, verify the axioms of order.
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Further reading

For these first few“moves”, we are pretty constricted, with few results to
build from and very little flexibility about where we can go next. Since
we have adopted the axioms of Hilbert, our initial steps (in this and the
next few lessons) follow fairly closely those of Hilbert in his Foundations
of Geometry [2].

In addition, let me refer you to a few more contemporary books which
examine the first steps in the development of the subject. Moise’s Elemen-
tary Geometry from an Advanced Standpoint [3] is one of my favorites. I
have taught from both Wallace and West’s Roads to Geometry [4], and
Greenberg’s Euclidean and Non-Euclidean Geometries [1].

[1] Marvin J. Greenberg. Euclidean and Non-Euclidean Geometries: De-
velopment and History. W.H. Freeman and Company, New York, 4th
edition, 2008.

[2] David Hilbert. The Foundations of Geometry.

[3] Edwin E. Moise. Elementary Geometry from an Advanced Stand-
point. Addison Wesley Publishing Company, Reading, Mas-
sachusetts, 2nd edition, 1974.

[4] Edward C. Wallace and Stephen F. West. Roads to Geometry. Pearson
Education, Inc., Upper Saddle River, New Jersey, 3rd edition, 2004.



2. IN ONE SIDE, OUT THE OTHER
ANGLES AND TRIANGLES
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These are the first steps. They are tentative. But it is right to be cautious.
It is so difficult keeping intuition from making unjustified leaps. The two
main theorems in this lesson, Pasch’s Lemma and the Crossbar Theorem,
are good examples of this. Neither can be found in Euclid’s Elements.
They just seem so obvious that I guess it didn’t occur to him that they
needed to be proved (his framework of postulates would not allow him to
prove those results anyway). The kind of intersections that they guarantee
are essential to many future results, though, so we must not overlook them.

Angles and Triangles

In the last lesson we defined ray and segment. They are the most elemen-
tary of objects, defined directly from the undefined terms. Now in this
lesson, another layer: angles and triangles, which are built from rays and
segments.

DEF: ANGLE
An angle consists of a (unordered) pair of non-opposite rays with the
same endpoint. The mutual endpoint is called the vertex of the angle.

Let’s talk notation. If the two rays are AB � and AC �, then the angle
they form is written ∠BAC, with the endpoint listed in the middle spot.
There’s more than one way to indicate that angle though. For one, it does
not matter which order the rays are taken, so ∠CAB points to the same
angle as ∠BAC. And if B′ is on AB� and C′ is on AC� (not the endpoint
of course), then ∠B′AC′ is the same as ∠BAC too. Frequently, it is clear in
the problem that you only care about one angle at a particular vertex. On
those occasions you can often get away with the abbreviation ∠A in place
of the full ∠BAC. Just as a line divides the plane into two sides, so too
does an angle. In this case the two parts are the interior and the exterior of
the angle.

DEF: ANGLE INTERIOR
A point lies in the interior or is an interior point of ∠BAC if it is on
the same side of � AB � as C and same side of � AC � as B. A
point which does not lie in the interior of the angle and does not lie
on either of the rays composing the angle is exterior to the angle and
is called an exterior point.
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The last definition in this section is that of the triangle. Just as an angle is
formed by joining two rays at their mutual endpoint, a triangle is formed
by joining three segments at mutual endpoints.

DEF: TRIANGLE
A triangle is an (unordered) triple of non-colinear points and the
points on the segments between each of the three pairs of points.
Each of the three points is called a vertex of the triangle. Each of the
three segments is called a side or edge of the triangle.

If A, B, and C are non-colinear points then we write �ABC for the triangle.
The ordering of the three vertices does not matter, so there is more than
one way to write a given triangle:

�ABC =�ACB =�BAC =�BCA =�CAB =�CBA.

The three sides of �ABC are AB, AC, and BC. The three angles ∠ABC,
∠BCA and ∠CAB are called the interior angles of �ABC. A point which
is in the interior of all the three of the interior angles is said to be inside
the triangle. Together they form the interior of the triangle. Points which
are not inside the triangle and aren’t on the triangle itself, are said to be
outside the triangle. They make the exterior of the triangle.

A

B

C
The light region is the interior. The dark the exterior.∠BAC.

A

B

C

interior edgesvertices

Parts of a triangle
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A Line Passes Through It

The rest of this lesson is dedicated to three fundamental theorems. The
first, a result about lines crossing triangles is called Pasch’s Lemma after
Moritz Pasch, a nineteenth century German mathematician whose works
are a precursor to Hilbert’s. It is a direct consequence of the Plane Sep-
aration Axiom. The second result, the Crossbar Theorem, is a bit more
difficult. It deals with lines crossing through the vertex of an angle. The
third says that rays with a common endpoint can be ordered in a consistent
way, in the same way that points on a line can be ordered.

PASCH’S LEMMA
If a line intersects a side of a triangle at a point other than a vertex,
then it must intersect another side of the triangle. If a line intersects
all three sides of a triangle, then it must intersect two of the sides at
a vertex.

Proof. Suppose that a line � intersects side AB of �ABC at a point P other
than the endpoints. If � also passes through C, then that’s the other inter-
section; in this case � does pass through all three sides of of the triangle,
but it passes through two of them at a vertex. Now what if � does not pass
through C? There are only two possibilities: either C is on the same side
of � as A, or it is on the opposite side of � from A. This is where the Plane
Separation Axiom comes to the rescue. Because P is between A and B,
those two points have to be on opposite sides of �. Thus, if C is on the
same side of � as A, then it is on the opposite side of � from B, and so �
intersects BC but not AC. On the other hand, if C is on the opposite side
of � from A, then it is on the same side of � as B, so � intersects AC but not
BC. Either way, � intersects two of the three sides of the triangle.

A

B

CP P PC C

B B

A A

 passes through AC  passes through C  passes through BC
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As I mentioned at the start of the section, the proof of the Crossbar Theo-
rem is more challenging. I think it is helpful to separate out one small part
into the following lemma.

LEMMA
If A is a point on line �, and B is a point which is not on �, then all
the points of AB � (and therefore all the points of AB) except A are
on the same side of � as B.

Proof. If C is any point on AB � other than A or B, then C has to be on
the same side of A as B, and so either A ∗B ∗C or A ∗C ∗B. Either way,
� AC � and � intersect at the point A, but that point of intersection does
not lie between B and C. Hence B and C are on the same side of �.

THE CROSSBAR THEOREM
If D is an interior point of angle ∠BAC, then the ray AD� intersects
the segment BC.

Proof. If you take a couple minutes to try to prove this for yourself, you
will probably find yourself thinking– hey, this seems awfully similar to
Pasch’s Lemma– we could use �ABC for the triangle and � AD � for
the line. The problem is that one pesky condition in Pasch’s Lemma: the
given intersection of the line and the triangle can’t be at a vertex. In the
situation we have here, the ray in question AD � does pass through the
vertex. Still, the basic idea is sound. The actual proof does use Pasch’s
Lemma, we just have to bump the triangle a little bit so that AD� doesn’t
cross through the vertex.

As I mentioned at the start of the section, the proof of the Crossbar Theo-
rem is more challenging. I think it is helpful to separate out one small part
into the following lemma.

LEMMA
If A is a point on line �, and B is a point which is not on �, then all
the points of AB � (and therefore all the points of AB) except A are
on the same side of � as B.

Proof. If C is any point on AB � other than A or B, then C has to be on
the same side of A as B, and so either A ∗B ∗C or A ∗C ∗B. Either way,
� AC � and � intersect at the point A, but that point of intersection does
not lie between B and C. Hence B and C are on the same side of �.

THE CROSSBAR THEOREM
If D is an interior point of angle ∠BAC, then the ray AD� intersects
the segment BC.

Proof. If you take a couple minutes to try to prove this for yourself, you
will probably find yourself thinking– hey, this seems awfully similar to
Pasch’s Lemma– we could use �ABC for the triangle and � AD � for
the line. The problem is that one pesky condition in Pasch’s Lemma: the
given intersection of the line and the triangle can’t be at a vertex. In the
situation we have here, the ray in question AD � does pass through the
vertex. Still, the basic idea is sound. The actual proof does use Pasch’s
Lemma, we just have to bump the triangle a little bit so that AD� doesn’t
cross through the vertex.

(l) The lemma says that 
a ray cannot recross a 
line like this. (r) The 
Crossbar Theorem 
guarantees the 
existence of the point P.

A A

BB

C
P

C



30 LESSON 2

According to the second axiom of order, there are points on the opposite
side of A from C. Let A′ be one of them. Now �AD� intersects the side
A′C of the triangle �A′BC. By Pasch’s Lemma, � AD � must intersect
one of the other two sides of triangle, either A′B or BC. There are two
scenarios to cause concern. First, what if � AD � crosses A′B instead of
BC? And second, what if �AD� does cross BC, but the intersection is on
(AD�)op instead of AD� itself?

I think it is easier to rule out the second scenario first so let’s start there.
(1)If D′ is any point on (AD�)op, then it is on the opposite side of A from
D. Therefore D′ and D are on opposite sides of �A′C�. (2)Since D is an
interior point, it is on the same side of �A′C� as B, and so D′ and B are
on opposite sides of A′C. (3)By the previous lemma, all the points of A′B
and of BC are on the same side of �A′C� as B. (4)Therefore they are on
the opposite side of �A′C � fom D′, so no point of (AD�)op may lie on
either A′B or BC.

With the opposite ray ruled out entirely, we now just need to make sure
that AD� does not intersect A′B. (5)Points A′ and C are on opposite sides
of �AB�. (6)Because D is an interior point, D and C are on the same side
of �AB�. (7)Therefore A′ and D are on opposite sides of �AB�. (8)Using
the preceding lemma, all the points of A′B are on opposite sides of �AB�
from all the points of AD �. This means that AD � cannot intersect A′B,
so it must intersect BC.

According to the second axiom of order, there are points on the opposite
side of A from C. Let A′ be one of them. Now �AD� intersects the side
A′C of the triangle �A′BC. By Pasch’s Lemma, � AD � must intersect
one of the other two sides of triangle, either A′B or BC. There are two
scenarios to cause concern. First, what if � AD � crosses A′B instead of
BC? And second, what if �AD� does cross BC, but the intersection is on
(AD�)op instead of AD� itself?

I think it is easier to rule out the second scenario first so let’s start there.
(1)If D′ is any point on (AD�)op, then it is on the opposite side of A from
D. Therefore D′ and D are on opposite sides of �A′C�. (2)Since D is an
interior point, it is on the same side of �A′C� as B, and so D′ and B are
on opposite sides of A′C. (3)By the previous lemma, all the points of A′B
and of BC are on the same side of �A′C� as B. (4)Therefore they are on
the opposite side of �A′C � fom D′, so no point of (AD�)op may lie on
either A′B or BC.

With the opposite ray ruled out entirely, we now just need to make sure
that AD� does not intersect A′B. (5)Points A′ and C are on opposite sides
of �AB�. (6)Because D is an interior point, D and C are on the same side
of �AB�. (7)Therefore A′ and D are on opposite sides of �AB�. (8)Using
the preceding lemma, all the points of A′B are on opposite sides of �AB�
from all the points of AD �. This means that AD � cannot intersect A′B,
so it must intersect BC.
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The Crossbar Theorem provides a essential conduit between the notion
of between for points and interior for angles. I would like to use that con-
duit in the next theorem, which is the angle interior analog to the ordering
of points theorem in the last lesson. First let me state a useful lemma.

LEMMA 2
Consider an angle ∠ABC and a ray r whose endpoint is B. Either all
the points of r other than B lie in the interior of ∠ABC, or none of
them do.

I am going to leave the proof of this lemma to you, the reader. It is a
relatively straightforward proof, and lemma 1 should provide some useful
clues. Now on to the theorem.

THM: ORDERING RAYS
Consider n ≥ 2 rays with a common basepoint B which are all on the
same side of a line �AB� through B. There is an ordering of them:

r1, r2, . . . ,rn

so that if i < j then ri is in the interior of the angle formed by BA�
and r j.

The Crossbar Theorem provides a essential conduit between the notion
of between for points and interior for angles. I would like to use that con-
duit in the next theorem, which is the angle interior analog to the ordering
of points theorem in the last lesson. First let me state a useful lemma.

LEMMA 2
Consider an angle ∠ABC and a ray r whose endpoint is B. Either all
the points of r other than B lie in the interior of ∠ABC, or none of
them do.

I am going to leave the proof of this lemma to you, the reader. It is a
relatively straightforward proof, and lemma 1 should provide some useful
clues. Now on to the theorem.

THM: ORDERING RAYS
Consider n ≥ 2 rays with a common basepoint B which are all on the
same side of a line �AB� through B. There is an ordering of them:

r1, r2, . . . ,rn

so that if i < j then ri is in the interior of the angle formed by BA�
and r j.

Lemma 2. Rays cannot do this.

B

C

A r

B A

1

345 2

An ordering of five rays and five 
angles so that each ray is in the 
interior of all of the subsequent 
angles.
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Proof. I am going to use a proof by induction. First consider the case of
just n = 2 rays, r1 and r2. If r1 lies in the interior of the angle formed by
BA� and r2, then we’ve got it. Let’s suppose, though, that r1 does not lie
in the interior of that angle. There are two requirements for r1 to lie in the
interior: (1) it has to be on the same side of � AB � as r2 and (2) it has
to be the same side of r2 as A. From the very statement of the theorem,
we can see that r1 has to satisfy the first requirement, so if r1 is not in
the interior, the problem has got to be with the second requirement. That
means that any point C1 on r1 has to be on the opposite side of r2 from
A– that is, the line containing r2 must intersect AC1. Actually we can be a
little more specific about where this intersection occurs: you see, AC1 and
rop

2 are on opposite sides of �AB� so they cannot intersect. Therefore the
intersection is not on rop

2 – it has to be on r2 itself. Call this intersection
point C2. Then A∗C2 ∗C1 so C2 is on the same side of r1 as A. Therefore
r2 is on the same side of r1 as A, and so r2 is in the interior of the angle
formed by BA� and r1. Then it is just a matter of switching the labeling
of r1 and r2 to get the desired result.

Now let’s tackle the inductive step. Assume that any n rays can be put
in order and consider a set of n+1 rays all sharing a common endpoint B
and on the same side of the line �AB�. Take n of those rays and put them
in order as r1, r2, . . . , rn. That leaves just one more ray– call it s. What I
would like to do is to compare s to what is currently the ”outermost” ray,
rn. One of two things can happen: either [1] s lies in the interior of the
angle formed by BA� and rn, or [2] it doesn’t, and in this case, as we saw
in the proof of the base case, that means that rn lies in the interior of the
angle formed by BA� and s. Our path splits now, as we consider the two
cases.

Proof. I am going to use a proof by induction. First consider the case of
just n = 2 rays, r1 and r2. If r1 lies in the interior of the angle formed by
BA� and r2, then we’ve got it. Let’s suppose, though, that r1 does not lie
in the interior of that angle. There are two requirements for r1 to lie in the
interior: (1) it has to be on the same side of � AB � as r2 and (2) it has
to be the same side of r2 as A. From the very statement of the theorem,
we can see that r1 has to satisfy the first requirement, so if r1 is not in
the interior, the problem has got to be with the second requirement. That
means that any point C1 on r1 has to be on the opposite side of r2 from
A– that is, the line containing r2 must intersect AC1. Actually we can be a
little more specific about where this intersection occurs: you see, AC1 and
rop

2 are on opposite sides of �AB� so they cannot intersect. Therefore the
intersection is not on rop

2 – it has to be on r2 itself. Call this intersection
point C2. Then A∗C2 ∗C1 so C2 is on the same side of r1 as A. Therefore
r2 is on the same side of r1 as A, and so r2 is in the interior of the angle
formed by BA� and r1. Then it is just a matter of switching the labeling
of r1 and r2 to get the desired result.

Now let’s tackle the inductive step. Assume that any n rays can be put
in order and consider a set of n+1 rays all sharing a common endpoint B
and on the same side of the line �AB�. Take n of those rays and put them
in order as r1, r2, . . . , rn. That leaves just one more ray– call it s. What I
would like to do is to compare s to what is currently the ”outermost” ray,
rn. One of two things can happen: either [1] s lies in the interior of the
angle formed by BA� and rn, or [2] it doesn’t, and in this case, as we saw
in the proof of the base case, that means that rn lies in the interior of the
angle formed by BA� and s. Our path splits now, as we consider the two
cases.

The base case: what happens if r1 is
not in the interior of the angle formed
by BA and r2?

B
A

C2

C1

r1

r2
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[1] Here rn is the outermost ray,
so let’s relabel it as Rn+1. The re-
maining rays r1, r2, . . . , rn−1 and
s are all in the interior of the angle
formed by BA� and Rn+1. There-
fore, if Cn+1 is any point on Rn+1
(other than B) then each of r1, r2,
. . . , rn−1 and s intersect the seg-
ment ACn+1 (this is the Crossbar
Theorem in action). We can put
all of those intersection points in
order

A∗C1 ∗C2 ∗ · · · ∗Cn ∗Cn+1.

[2] In this case, we will eventually
see that s is the outermost ray, but
all we know at the outset is that it
is farther out than rn. Let’s relabel
s as Rn+1 and let Cn+1 be a point
on this ray. Since rn is in the inte-
rior of the angle formed by BA �
and Rn+1, by the Crossbar Theo-
rem, rn must intersect ACn+1. Let
Cn be this intersection point. But
we know that r1, r2, . . . , rn−1 lie in
the interior of the angle formed by
BA � and Rn, so ACn must inter-
sect each of r1, r2, . . . , rn. We can
put all of those intersection points
in order

A∗C1 ∗C2 ∗ · · · ∗Cn ∗Cn+1.

With the rays sorted and the intersections marked, the two strands of the
proofs merge. Label the ray with point Ci as Ri. Then, for any i < j, Ci is
on the same side of Cj as A, and so Ri is in the interior of the angle formed
by BA� and Cj. This is the ordering that we want.

Once the outermost ray is identified, a 
line connecting that ray to A intersects 
all the other rays (because of the 
Crossbar Theorem).
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Exercises

1. Prove that there are points in the interior of any angle. Similarly, prove
that there are points in the interior of any triangle.

2. Suppose that a line � intersects a triangle at two points P and Q. Prove
that all the points on the segment PQ other than the endpoints P and Q
are in the interior of the triangle.

3. We have assumed Plane Separation as an axiom and used it to prove
Pasch’s Lemma. Try to reverse that– in other words, assume Pasch’s
Lemma and prove the Plane Separation Axiom.

4. Let P be a point in the interior of ∠BAC. Prove that all of the points of
AP� other than A are also in the interior of ∠BAC. Prove that none of
the points of (AP�)op are in the interior of ∠BAC.

5. Prove Lemma 2.

6. A model for a non-neutral geometry: Q2. We alter the standard Eu-
clidean model R2 so that the only points are those with rational coor-
dinates. The only lines are those that pass through at least two rational
points. Incidence and order are as in the Euclidean model. Demon-
strate that this models a geometry which satisfies all the axioms of
incidence and order except the Plane Separation Axiom. Show that
Pasch’s Lemma and the Crossbar Theorem do not hold in this geome-
try.

References

I got my proof of the Crossbar Theorem from Moise’s book on Euclidean
geometry [1].

[1] Edwin E. Moise. Elementary Geometry from an Advanced Stand-
point. Addison Wesley Publishing Company, Reading, Mas-
sachusetts, 2nd edition, 1974.
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encecon gru

THE AXIOMS OF CONGRUENCE

Cg1 The Segment Construction Axiom If A and B are distinct
points and if A� is any point, then for each ray r with end-
point A�, there is a unique point B� on r such that AB � A�B�.

Cg2 Segment congruence is reflexive (every segment is congru-
ent to itself), symmetric (if AA� � BB� then BB� � AA�), and
transitive (if AA� � BB� and BB� �CC�, then AA� �CC�).

Cg3 The Segment Addition Axiom If A∗B∗C and A� ∗B� ∗C�, and
if AB � A�B� and BC � B�C�, then AC � A�C�.

Cg4 The Angle Construction Axiom Given ∠BAC and any ray
A�B��, there is a unique ray A�C�� on a given side of the
line �A�B�� such that ∠BAC � ∠B�A�C�.

Cg5 Angle congruence is reflexive (every angle is congruent to
itself), symmetric (if ∠A � ∠B, then ∠B � ∠A), and transi-
tive (if ∠A � ∠B and ∠B � ∠C, then ∠A �∠C).

Cg6 The Side Angle Side (S·A·S) Axiom. Consider two triangles:
�ABC and �A�B�C�. If AB � A�B�, ∠B � ∠B�, and BC �
B�C�, then ∠A � ∠A�.

encecon gru
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I think this is the lesson where the geometry we are doing starts to look like
the geometry you know. I don’t think your typical high school geometry
class covers Pasch’s Lemma or the Crossbar Theorem, but I’m pretty sure
that it does cover congruence of triangles. And that is what we are going
to do in the next three lessons.

Axioms of Congruence

Points, lines, segments, rays, angles, triangles– we are starting to pile up
a lot of objects here. At some point you are probably going to want to
compare them to each other. You might have two different triangles in dif-
ferent locations, different orientations, but they have essentially the same
shape, so you want to say that for practical purposes, they are equivalent.
Well, congruence is a way to do that. Congruence, if you recall, is one
of the undefined terms in Hilbert’s system. Initially it describes a relation
between a pair of segments or a pair of angles, so that we can say, for in-
stance, that two segments are or are not congruent, or that two angles are
or are not congruent. Later, the term is extended so that we can talk about
congruence of triangles and other more general shapes. The notation used
to indicate that two things (segments, angles, whatever) are congruent is
�. In Hilbert’s system, there are six axioms of congruence. Three deal
with congruence of segments, two deal with congruence of angles, and
one involves both segments and angles.

The first and fourth of these make it possible to construct congruent
copies of segments and angles wherever we want. They are a little remi-
niscent of Euclid’s postulates in that way. The second and fifth axioms tell
us that congruence is an equivalence relation. The third and sixth– well,
I suppose that in a way they form a pair too– both deal with three points
and the segments that have them as their endpoints. In the third axiom,
the points are colinear, while in the sixth they are not. There is a more
direct counterpart to the third axiom though, a statement which does for
angles what the Segment Addition Axiom does for segments. It is called
the Angle Addition Theorem and we will prove it in lesson 5.

I use a variety of 
symbols to mark 
segment and angle 
congruence. 
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Any time you throw something new into the mix, you probably want
to figure out how it intermingles with what has come before. How does
the new fit with the old? I realize that is a pretty vague question, but a
more precise statement really depends upon the context. In our current
situation, we have just added congruence to a system that already had
incidence and order. The axioms of congruence themselves provide some
basic connections between congruence and incidence and order. I think
the most important remaining connection between congruence, incidence,
and order is the Triangle Inequality, but that result is still a little ways
away. In the meantime, the next theorem provides one more connection.

CONGRUENCE AND ORDER
Suppose that A1 ∗A2 ∗A3 and that B3 is a point on
the ray B1B2 �. If A1A2 � B1B2 and A1A3 � B1B3,
then B1 ∗B2 ∗B3.

Proof. Since B3 is on B1B2� one of three things is going to happen:

(1) B2 = B3 (2) B1 ∗B3 ∗B2 (3) B1 ∗B2 ∗B3.

The last is what we want, so it is just a matter of ruling out the other two
possibilities.

(1) Why can’t B3 be equal to B2? With B2 = B3, both A1A2 and A1A3
are congruent to the same segment. Therefore they are two different con-
structions of a segment starting from A1 along A1A2 � and congruent to
B1B2. The Segment Construction Axiom says that there be only one.

A1

A1

A2

A2

B3
B1

B2

A3

A3

The case against case I
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(2) Why can’t B3 be between B1 and B2? By the Segment Construction
Axiom, there is a point B4 on the opposite side of B2 from B1 so that
B2B4 � A2A3. Now look:

B1B2 � A1A2 & B2B4 � A2A3

so by the Segment Addition Axiom, B1B4 � A1A3. This creates the same
problem we ran into last time– two different segments B1B3 and B1B4,
both starting from B1 and going out along the same ray, yet both are sup-
posed to be congruent to A1A3.

Triangle Congruence

Congruence of segments and angles is undefined, subject only to the ax-
ioms of congruence. But congruence of triangles is defined. It is defined
in terms of the congruences of the segments and angles that make up the
triangles.

DEF: TRIANGLE CONGRUENCE
Two triangles �ABC and �A′B′C′ are congruent if all of their corre-
sponding sides and angles are congruent:

AB � A′B′ BC � B′C′ CA �C′A′

∠A � ∠A′ ∠B �∠B′ ∠C � ∠C′.

A1

A1

A2

A2

B3 B2 B4
B1

A3

A3

The case against case II
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Now that definition suggests that you have to match up six different things
to say that two triangles are congruent. In actuality, triangles aren’t really
that flexible. Usually you only have to match up about half that many
things. For example, the next result we will prove, the S·A·S Triangle
Congruence Theorem, says that you only have to match up two sides of
the triangles, and the angles between those sides, to show that the triangles
are congruent. In this lesson, we begin the investigation of those minimum
conditions.

Before we start studying these results, I would like to point out another
way to view these theorems, this time in terms of construction. The tri-
angle congruence theorems are set up to compare two triangles. Another
way to think of them, though, is as a restriction on the way that a single
triangle can be formed. To take an example, the S·A·S theorem below says
that, modulo congruence, there is really only one triangle with a given pair
of sides and a given intervening angle. Therefore, if you are building a tri-
angle, and have decided upon two sides and an intervening angle, well,
the triangle is decided– you don’t get to choose the remaining side or the
other two angles.

S·A·S TRIANGLE CONGRUENCE
In triangles �ABC and �A�B�C�, if

AB � A�B� ∠B �∠B� BC � B�C�,

then �ABC ��A�B�C�.

Proof. To show that two triangles are congruent, you have to show that
three pairs of sides and three pairs of angles are congruent. Fortunately,
two of the side congruences are given, and one of the angle congruences
is given. The S·A·S axiom guarantees a second angle congruence, ∠A �
∠A�. So that just leaves one angle congruence and one side congruence.

Let’s do the angle first. You know, working abstractly creates a lot
of challenges. On the few occasions when the abstraction makes things
easier, it is a good idea to take advantage of it. This is one of those times.
The S·A·S lemma tells us about ∠A in �ABC. But let’s not be misled
by lettering. Because �ABC =�CBA and �A�B�C� =�C�B�A�, we can
reorder the given congruences:

CB �C�B� ∠B � ∠B� BA � B�A�.

Then the S·A·S lemma says that ∠C � ∠C�. Sneaky isn’t it? It is a com-
pletely legitimate use of the S·A·S axiom though.
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That just leaves the sides AC and A�C�. We are going to construct a
congruent copy of �A�B�C� on top of �ABC (Euclid’s flawed proof of
S·A·S in The Elements used a similar argument but without the axioms to
back it up). Thanks to the Segment Construction Axiom, there is a unique
point C� on AC so that AC� � A�C�. Now if we can just show that C� =C
we will be done. Look:

BA � B�A� ∠A � ∠A� AC� � ∠A�C�.

By the S·A·S axiom then, ∠ABC� � ∠A�B�C�. That in turn means that
∠ABC� � ∠ABC. But wait– both of those angles are constructed on the
same side of BA �. According to the Angle Construction Axiom, that
means they must be the same. That is, BC�= BC��. Both C and C� are
the intersection of this ray and the line AC. Since a ray can only intersect
a line once, C and C� do have to be the same.

Two orderings of the 
list of congruences 
for the SAS lemma.

A

B C B C

A

C

B

A
C

C

B

A

B

A To show the last 
sides are congruent, 
construct a third 
triangle from parts 
of the original two. 
The key to the 
location of C is the 
angle at B.
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One of the things that I really appreciate about the triangle congruence
theorems is how transparent they are: their names tell us when to use
them. For instance, you use S·A·S when you know congruences for two
sides and the angle between them. And you use A·S·A when...

A·S·A TRIANGLE CONGRUENCE
In triangles �ABC and �A�B�C�, if

∠A � ∠A� AB � A�B� ∠B � ∠B�,

then �ABC ��A�B�C�.

Proof. This time, it is a little easier–if we can just get one more side con-
gruence, then S·A·S will provide the rest. You will probably notice some
similarities between this argument and the last part of the S·A·S proof.
Because of the Segment Construction Axiom, there is a point C� on AC�
so that AC� � A�C�. Of course, the hope is that C� = C, and that is what
we need to show. To do that, observe that

BA � B�A� ∠A � ∠A� AC� � ∠A�C�.

By S·A·S, �ABC� ��A�B�C�. In particular, look at what is happening at
vertex B:

∠ABC� �∠A�B�C� �∠ABC.

There is only one way to make that angle on that side of BA �, and that
means BC� �= BC �. Since both C and C� are where this ray intersects
�AC�, C =C�.

C

B

A
C

C

B

A

B

A

Does this look 
familiar?
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That’s the hard work. All that is left is to wrap up the argument. Since
C =C�, AC = AC�, and that means AC � A�C�. Then

BA � B�A� ∠A � ∠A� AC � A�C�

so by S·A·S, �ABC ��A�B�C�.

Let’s take a look at how the triangle congruence theorems can be put to
work. This next theorem is the angle equivalent of the theorem at the start
of this lesson relating congruence and the order of points.

THM: CONGRUENCE AND ANGLE INTERIORS
Suppose that ∠ABC�∠A�B�C�. Suppose that D is in
the interior of ∠ABC. And suppose that D� is located
on the same side of � AB � as C so that ∠ABD �
∠A�B�D�. Then D� is in the interior of ∠A�B�C�.

Proof. Because there is some flexibility in which points you choose to
represent an angle, there is a good chance that our points are not orga-
nized in a very useful way. While we can’t change the rays or the angles
themselves, we can choose other points to represent them. So the first step
is to reposition our points in the most convenient way possible. Let A� be
the point on BA� so that BA� � B�A�. Let C� be the point on BC� so that
BC� � B�C�. Since D is in the interior of ∠ABC, the Crossbar Theorem
guarantees that BD� intersects A�C�. Let’s call this intersection E . Then

A�B � A�B� ∠A�BC� � A�B�C� BC� � B�C�

so by S·A·S, �A�BC� ��A�B�C�.

That’s the hard work. All that is left is to wrap up the argument. Since
C =C�, AC = AC�, and that means AC � A�C�. Then

BA � B�A� ∠A � ∠A� AC � A�C�

so by S·A·S, �ABC ��A�B�C�.

Let’s take a look at how the triangle congruence theorems can be put to
work. This next theorem is the angle equivalent of the theorem at the start
of this lesson relating congruence and the order of points.

THM: CONGRUENCE AND ANGLE INTERIORS
Suppose that ∠ABC�∠A�B�C�. Suppose that D is in
the interior of ∠ABC. And suppose that D� is located
on the same side of � AB � as C so that ∠ABD �
∠A�B�D�. Then D� is in the interior of ∠A�B�C�.

Proof. Because there is some flexibility in which points you choose to
represent an angle, there is a good chance that our points are not orga-
nized in a very useful way. While we can’t change the rays or the angles
themselves, we can choose other points to represent them. So the first step
is to reposition our points in the most convenient way possible. Let A� be
the point on BA� so that BA� � B�A�. Let C� be the point on BC� so that
BC� � B�C�. Since D is in the interior of ∠ABC, the Crossbar Theorem
guarantees that BD� intersects A�C�. Let’s call this intersection E . Then

A�B � A�B� ∠A�BC� � A�B�C� BC� � B�C�

so by S·A·S, �A�BC� ��A�B�C�.

After repositioning 
points, the first use 
of SAS.
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Okay, now let’s turn our attention to the second configuration of points–
the ones with the � marks. According to the Segment Construction Axiom,
there is a point E� on A�C�� so that A�E � �A�E . Furthermore, thanks to the
earlier theorem relating congruence and order, since E is between A� and
C�, E � must be between A� and C�, and so it is in the interior of ∠A�B�C�.
Now look:

BA� � B�A� ∠BA�E � ∠B�A�E � A�E � A�E �

so by S·A·S, �BA�E ��B�A�E �.
In particular, this means that ∠A�BE � ∠A�B�E �. But we were origi-

nally told that ∠A�BE � ∠A�B�D�. Since angle congruence is transitive
this must mean that ∠A�B�D� � ∠A�B�E �. Well, thanks to the Angle Con-
struction Axiom, this means that the two rays B�D�� and B�E �� must be
the same. Since E� is in the interior of ∠A�B�C�, D� must be as well.

Symmetry in Triangles

I don’t think it comes as a great surprise that in some triangles, two or
even all three sides or angles may be congruent. Thanks to the triangle
congruence theorems, we can show that these triangles are congruent to
themselves in non-trivial ways. These non-trivial congruences reveal the
internal symmetries of those triangles.

DEF: ISOSCELES, EQUILATERAL, SCALENE
If all three sides of a triangle are congruent, the triangle is equilat-
eral. If exactly two sides of a triangle are congruent, the triangle is
isosceles. If no pair of sides of the triangle is congruent, the triangle
is scalene.

Okay, now let’s turn our attention to the second configuration of points–
the ones with the � marks. According to the Segment Construction Axiom,
there is a point E� on A�C�� so that A�E � �A�E . Furthermore, thanks to the
earlier theorem relating congruence and order, since E is between A� and
C�, E � must be between A� and C�, and so it is in the interior of ∠A�B�C�.
Now look:

BA� � B�A� ∠BA�E � ∠B�A�E � A�E � A�E �

so by S·A·S, �BA�E ��B�A�E �.
In particular, this means that ∠A�BE � ∠A�B�E �. But we were origi-

nally told that ∠A�BE � ∠A�B�D�. Since angle congruence is transitive
this must mean that ∠A�B�D� � ∠A�B�E �. Well, thanks to the Angle Con-
struction Axiom, this means that the two rays B�D�� and B�E �� must be
the same. Since E� is in the interior of ∠A�B�C�, D� must be as well.

Symmetry in Triangles

I don’t think it comes as a great surprise that in some triangles, two or
even all three sides or angles may be congruent. Thanks to the triangle
congruence theorems, we can show that these triangles are congruent to
themselves in non-trivial ways. These non-trivial congruences reveal the
internal symmetries of those triangles.

DEF: ISOSCELES, EQUILATERAL, SCALENE
If all three sides of a triangle are congruent, the triangle is equilat-
eral. If exactly two sides of a triangle are congruent, the triangle is
isosceles. If no pair of sides of the triangle is congruent, the triangle
is scalene.

The second use of 
SAS: E' and D' are 
on the same ray.C
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Here is one of those internal symmetry results. I put the others in the
exercises.

THE ISOSCELES TRIANGLE THEOREM
In an isosceles triangle, the angles opposite the congruent sides are
congruent.

Proof. Suppose �ABC is isosceles, with AB � AC. Then

AB � AC ∠A � ∠A AC � AB,

so by S·A·S, �ABC � �ACB (there’s the non-trivial congruence of the
triangle with itself). Comparing corresponding angles, ∠B � ∠C.

Two orderings of the 
list of congruences 
for the SAS lemma.

B C

A
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Exercises

1. Given any point P and any segment AB, prove that there are infinitely
many points Q so that PQ � AB.

2. Verify that triangle congruence is an equivalence relation– that it is
reflexive, symmetric, and transitive.

3. Prove the converse of the Isosceles Triangle Theorem: that if two in-
terior angles of a triangle are congruent, then the sides opposite them
must also be congruent.

4. Prove that all three interior angles of an equilateral triangle are congru-
ent.

5. Prove that no two interior angles of a scalene triangle can be congruent.

6. In the exercises in Lesson 1, I introduced the Cartesian model and de-
scribed how point, line, on and between are interpreted in that model.
Let me extend that model now to include congruence. In the Carte-
sian model, segment congruence is defined in terms of the length of
the segment, which, in turn, is defined using the distance function. If
(xa,ya) and (xb,yb) are the coordinates of A and B, then the length of
the segment AB, written |AB|, is

|AB|=
√

(xa − xb)2 +(ya − yb)2.

Two segments are congruent if and only if they are the same length.
With this intepretation, verify the first three axioms of congruence.

7. Angle congruence is the most difficult to interpret in the Cartesian
model. Like segment congruence, angle congruence is defined via
measure– in this case angle measure. You may remember from calcu-
lus that the dot product provides a way to measure the angle between
two vectors: that for any two vectors v and w,

v ·w = |v||w|cosθ ,

where θ is the angle between v and w. That is the key here. Given
an angle ∠ABC, its measure, written (∠ABC), is computed as follows.
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Let (xa,ya), (xb,yb) and (xc,yc) be the coordinates for points A, B, and
C, then define vectors

v = �xa − xb,ya − yb� w = �xc − xb,yc − yb�.

and measure
(∠ABC) = cos−1

(
v ·w
|v||w|

)
.

Two angles are congruent if and only if they have the same angle mea-
sure. With this interpretation, verify the last three axioms of congru-
ence.





4. CONGRUENCE VERSE II
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The ultimate objective of this lesson is derive a third triangle congruence
theorem, A·A·S. The basic technique I used in the last chapter to prove
S·A·S and A·S·A does not quite work this time though, so along the way
we are going to get to see a few more of the tools of neutral geometry:
supplementary angles, the Alternate Interior Angle Theorem, and the Ex-
terior Angle Theorem.

Supplementary Angles

There aren’t that many letters in the alphabet, so it is easy to burn through
most of them in a single proof if you aren’t frugal. Even if your variables
don’t run the full gamut from A to Z, it can be a little challenging just
trying to keep up with them. Some of this notation just can’t be avoided;
fortunately, some of it can. One technique I like to use to cut down on
some notation is what I call “relocation”. Let’s say you are working with
a ray AB �. Now you can’t change the endpoint A without changing the
ray itself, but there is a little flexibility with the point B. If B′ is any other
point on the ray (other than A), then AB � and AB′ � are actually the
same. So rather than introduce a whole new point on the ray, I like to just
”relocate” B to a more convenient location. The same kind of technique
can also be used for angles and lines. Let me warn you: you must be
careful not to abuse this relocation power. I have seen students relocate a
point to one intersection, use the fact that the point is at that intersection in
their proof, and then relocate it again a few steps later to another location.
That is obviously bad! Yes there is some flexibility to the placement of
some of these points, but once you have used up that flexibility, the point
has to stay put.

Relocation of points is a shortcut to cut down on notation.  Illustrated here are 
the relocations of points A, B, and C to make the congruences needed for the 
proof that the supplements of congruent angles are congruent.

C
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D
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Three noncolinear points A, B, and C define an angle ∠ABC. When
they are colinear, they do not define a proper angle, but you may want to
think of them as forming a kind of degenerate angle. If A∗B∗C, then A,
B, and C form what is called a “straight angle”. One of the most basic
relationships that two angles can have is defined in terms of these straight
angles.

DEF: SUPPLEMENTARY ANGLES
Suppose that A, B and C form a straight angle with A∗B∗C. Let D be
a fourth point which is not the line through A, B and C. Then ∠ABD
and ∠CBD are supplementary angles.

Supplements have a nice and healthy relationship with congruence as re-
lated in the next theorem.

THM: CONGRUENT SUPPLEMENTS
The supplements of congruent angles are congruent:
given two pairs of supplementary angles
Pair 1: ∠ABD and ∠CBD and
Pair 2: ∠A′B′D′ and ∠C′B′D′,
if ∠ABD � ∠A′B′D′, then ∠CBD � ∠C′B′D′.

Proof. The idea is to relocate points to create a set of congruent triangles,
and then to find a path of congruences leading from the given angles to
the desired angle. In this case the relocation is easy enough: position A,
C, and D on their respective rays BA�, BC� and BD� so that

BA � B′A′ BC � B′C′ BD � B′D′.

Three noncolinear points A, B, and C define an angle ∠ABC. When
they are colinear, they do not define a proper angle, but you may want to
think of them as forming a kind of degenerate angle. If A∗B∗C, then A,
B, and C form what is called a “straight angle”. One of the most basic
relationships that two angles can have is defined in terms of these straight
angles.

DEF: SUPPLEMENTARY ANGLES
Suppose that A, B and C form a straight angle with A∗B∗C. Let D be
a fourth point which is not the line through A, B and C. Then ∠ABD
and ∠CBD are supplementary angles.

Supplements have a nice and healthy relationship with congruence as re-
lated in the next theorem.

THM: CONGRUENT SUPPLEMENTS
The supplements of congruent angles are congruent:
given two pairs of supplementary angles
Pair 1: ∠ABD and ∠CBD and
Pair 2: ∠A′B′D′ and ∠C′B′D′,
if ∠ABD � ∠A′B′D′, then ∠CBD � ∠C′B′D′.

Proof. The idea is to relocate points to create a set of congruent triangles,
and then to find a path of congruences leading from the given angles to
the desired angle. In this case the relocation is easy enough: position A,
C, and D on their respective rays BA�, BC� and BD� so that

BA � B′A′ BC � B′C′ BD � B′D′.

D

CBA A pair of supplementary angles:
∠ABD and ∠DBC



52 LESSON 4

The path through the series of congruent triangles isn’t that hard either if
you just sit down to figure it out yourself. The problem is in writing it
down so that a reader can follow along. In place of a traditional proof,
I have made a chart that I think makes it easy to walk through the con-
gruences. To read the chart, you need to know that I am using a little
shorthand notation for each of the congruences. Here’s the thing– each
congruence throughout the entire proof compares segments, angles, or tri-
angles with the same letters. The difference is that on the right hand side,
the letters are marked with a ′, while on the left they are not. For in-
stance, the goal of this proof is to show that ∠CBD � ∠C′B′D′. When I
was working through the proof I found it a little tedious have to write the
whole congruence out with every single step. Since the left hand side of
the congruence determines the right hand side anyway, I just got in the
habit of writing down only the left hand side. In the end I decided that
was actually easier to read than the whole congruence, so in the chart, the
statement AB really means AB � A′B′. I still feel a little uneasy doing this,
so let me give another defense of this shorthand. One of the things I talked
about in the last lesson was the idea of these congruences “locking in” a
triangle– if you know S·A·S, for instance, then the triangle is completely
determined. The statements in this proof can be interpreted as the locking
in of various segments, angles, and triangles. For instance, B is between
A and C, so if AB and BC are given, then AC is locked in by the Segment
Addition Axiom. Okay, so that’s enough about the notation. Here’s the
chart of the proof.

A B

D

C A B

D

C A B

D

C

Given :
∠ABD

BA
BC
BD

SAS : ABD
a ∠DAB

AB s
∠ABD a

BD s
a ∠BDA
s DA

a
s
a
s
a
s

SAS : ACD
∠DAC a

AC s
a ∠ACD
s CD
a ∠CDA

DA s

a
s
a
s
a
s

SAS : BCD
a ∠DBC

BC s
∠BCD a

CD s
a ∠CDB
s DB

a
s
a
s
a
s

Segment Addn
AB

AC
BC
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The path through the series of congruent triangles isn’t that hard either if
you just sit down to figure it out yourself. The problem is in writing it
down so that a reader can follow along. In place of a traditional proof,
I have made a chart that I think makes it easy to walk through the con-
gruences. To read the chart, you need to know that I am using a little
shorthand notation for each of the congruences. Here’s the thing– each
congruence throughout the entire proof compares segments, angles, or tri-
angles with the same letters. The difference is that on the right hand side,
the letters are marked with a ′, while on the left they are not. For in-
stance, the goal of this proof is to show that ∠CBD � ∠C′B′D′. When I
was working through the proof I found it a little tedious have to write the
whole congruence out with every single step. Since the left hand side of
the congruence determines the right hand side anyway, I just got in the
habit of writing down only the left hand side. In the end I decided that
was actually easier to read than the whole congruence, so in the chart, the
statement AB really means AB � A′B′. I still feel a little uneasy doing this,
so let me give another defense of this shorthand. One of the things I talked
about in the last lesson was the idea of these congruences “locking in” a
triangle– if you know S·A·S, for instance, then the triangle is completely
determined. The statements in this proof can be interpreted as the locking
in of various segments, angles, and triangles. For instance, B is between
A and C, so if AB and BC are given, then AC is locked in by the Segment
Addition Axiom. Okay, so that’s enough about the notation. Here’s the
chart of the proof.

A B

D

C A B

D

C A B

D

C

Given :
∠ABD

BA
BC
BD

SAS : ABD
a ∠DAB

AB s
∠ABD a

BD s
a ∠BDA
s DA

a
s
a
s
a
s

SAS : ACD
∠DAC a

AC s
a ∠ACD
s CD
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a ∠DBC
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Every angle has two supplements. To get a supplement of an angle, simply
replace one of the two rays forming the angle with its opposite ray. Since
there are two candidates for this replacement, there are two supplements.
There is a name for the relationship between these two supplements.

DEF: VERTICAL ANGLES
Vertical angles are two angles which are supplementary to the same
angle.

Every angle is part of one and only one vertical angle pair (something you
may want to prove). For ∠ABC, the other half of the pair is the angle
formed by the rays (BA �)op and (BC �)op. Without a doubt, the single
most important property of vertical angles is that

THM: ON VERTICAL ANGLES
Vertical angles are congruent.

Proof. Two vertical angles are, by definition, supplementary to the same
angle. That angle is congruent to itself (because of the second axiom
of congruence). Now we can use the last theorem. Since the vertical
angles are supplementary to congruent angles, they themselves must be
congruent.

Every angle has two supplements. To get a supplement of an angle, simply
replace one of the two rays forming the angle with its opposite ray. Since
there are two candidates for this replacement, there are two supplements.
There is a name for the relationship between these two supplements.

DEF: VERTICAL ANGLES
Vertical angles are two angles which are supplementary to the same
angle.

Every angle is part of one and only one vertical angle pair (something you
may want to prove). For ∠ABC, the other half of the pair is the angle
formed by the rays (BA �)op and (BC �)op. Without a doubt, the single
most important property of vertical angles is that

THM: ON VERTICAL ANGLES
Vertical angles are congruent.

Proof. Two vertical angles are, by definition, supplementary to the same
angle. That angle is congruent to itself (because of the second axiom
of congruence). Now we can use the last theorem. Since the vertical
angles are supplementary to congruent angles, they themselves must be
congruent.

C

C

B

A

A

Two intersecting lines generate 
two pairs of vertical angles. 
 
Pair 1: ∠ABC and ∠ABC

Pair 2: ∠ABA and ∠CBC
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The Alternate Interior Angle Theorem

The farther we go in the study of neutral geometry, the more we are go-
ing to bump into issues relating to how parallel lines behave. A lot of
the results we will derive are maddeningly close to results of Euclidean
geometry, and this can lead to several dangerous pitfalls. The Alternate
Interior Angle Theorem is maybe the first glimpse of that.

DEF: TRANSVERSALS
Given a set of lines, {�1, �2, . . . , �n}, a transversal is a line which
intersects all of them.

DEF: ALTERNATE AND ADJACENT INTERIOR ANGLES
Let t be a transversal to �1 and �2. Alternate interior angles are pairs
of angles formed by �1, �2, and t, which are between �1 and �2, and
on opposite sides of t. Adjacent interior angles are pairs of angles on
the same side of t.

The Alternate Interior Angle Theorem tells us something about transver-
sals and parallel lines. Read it carefully though. The converse of this
theorem is used a lot in Euclidean geometry, but in neutral geometry this
is not an “if and only if” statement.

t
A transversal t of a set of lines.

2

34

1

Alternate pairs: 1 and 3, 2 and 4. Adjacent pairs: 1 and 4, 2 and 3.
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THE ALTERNATE INTERIOR ANGLE THEOREM
Let �1 and �2 be two lines, crossed by a transversal t.
If the alternate interior angles formed are congruent,
then �1 and �2 are parallel.

Proof. First I want to point out something that may not be entirely clear
in the statement of the theorem. The lines �1, �2 and t will actually form
two pairs of alternate interior angles. However, the angles in one pair are
the supplements of the angles in the other pair, so if the angles in one
pair are congruent then angles in the other pair also have to be congruent.
Now let’s get on with the proof, a proof by contradiction. Suppose that
�1 and �2 are crossed by a transversal t so that alternate interior angles are
congruent, but suppose that �1 and �2 are not parallel. Label

A: the intersection of �1 and t;

B: the intersection of �2 and t;

C: the intersection of �1 and �2.

By the Segment Construction Axiom there are also points

D on �1 so that D∗A∗C and so that AD � BC, and

D′ on �2 so that D′ ∗B∗C and so that BD′ � AC.

In terms of these marked points the congruent pairs of alternate interior
angles are

∠ABC � ∠BAD & ∠ABD′ � ∠BAC.

Take the first of those congruences, together with the fact that that we
have constructed AD � BC and AB � BA, and that’s enough to use S·A·S:
�ABC ��BAD. I really just want to focus on one pair of corresponding
angles in those triangles though: ∠ABD � ∠BAC. Now ∠BAC is con-
gruent to its alternate interior pair ∠ABD′, so since angle congruence is
transitive, this means that ∠ABD � ∠ABD′. Here’s the problem. There is
only one way to construct this angle on that side of t, so the rays BD� and
BD′� must actually be the same. That means that D, which we originally
placed on �1, is also on �2. That would imply that �1 and �2 share two
points, C and D, in violation of the very first axiom of incidence.

If 1 and 2 crossed on one side of t, they would have to cross on the other side.

D

D

A

B

C

1

2

D
D

A

B

C
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The Exterior Angle Theorem

We have talked about congruent angles, but so far we have not discussed
any way of saying that one angle is larger or smaller than the other. That
is something that we will need to do eventually, in order to develop a
system of measurement for angles. For now though, we need at least some
rudimentary definitions of this, even if the more fully developed system
will wait until later.

DEF: SMALLER AND LARGER ANGLES
Given two angles ∠A1B1C1 and ∠A2B2C2, the Angle Construction
Axiom guarantees that there is a point A� on the same side of �B2C2�
as A2 so that ∠A�B2C2 �∠A1B1C1. If A� is in the interior of ∠A2B2C2,
then we say that ∠A1B1C1 is smaller than ∠A2B2C2. If A� is on
the ray B2C2, then the two angles are congruent as we have previ-
ously seen. If A� is neither in the interior of ∠A2B2C2, nor on the ray
B2C2�, then ∠A1B1C1 is larger than ∠A2B2C2.

THE ALTERNATE INTERIOR ANGLE THEOREM
Let �1 and �2 be two lines, crossed by a transversal t.
If the alternate interior angles formed are congruent,
then �1 and �2 are parallel.

Proof. First I want to point out something that may not be entirely clear
in the statement of the theorem. The lines �1, �2 and t will actually form
two pairs of alternate interior angles. However, the angles in one pair are
the supplements of the angles in the other pair, so if the angles in one
pair are congruent then angles in the other pair also have to be congruent.
Now let’s get on with the proof, a proof by contradiction. Suppose that
�1 and �2 are crossed by a transversal t so that alternate interior angles are
congruent, but suppose that �1 and �2 are not parallel. Label

A: the intersection of �1 and t;

B: the intersection of �2 and t;

C: the intersection of �1 and �2.

By the Segment Construction Axiom there are also points

D on �1 so that D∗A∗C and so that AD � BC, and

D′ on �2 so that D′ ∗B∗C and so that BD′ � AC.

In terms of these marked points the congruent pairs of alternate interior
angles are

∠ABC � ∠BAD & ∠ABD′ � ∠BAC.

Take the first of those congruences, together with the fact that that we
have constructed AD � BC and AB � BA, and that’s enough to use S·A·S:
�ABC ��BAD. I really just want to focus on one pair of corresponding
angles in those triangles though: ∠ABD � ∠BAC. Now ∠BAC is con-
gruent to its alternate interior pair ∠ABD′, so since angle congruence is
transitive, this means that ∠ABD � ∠ABD′. Here’s the problem. There is
only one way to construct this angle on that side of t, so the rays BD� and
BD′� must actually be the same. That means that D, which we originally
placed on �1, is also on �2. That would imply that �1 and �2 share two
points, C and D, in violation of the very first axiom of incidence.

1 2 3

∠3 is larger than ∠2∠1 is smaller than ∠2
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In lesson 8, I will come back to this in more detail. Feel free to skip ahead
if you would like a more detailed investigation of this way of comparing
non-congruent angles.

DEF: EXTERIOR ANGLES
An exterior angle of a triangle is an angle supplementary to one of
the triangle’s interior angles.

THE EXTERIOR ANGLE THEOREM
The measure of an exterior angle of a triangle is
greater than the measure of either of the nonadjacent
interior angles.

Proof. I will use a straightforward proof by contradiction. Starting with
the triangle �ABC, extend the side AC past C: just pick a point D so
that A ∗C ∗D. Now suppose that the interior angle at B is larger than the
exterior angle at ∠BCD. Then there is a ray r from B on the same side
of BC as A so that BC � and r form an angle congruent to ∠BCD. This
ray will lie in the interior of ∠B, though, so by the Crossbar Theorem,
r must intersect AC. Call this intersection point P. Now wait, though.
The alternate interior angles ∠PBC and ∠BCD are congruent. According
to the Alternate Interior Angle Theorem r and AC must be parallel– they
can’t intersect. This is an contradiction.

In lesson 8, I will come back to this in more detail. Feel free to skip ahead
if you would like a more detailed investigation of this way of comparing
non-congruent angles.

DEF: EXTERIOR ANGLES
An exterior angle of a triangle is an angle supplementary to one of
the triangle’s interior angles.

THE EXTERIOR ANGLE THEOREM
The measure of an exterior angle of a triangle is
greater than the measure of either of the nonadjacent
interior angles.

Proof. I will use a straightforward proof by contradiction. Starting with
the triangle �ABC, extend the side AC past C: just pick a point D so
that A ∗C ∗D. Now suppose that the interior angle at B is larger than the
exterior angle at ∠BCD. Then there is a ray r from B on the same side
of BC as A so that BC � and r form an angle congruent to ∠BCD. This
ray will lie in the interior of ∠B, though, so by the Crossbar Theorem,
r must intersect AC. Call this intersection point P. Now wait, though.
The alternate interior angles ∠PBC and ∠BCD are congruent. According
to the Alternate Interior Angle Theorem r and AC must be parallel– they
can’t intersect. This is an contradiction.

Three pairs of exterior angles Exterior Angle Th’m: a proof by contradiction

D

A P

B

r

C
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A·A·S TRIANGLE CONGRUENCE
In triangles �ABC and �A′B′C′, if

∠A � ∠A′ ∠B � ∠B′ BC � B′C′,

then �ABC ��A′B′C′.

Proof. The setup of this proof is just like the proof of A·S·A, but for the
critical step we are going to need to use the Exterior Angle Theorem.
Locate A� on BA � so that A�B � A′B′. By S·A·S, �A�BC � �A′B′C′.
Therefore ∠A� � ∠A′ � ∠A. Now if B∗A∗A� (as illustrated) then ∠A is
an exterior angle and ∠A� is a nonadjacent interior angle of the triangle
�AA�C. Acording to the Exterior Angle Theorem, these angles can’t be
congruent. If B∗A∗A�, then ∠A� is an exterior angle and ∠A is a nonadja-
cent interior angle. Again, the Exterior Angle Theorem says these angles
can’t be congruent. The only other possibility, then, is that A = A�, so
AB � A′B′, and by S·A·S, that means �ABC ��A′B′C′.

C

B

A

C

B

A

B

A

A familiar chase to 
prove AAS, but this 
time we have to call 
upon the Exterior 
Angle Theorem.

C

A
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Exercises

1. Prove that for every segment AB there is a point M on AB so that AM �
MB. This point is called the midpoint of AB.

2. Prove that for every angle ∠ABC there is a ray BD � in the interior
of ∠ABC so that ∠ABD � ∠DBC. This ray is called the bisector of
∠ABC.

3. Working from the spaghetti diagram proof that the supplements of con-
gruent angles are congruent, write a traditional proof.



5. CONGRUENCE VERSE III
OBJECTIVE: SSS
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In the last lesson I pointed out that the first and second axioms of congru-
ence have angle counterparts in the fourth and fifth axioms, but that there
was no direct angle counterpart to the third axiom, the Segment Addition
Axiom. The next couple of results fill that hole.

THE ANGLE SUBTRACTION THEOREM
Let D and D′ be interior points of ∠ABC and ∠A′B′C′

respectively. If

∠ABC � ∠A′B′C′ & ∠ABD � ∠A′B′D′,

then ∠DBC � ∠D′B′C′.

Proof. This proof is a lot like the proof that supplements of congruent
angles are congruent, and I am going to take the same approach. The first
step is one of relocation. Relocate A and C on BA� and BC� respectively
so that

BA � B′A′ & BC � B′C′.

Since D is in the interior of ∠ABC, by the Crossbar Theorem, BD � in-
tersects AC. Relocate D to that intersection. Likewise, relocate D′ to
the intersection of B′D′ � and A′C′. Note that this does not mean that
BD � B′D′ although that is something that we will establish in the course
of the proof. I am going to use a chart to illustrate the congruences in
place of a “formal” proof.

A

B

D C
A

B

D C
A

B

D C
*

SAS : ABC
a ∠CAB

AB s
∠ABC a

BC s
a ∠BCA
s CA

a
s
a
s
a
s

ASA : ABD
∠DAB a

AB s
∠ABD a

s BD
a ∠BDA
s DA

a
s
a
s
a
s

AAS : BCD
a ∠DBC

BC s
∠BCD a

s CD
∠CDB a

s DB

a
s
a
s
a
s

Given :
AB
BC

∠ABC
∠ABD

*

*if angles are congruent, 
 their supplements are too. 
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Relocations for A, B, and D.

C

B

D
C

A

A

B

D

In the last lesson I pointed out that the first and second axioms of congru-
ence have angle counterparts in the fourth and fifth axioms, but that there
was no direct angle counterpart to the third axiom, the Segment Addition
Axiom. The next couple of results fill that hole.

THE ANGLE SUBTRACTION THEOREM
Let D and D′ be interior points of ∠ABC and ∠A′B′C′

respectively. If

∠ABC � ∠A′B′C′ & ∠ABD � ∠A′B′D′,

then ∠DBC � ∠D′B′C′.

Proof. This proof is a lot like the proof that supplements of congruent
angles are congruent, and I am going to take the same approach. The first
step is one of relocation. Relocate A and C on BA� and BC� respectively
so that

BA � B′A′ & BC � B′C′.

Since D is in the interior of ∠ABC, by the Crossbar Theorem, BD � in-
tersects AC. Relocate D to that intersection. Likewise, relocate D′ to
the intersection of B′D′ � and A′C′. Note that this does not mean that
BD � B′D′ although that is something that we will establish in the course
of the proof. I am going to use a chart to illustrate the congruences in
place of a “formal” proof.
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*if angles are congruent, 
 their supplements are too. 
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With angle subtraction in the toolbox, angle addition is now easy to prove.

THE ANGLE ADDITION THEOREM
Suppose that D is in the interior of ∠ABC and that
D′ is in the interior of ∠A′B′C′. If

∠ABD � ∠A′B′D′ & ∠DBC � ∠D′B′C′,

then ∠ABC � ∠A′B′C′.

Proof. Because of the Angle Construction Axiom, there is a ray BC�� on
the same side of � AB � as C so that ∠ABC� � ∠A′B′C′. What we will
show here is that BC� and BC�� are actually the same so that the angles
∠ABC and ∠ABC� are the same as well. This all boils down to one simple
application of the Angle Subtraction Theorem:

∠ABC��∠A′B′C′ & ∠ABD�∠A′B′D′ =⇒ ∠DBC��∠D′B′C′.

We already know that ∠D′B′C′ �∠DBC, so ∠DBC� �∠DBC. The Angle
Construction Axiom tells us that there is but one way to construct this
angle on this side of �DB�, so BC�� and BC� have to be the same.

The proof of the Angle Addition Theorem.

C ACD

A

D

BB B

A D

angle 
subtraction

C
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We end this lesson with the last of the triangle congruence theorems.
The proofs of the previous congruence theorems all used essentially the
same approach, but that approach required an angle congruence. No angle
congruence is given this time, so that won’t work. Instead we are going to
be using the Isosceles Triangle Theorem.

S · S · S TRIANGLE CONGRUENCE
In triangles �ABC and �A′B′C′ if

AB � A′B′ BC � B′C′ CA �C′A′,

then �ABC ��A′B′C′.

Proof. The first step is to get the two triangles into a more convenient
configuration. To do that, we are going to create a congruent copy of
�A′B′C′ on the opposite side of � AC � from B. The construction is
simple enough: there is a unique point B� on the opposite side of �AC�
from B such that:

∠CAB� � ∠C′A′B′ & AB� � A′B′.

In addition, we already know that AC � A′C′, so by S·A·S, �ABC� is con-
gruent to �A′B′C′. Now the real question is whether �ABC� is congruent
to �ABC, and that is the next task.

Creating a congruent copy of the second triangle abutting the first triangle.

C
B

C

A
A B

B
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Three possible locations of P, and the resulting isosceles triangles.

B

C

C=P

A A A

P P
B B B B B

C
1 2 3
Since B and B� are on opposite sides of �AC�, the segment BB� inter-

sects �AC�. Let’s call that point of intersection P. Now we don’t know
anything about where P is on �AC�, and that opens up some options:

(1) P could be between A and C, or
(2) P could be either of the endpoints A or C, or
(3) P could be on the line �AC� but not the segment AC.

I am just going to deal with that first possibility. If you want a complete
proof, you are going to have to look into the remaining two cases yourself.
Assuming that A ∗P ∗C, both of the triangles �ABB� and �CBB� are
isosceles:

AB � A′B′ � AB�

CB �C′B′ �CB�.

According to the Isosceles Triangle Theorem, the angles opposite those
congruent sides are themselves congruent:

∠ABP � ∠AB�P
∠CBP � ∠CB�P.

Since we are assuming that P is between A and C, we can use the An-
gle Addition Theorem to combine these two angles into the larger an-
gle ∠ABC � ∠AB�C. We already know ∠AB�C � ∠A′B′C′, so ∠ABC �
∠A′B′C′ and that is the needed angle congruence. By S·A·S, �ABC �
�A′B′C′.

Since B and B� are on opposite sides of �AC�, the segment BB� inter-
sects �AC�. Let’s call that point of intersection P. Now we don’t know
anything about where P is on �AC�, and that opens up some options:

(1) P could be between A and C, or
(2) P could be either of the endpoints A or C, or
(3) P could be on the line �AC� but not the segment AC.

I am just going to deal with that first possibility. If you want a complete
proof, you are going to have to look into the remaining two cases yourself.
Assuming that A ∗P ∗C, both of the triangles �ABB� and �CBB� are
isosceles:

AB � A′B′ � AB�

CB �C′B′ �CB�.

According to the Isosceles Triangle Theorem, the angles opposite those
congruent sides are themselves congruent:

∠ABP � ∠AB�P
∠CBP � ∠CB�P.

Since we are assuming that P is between A and C, we can use the An-
gle Addition Theorem to combine these two angles into the larger an-
gle ∠ABC � ∠AB�C. We already know ∠AB�C � ∠A′B′C′, so ∠ABC �
∠A′B′C′ and that is the needed angle congruence. By S·A·S, �ABC �
�A′B′C′.
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Two noncongruent triangles 
sharing S·S·A.

Four noncongruent triangles 
sharing A·A·A.

Failures of S·S·A and A·A·A in the Euclidean model.

A A

B

C

C
B3

B1
B2

B4 C1

C2

C3

C4

We have established four triangle congruences: S·A·S, A·S·A, A·A·S,
and S·S·S. For each, you need three components, some mix of sides and
angles. It would be natural to wonder whether there are any other com-
binations of three sides and angles which give a congruence. There are
really only two other fundamentally different combinations: A·A·A and
S·S·A. Neither is a valid congruence theorem in neutral geometry. In fact,
both fail in Euclidean geometry. The situation in non-Euclidean geome-
try is a little bit different, but I am going to deflect that issue for the time
being.
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Exercises

1. The Segment Addition Axiom. The Angle Subtraction Theorem. The
Angle Addition Theorem. That just leaves the Segment Subtraction
Theorem. State it. Prove it.

2. One of the conditions in the statement of the Angle Subtraction The-
orem is that both D and D′ must be in the interiors of ther respective
angles. In fact, this condition can be weakened: prove that you do not
need to assume that D′ is in the interior of the angle, just that it is on
the same side of A′B′ as C′.

3. Complete the proof of S·S·S by handling the other two cases (when P
is one of the endpoints and when P is on the line � AC � but not the
segment AC).

4. Suppose that A∗B∗C and that A′ and C′ are on opposite sides of �AC�.
Prove that if ∠ABA′ � ∠CBC′, then A′ ∗B∗C′.

5. Suppose that A, B, C, and D are four distinct non-colinear points. Prove
that if �ABC ��DCB, then �BAD ��CDA.



6. READER’S SOLO 
SHORTER AND LONGER
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The purpose of this short section is to develop a system of comparison
for segments that aren’t congruent. I am going to let you provide all the
proofs in this section. It will give you the opportunity to work with order
and congruence on your own.

DEF: SHORTER AND LONGER
Given segments AB and CD, label E on CD� so that CE � AB.
If C ∗E ∗D, then AB is shorter than CD, written AB ≺CD.
If C ∗D∗E, then AB is longer than CD, written AB �CD.

Note that if you replace CD in this definition with DC, things will change
slightly: calculations will be done on the ray DC� rather than CD�. That
would seem like it could be problem, since CD and DC are actually the
same segment, so your first task in this chapter is to make sure that ≺ and
� are defined the same way, whether you are using CD or DC.

THM: ≺ AND � ARE WELL DEFINED
Given segments AB and CD, label:
E: the unique point on CD� so that AB �CE and
F : the unique point on DC� so that AB � DF .

Then C ∗E ∗D if and only if D∗F ∗C.

The purpose of this short section is to develop a system of comparison
for segments that aren’t congruent. I am going to let you provide all the
proofs in this section. It will give you the opportunity to work with order
and congruence on your own.

DEF: SHORTER AND LONGER
Given segments AB and CD, label E on CD� so that CE � AB.
If C ∗E ∗D, then AB is shorter than CD, written AB ≺CD.
If C ∗D∗E, then AB is longer than CD, written AB �CD.

Note that if you replace CD in this definition with DC, things will change
slightly: calculations will be done on the ray DC� rather than CD�. That
would seem like it could be problem, since CD and DC are actually the
same segment, so your first task in this chapter is to make sure that ≺ and
� are defined the same way, whether you are using CD or DC.

THM: ≺ AND � ARE WELL DEFINED
Given segments AB and CD, label:
E: the unique point on CD� so that AB �CE and
F : the unique point on DC� so that AB � DF .

Then C ∗E ∗D if and only if D∗F ∗C.

D

C

A E

F

B

AB ≺CD EF CD≺
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Here are a bunch of the properties of ≺ for you to verify. There are, of
course, corresponding properties for �, but I have left them out to cut
down on some of the tedium.

THM: TRANSITIVITY OF ≺
If AB ≺CD, and CD ≺ EF , then AB ≺ EF .
If AB ≺CD, and CD � EF , then AB ≺ EF .
If AB �CD, and CD ≺ EF , then AB ≺ EF .

THM: SYMMETRY BETWEEN ≺ AND �
For any two segments AB and CD, AB ≺CD if and only if CD � AB.

THM: ORDER (FOUR POINTS) AND ≺
If A∗B∗C ∗D, then BC ≺ AD.

THM: ADDITIVITY OF ≺
Suppose that A∗B∗C and A′ ∗B′ ∗C′. If AB ≺ A′B′ and BC ≺ B′C′,
then AC ≺ A′C′.





7. FILL THE HOLE 
DISTANCE, LENGTH, AND THE 

AXIOMS OF CONTINUITY
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Hilbert’s geometry starts with incidence, congruence, and order. It is a
synthetic geometry in the sense that it is not centrally built upon mea-
surement. Nowadays, it is more common to take an metrical approach to
geometry, and to establish your geometry based upon a measurement. In
the metrical approach, you begin by defining a distance function– a func-
tion d which assigns to each pairs of points a real number and satisfies the
following requirements

(i) d(P,Q)≥ 0, with d(P,Q) = 0 if and only if P = Q,
(ii) d(P,Q) = d(Q,P), and

(iii) d(P,R)≤ d(P,Q)+d(Q,R).

Once the distance function has been chosen, the length of a segment is
defined to be the distance between its endpoints. I will follow the conven-
tion of using the absolute value sign to notate the length of a segment, so
|PQ|= d(P,Q). Then congruence is defined by saying that two segments
are congruent if they have the same length. Incidence and order also can
be defined in terms of d: points P, Q, and R are all on the same line, and Q
is between P and R when the inequality in (iii) is an equality. You see, syn-
thetic geometry takes a back seat to analytic geometry, and the synthetic
notions of incidence, order, and congruence, are defined analytically. I do
not have a problem with that approach– it is the one that we are going to
take in the development of hyperbolic geometry much later on. We have
been developing a synthetic geometry, though, and so what I would like
to do in this lesson is to build distance out of incidence, order, and con-
gruence. This is what Hilbert did when he developed the real number line
and its properties inside of the framework of his axiomatic system.

Modest Expectations

Here we stand with incidence, order, congruence, the axioms describing
them, and at this point even a few theorems. Before we get out of this
section, I will throw in the last two axioms of neutral geometry, the axioms
of continuity, too. From all of this, we want to build a distance function
d. Look, we have all dealt with distance before in one way or another, and
we want our distance function to meet conditions (i)–(iii) above, so it is
fair to have certain expectations for d. I don’t think it is unreasonable to
expect all of the following.
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(1) The distance between any two distinct points should be a positive
real number and the distance from a point to itself should be zero.
That way, d will satisfy condition (i) above.

(2) Congruent segments should have the same length. That takes care
of condition (ii) above, since AB � BA, but it does a whole lot more
too. You see, let’s pick out some ray r and label its endpoint O. Ac-
cording to the Segment Construction Axiom, for any segment AB,
there is a unique point P on r so that AB � OP. If congruent seg-
ments are to have the same length, then that means |AB|= d(O,P).
Therefore, if we can just work out the distance from O to the other
points on r, then all other distances will follow.

(3) If A∗B∗C, then
|AB|+ |BC|= |AC|.

This is just a part of property (iii) of a distance function. Since
we are going to develop the distance function on r, we don’t have
to worry about non-colinear points just yet (that will come a little
later). Relating back to your work in the last section, since d never
assigns negative values, this means that

AB ≺CD =⇒ |AB|< |CD|,
AB �CD =⇒ |AB|> |CD|.

It is up to us to build a distance function that meets all three of these
requirements. The rest of this chapter is devoted to doing just that.

a b a+b

The additivity condition for d.
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Divide and combine: the dyadic points

With those conditions in mind, let’s start building the distance function
d. The picture that I like to keep in my mind as I’m doing this is that
simple distance measuring device: the good old-fashioned ruler. Not a
metric ruler mind you, but an English ruler with inches on it. Here is
one way that you can classify the markings on the ruler. You have the 1′′
mark. That distance is halved, and halved, and halved again to get the
1/2′′, 1/4′′, and 1/8′′ marks. Depending upon the precision of the ruler,
there may be 1/16′′ or 1/32′′ markings as well. All the other marks on
the ruler are multiples of these. Well, that ruler is the blueprint for how
we are going to build the skeleton of d. First of all, because of condition
(1), d(O,O) = 0. Now take a step along r to another point. Any point is
fine– like the inch mark on the ruler, it sets the unit of measurement. Call
this point P0 and define d(O,P0) = 1. Now, as with the ruler, we want to
repeatedly halve OP0. That requires a little theory.

DEF: MIDPOINT
A point M on a segment AB is the midpoint of AB if AM � MB.

THM: EXISTENCE, UNIQUENESS OF MIDPOINTS
Every segment has a unique midpoint.

Proof. Existence. Given the segment AB,
choose a point P which is not on � AB �.
According to the Angle and Segment Con-
struction Axioms, there is a point Q on the
opposite side of � AB � from P so that
∠ABP � ∠BAQ (that’s the angle construc-
tion part) and so that BP � AQ (that’s the
segment construction part). Since P and Q
are on opposite sides of �AB�, the segment
PQ intersects it. Call that point of intersec-
tion M. I claim that M is the midpoint of AB.
Why? Well, compare �MBP and �MAQ.

P

Q

M

B

A
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In those triangles

∠AMQ � ∠BMP (vertical angles)
∠MAQ � ∠MBP (by construction)
BP � AQ (by construction)

so, by A·A·S, they must be congruent trian-
gles. That means that AM � MB. It is worth
noting that the midpoint of AB has to be be-
tween A and B. If it weren’t, one of two
things would have to happen:

M ∗A∗B =⇒ MA ≺ MB, or
A∗B∗M =⇒ MA � MB,

and either way, the segments MA and MB
couldn’t be congruent.

Uniqueness. Suppose that a segment AB ac-
tually had two midpoints. Let’s call them
M1 and M2, and just for the sake of conve-
nience, let’s say that they are labeled so that
they are ordered as

A∗M1 ∗M2 ∗B.

Since A∗M1 ∗M2, AM1 ≺ AM2. Since M1 ∗
M2 ∗B, BM2 ≺ BM1. But now M2 is a mid-
point, so AM2 � BM2. Let’s put that to-
gether

AM1 ≺ AM2 � BM2 ≺ BM1.

In the last section you proved that ≺ is tran-
sitive. This would imply that AM1 ≺ BM1
which contradicts the fact that M1 is a mid-
point. Hence a segment cannot have two
distinct midpoints.

P

Q

M

B

A

P

Q

M

B

A

There are many choices 
for P, but they each lead 
to the same midpoint 
because a segment can 
have only one midpoint.
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Let’s go back to OP0. We now know that it has a unique midpoint. Let’s
call that point P1. In order for the distance function d to satisfy condition
(3),

|OP1|+ |P1P0|= |OP0|.

But OP1 and P1P0 are congruent, so in order for d to satisfy condition (2),
they have to be the same length. Therefore 2|OP1|= 1 and so |OP1|= 1/2.
Repeat. Take OP1, and find its midpoint. Call it P2. Then

|OP2|+ |P2P1|= |OP1|.

Again, OP2 and P2P1 are congruent, so the must be the same length. There-
fore 2|OP2|= 1/2, and so |OP2|= 1/4. By repeating this process over and
over, you can identify the points Pn which are distances of 1/2n from O.

With the points Pn as building blocks, we can start combining segments
of lengths 1/2n to get to other points. In fact, we can find a point whose
distance from O is m/2n for any positive integers m and n. It is just a
matter of chaining together enough congruent copies of OPn as follows.
Begin with the point Pn. By the first axiom of congruence, there is a
point P2

n on the opposite side of Pn from O so that PnP2
n � OPn. And

there is a point P3
n on the opposite side of P2

n from Pn so that P2
n P3

n � OPn.
And a point P4

n on the opposite side of P3
n from P2

n so that P3
n P4

n � OPn.
And so on. This can be continued until m segments are chained together

P0P1P3 P2O

O
r

P2
0P0

P3
0

P3
1P1

P5
1

P7
1

P3
2P2

P5
2

P7
2

P9
2

P11
2

P13
2
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stretching from O to a point which we will label Pm
n . In order for the

distance function to satisfy the additivity condition (3),

|OPm
n |= |OPn|+ |PnP2

n |+ |P2
n P3

n |+ · · ·+ |Pm−1
n Pm

n |.

All of these segments are congruent, though, so they have to be the same
length (for condition (2)), so

|OPm
n |= m · |OPn|= m ·1/2n = m/2n.

Rational numbers whose denominator can be written as a power of two
are called dyadic rationals. In that spirit, I will call these points the dyadic
points of r.

Fill the Hole

There are plenty of real numbers that aren’t dyadic rationals though, and
there are plenty of points on r that aren’t dyadic points. How can we
measure the distance from O to them? For starters, we are not going to be
able to do this without the last two axioms of neutral geometry.

P0P1P3 P2O

O
r

P2
0P0

P3
0

P3
1P1

P5
1

P7
1

P3
2P2

P5
2

P7
2

P9
2

P11
2

P13
2
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These last two axioms, the axioms of continuity, are a little more technical
than any of the previous ones. The first says that you can get to any point
on a line if you take enough steps. The second, which is inspired by
Dedekind’s construction of the real numbers, says that there are no gaps
in a line.

THE AXIOMS OF CONTINUITY

Ct1 Archimedes’ Axiom If AB and CD are any two segments, there is
some positive integer n such that n congruent copies of CD con-
structed end-to-end from A along the ray AB � will pass beyond
B.

Ct2 Dedekind’s Axiom Let S< and S≥ be two nonempty subsets of a
line � satisfying: (i) S< ∪S≥ = �; (ii) no point of S< is between
two points of S≥; and (iii) no point of S≥ is between two points
of S<. Then there is a unique point O on � such that for any two
other points P1 and P2 with P1 ∈ S< and P2 ∈ S≥ then P1 ∗O∗P2

It is time to get back to the issue of distance on the ray r. So let P be
a point on r. Even if P is not itself a dyadic point, it is surrounded by
dyadic points. In fact, there are so many dyadic points crowding P, that
the distance from O to P can be estimated to any level of precision using
nearby dyadic points. For instance, suppose we consider just the dyadic
points whose denominator can be written as 20:

S0 = {O,P1
0 ,P

2
0 ,P

3
0 , . . .}.

By the Archimedean Axiom, eventually these points will lie beyond P. If
we focus our attention on the one right before P, say Pm0

0 , and the one right
after, Pm0+1

0 , then
O∗Pm0

0 ∗P∗Pm0+1
0 .

(1) Archimedes: Given 
enough steps, P will be 
passed.

(2) Dedekind: There is a 
point between any two 
separated partitions of a 
line.

S− S+
P

(1) (2)



81DISTANCE LENGTH AND CONTINUITY

We can compare the relative sizes of the segments

OPm0
0 ≺ OP ≺ OPm0+1

0

and so, if our distance is going to satisfy condition (3),

|OPm0
0 |<|OP|< |OPm0+1

0 |
m0 <|OP|< m0 +1

Not precise enough for you? Replace S0, with S1, the set of dyadic points
whose denominator can be written as 21:

S1 = {O,P1,P2
1 = P0,P3

1 ,P
4
1 = P2

0 , . . .}.

Again, the Archimedean Axiom guarantees that eventually the points in
S1 will pass beyond P. Let Pm1

1 be the last one before that happens. Then

O∗Pm1
1 ∗P∗Pm1+1

1

so

|OPm1
1 |<|OP|< |OPm1+1

1 |
m1/2 <|OP|< (m1 +1)/2

and this gives |OP| to within an accuracy of 1/2.
Continuing along in this way, you can use S2, dyadics whose denom-

inator can be written as 22, to approximate |OP| to within 1/4, and you
can use S3, dyadics whose denominator can be written as 23, to approx-
imate |OP| to within 1/8. Generally speaking, the dyadic rationals in Sn
provide an upper and lower bound for |OP| which differ by 1/2n. As n
goes to infinity, 1/2n goes to zero, forcing the upper and lower bounds
to come together at a single number. This number is going to have to be
|OP|. Now you don’t really need both the increasing and decreasing se-
quences of approximations to define |OP|. After all, they both end up at
the same number. Here is the description of |OP| using just the increasing
sequence: for each positive integer n, let Pmn

n be the last point in the list
Sn which is between O and P. In order for the distance function to satisfy
condition (3), we must set

|OP|= lim
n→∞

|OPmn
n |= lim

n→∞
mn/2n.



82 LESSON 7

Now do it in reverse

Every point of r now has a distance associated with it, but is there a point
at every possible distance? Do we know, for instance, that there is a point
at exactly a distance of 1/3 from O? The answer is yes– it is just a matter
of reversing the distance calculation process we just described and using
the Dedekind Axiom. Let’s take as our prospective distance some positive
real number x. For each integer n ≥ 0, let mn/2n be the largest dyadic
rational less than x whose denominator can be written as 2n and let Pmn

n be
the corresponding dyadic point on r. Now we are going to define two sets
of points:

S<: all the points of r that lie between O and any of the Pmn
n , together

with all the points of rop.

S≥: all of the remaining points of r.

So S< contains a sequence of dyadic rationals increasing to x

{Pm0
0 ,Pm1

1 ,Pm2
2 ,Pm3

3 , . . .},

P

Pm1
1

Pm1+1
1

Pm0
0

Pm0+1
0

Pm2
2

Pm2+1
2

(m
2
+

1)
4/

m
0

m
0
+

1

m
1

2/

Capturing a non-dyadic point between two sequences of dyadic points.
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and S≥ contains a sequence of dyadic rationals decreasing to x

{Pm0+1
0 ,Pm1+1

1 ,Pm2+1
2 ,Pm3+1

3 , . . .}.

Together S< and S≥ contain all the points of the line through r, but they
do not intermingle: no point of S< is between two of S≥ and no point of
S≥ is between two of S<. According to the Dedekind Axiom, then, there
is a unique point P between S< and S≥. Now let’s take a look at how far
P is from O. For all n,

OPmn
n ≺OP ≺ OPmn+1

n

|OPmn
n |< |OP|< |OPmn+1

n |
mn/2n < |OP|< (mn +1)/2n

As n goes to infinity, the interval between these two consecutive dyadics
shrinks – ultimately, the only point left is x. So |OP|= x.

Finding a dyadic sequence approaching a particular number can be
tricky business. Finding such a sequence approaching 1/3 is easy,
though, as long as you remember the geometric series formula

∞

∑
n=0

xn =
1

1− x
if |x|< 1.

With a little trial and error, I found that by plugging in x = 1/4,

1+
1
4
+

1
16

+
1

64
+

1
256

+ · · · = 4
3
.

Subtracting one from both sides gives an infinite sum of dyadics to
1/3, and we can extract the sequence from that

1
4
= 0.25

1
4
+

1
16

=
5
16

= 0.3125

1
4
+

1
16

+
1

64
=

21
64

= 0.32825

Example: dyadics approaching 1/3
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Segment addition, redux

For any two points P and Q, there is a unique segment OR on the ray r
which is congruent to PQ. Define d(P,Q) = |OR|. With this setup, our
distance function will satisfy conditions (1) and (2). That leaves condition
(3)– a lot of effort went into trying to build d so that condition would
be satisfied, but it is probably a good idea to make sure that it actually
worked. Let’s close out this lesson with two theorems that do that.

THM: A FORMULA FOR DISTANCE ALONG A RAY
If P and Q are points on r, with |OP| = x and |OQ| = y, and if P is
between O and Q, then |PQ|= y− x.

Proof. If both P and Q are dyadic points, then this is fairly easy. First you
are going to express their dyadic distances with a common denominator:

|OP|= m/2n |OQ|= m′/2n.

Then OP is built from m segments of length 1/2n and OQ is built from
m′ segments of length 1/2n. To get |PQ|, you simply have to take the m
segments from the m′ segments– so |PQ| is made up of m′ −m segments
of length 1/2n. That is

|PQ|= (m′ −m) · 1
2n = y− x.

P

O

Q

m copies
m' copies

1 2n/
Measuring the distance between two dyadic points.
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If one or both of P and Q are not dyadic, then there is a bit more work to
do. In this case, P and Q are approximated by a sequence of dyadics Pmn

n

and Pm′
n

n where

lim
n→∞

mn

2n = x & lim
n→∞

m′
n

2n = y.

Now we can trap |PQ| between dyadic lengths:

Pmn+1
n Pm′

n
n ≺PQ ≺ Pmn

n Pm′
n+1

n

|Pmn+1
n Pm′

n
n |< |PQ|< |Pmn

n Pm′
n+1

n |
m′

n −mn −1
2n < |PQ|< m′

n +1−mn

2n

As n approaches infinity, |PQ| is stuck between two values both of which
are approaching y− x.

Now while this result only gives a formula for lengths of segments on the
ray r, it is easy to extend it to a formula for lengths of segments on the line
containing r. In fact, this is one of the exercises for this lesson. The last
result of this lesson is a reinterpretation of the Segment Addition Axiom
in terms of distance, and it confirms that the distance we have constructed
does satisfy condition (3).

THM: SEGMENT ADDITION, THE MEASURED VERSION
If P∗Q∗R, then |PQ|+ |QR|= |PR|.

Proof. The first step is to transfer the problem over to r so that we can
start measuring stuff. So locate Q′ and R′ on r so that:

O∗Q′ ∗R′, PQ � OQ′, QR � Q′R′.

According to the Segment Addition Axiom, this means that PR � OR′.
Now we can use the last theorem,

|QR|= |Q′R′|= |OR′|− |OQ′|= |PR|− |PQ|.

Just solve that for |PR| and you’ve got it.

P

O

Q

Measuring the distance between two non-dyadic points.

Pm
n

Pm+1
n

Pm+1
n

Pm
n
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OR − OQ

Q

P

O

R

Q R

If one or both of P and Q are not dyadic, then there is a bit more work to
do. In this case, P and Q are approximated by a sequence of dyadics Pmn

n

and Pm′
n

n where

lim
n→∞

mn

2n = x & lim
n→∞

m′
n

2n = y.

Now we can trap |PQ| between dyadic lengths:

Pmn+1
n Pm′

n
n ≺PQ ≺ Pmn

n Pm′
n+1

n

|Pmn+1
n Pm′

n
n |< |PQ|< |Pmn

n Pm′
n+1

n |
m′

n −mn −1
2n < |PQ|< m′

n +1−mn

2n

As n approaches infinity, |PQ| is stuck between two values both of which
are approaching y− x.

Now while this result only gives a formula for lengths of segments on the
ray r, it is easy to extend it to a formula for lengths of segments on the line
containing r. In fact, this is one of the exercises for this lesson. The last
result of this lesson is a reinterpretation of the Segment Addition Axiom
in terms of distance, and it confirms that the distance we have constructed
does satisfy condition (3).

THM: SEGMENT ADDITION, THE MEASURED VERSION
If P∗Q∗R, then |PQ|+ |QR|= |PR|.

Proof. The first step is to transfer the problem over to r so that we can
start measuring stuff. So locate Q′ and R′ on r so that:

O∗Q′ ∗R′, PQ � OQ′, QR � Q′R′.

According to the Segment Addition Axiom, this means that PR � OR′.
Now we can use the last theorem,

|QR|= |Q′R′|= |OR′|− |OQ′|= |PR|− |PQ|.

Just solve that for |PR| and you’ve got it.
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Exercises

1. Our method of measuring distance along a ray r can be extended to the
rest of the line. In our construction each point on r corresponds to a
positive real number (the distance from O to that point). Suppose that
P is a point on rop. There is a point Q on r so that OP � OQ. If x
is the positive real number associated with Q, then we want to assign
the negative number −x to P. Now suppose that P1 and P2 are any two
points on the line and x and y are the associated real numbers. Show
that

d(P1,P2) = |x− y|.

2. Write 1/7, 1/6, and 1/5 as an infinite sum of dyadic rationals.

3. Since writing this, it has come to my attention (via Greenberg’s book
[1]) that Archimedes’ Axiom is actually a consequece of Dedekind’s
Axiom. You can prove this yourself as follows. If Archimedes were
not true, then there would be some point on a ray that could not be
reached by via end-to-end copies of a segment. In that case, the ray
can be divided into two sets: one consisting of the points that can be
reached, the other of the points that cannot. By including the opposite
ray in with the set of points that can be reached, you get a partition of
a line into two sets. Prove that these sets form a Dedekind cut of the
line. Then by Dedekind’s Axiom there is a point between them. Now
consider what would happen if you took one step forward or backward
from this point.

References

[1] Marvin J. Greenberg. Euclidean and Non-Euclidean Geometries: De-
velopment and History. W.H. Freeman and Company, New York, 4th
edition, 2008.
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These next two chapters are devoted to developing a measurement system
for angles. It’s really not that different from what we did in the last two
chapters and again I would like to divide up the work so I don’t feel like I
am doing everything by myself. This time I will prove the results about the
synthetic comparison of angles and I will let you prove the results which
ultimately lead to the degree system of angle measurement.

Synthetic angle comparison

The first step is to develop a way to compare angles so that you can look
at two angles and say that one is smaller or larger than the other. I gave
these definitions back in lesson 4, but in the interest of keeping everything
together, and to introduce some notation, here they are again.

DEF: SMALLER AND LARGER ANGLES
Given angles ∠ABC and ∠A′B′C′, label C� on the same side of AB as
C so that ∠ABC� � ∠A′B′C′.
≺ If C� is in the interior of ∠ABC, then ∠A′B′C′ is smaller than

∠ABC, written ∠A′B′C′ ≺ ∠ABC.
� If C� is in the exterior of ∠ABC, then ∠A′B′C′ is larger than

∠ABC, written ∠A′B′C′ � ∠ABC.

1 2 3

∠1 ≺ ∠2 ∠3 � ∠2≺
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B

BA

CD
A

1

2

3

456 CD

BA

[proved in lesson 2] [proved in lesson 3]
[from lesson 2]

THM: ORDERING RAYS

Given n ≥ 2 rays with a com-
mon basepoint B which are all
on the same side of the line
�AB� through B, there is an
ordering of them:

r1, r2, . . . ,rn

so that if i < j then ri is in the
interior of the angle formed
by BA� and r j.

[from lesson 3]

THM: CONGRUENCE AND AN-
GLE INTERIORS

Given ∠ABC � ∠A′B′C′ and
that the point D is in the in-
terior of ∠ABC. Suppose that
D′ is located on the same side
of �AB� as C so that ∠ABD�
∠A′B′D′. Then D′ is in the in-
terior of ∠A′B′C′.

In addition, the results of this section depend upon two results we proved
a while ago.
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As with the segment comparison definitions, there is a potential issue with
the definitions of ≺ and �. What if we decided to construct C� off of BC�
instead of BA �? Since ∠ABC = ∠CBA, and since we are interested in
comparing the angles themselves, this notion of larger or smaller should
not depend upon which ray we are building from. The next theorem tells
us not to worry.

THM: ≺ AND � ARE WELL DEFINED
Given ∠ABC and ∠A′B′C′, label:
C�– a point on the same side of AB as C for which ∠ABC� �∠A′B′C′

A�– a point on the same side of BC as A for which ∠CBA��∠A′B′C′.
Then C� is in the interior of ∠ABC if and only if A� is.

Proof. This is really a direct corollary of the “Congruence and Angle In-
teriors” result from lesson 3. You see, that is exactly what we have here:
∠ABC � ∠ABC and ∠A�BC � ∠ABC� and C� is on the same side of AB
as C, so if A� is in the interior of ∠ABC, then C� must be too. Conversely,
A� is on the same side of BC as A, so if C� is in the interior, then A� must
be too.

Now let’s take a look at some of the properties of synthetic angle compar-
ison. I am focusing on the ≺ version of these properties: the � version
should be easy enough to figure out from these. There is nothing particu-
larly elegant about these proofs. They mainly rely upon the two theorems
listed above.

As with the segment comparison definitions, there is a potential issue with
the definitions of ≺ and �. What if we decided to construct C� off of BC�
instead of BA �? Since ∠ABC = ∠CBA, and since we are interested in
comparing the angles themselves, this notion of larger or smaller should
not depend upon which ray we are building from. The next theorem tells
us not to worry.

THM: ≺ AND � ARE WELL DEFINED
Given ∠ABC and ∠A′B′C′, label:
C�– a point on the same side of AB as C for which ∠ABC� �∠A′B′C′

A�– a point on the same side of BC as A for which ∠CBA��∠A′B′C′.
Then C� is in the interior of ∠ABC if and only if A� is.

Proof. This is really a direct corollary of the “Congruence and Angle In-
teriors” result from lesson 3. You see, that is exactly what we have here:
∠ABC � ∠ABC and ∠A�BC � ∠ABC� and C� is on the same side of AB
as C, so if A� is in the interior of ∠ABC, then C� must be too. Conversely,
A� is on the same side of BC as A, so if C� is in the interior, then A� must
be too.

Now let’s take a look at some of the properties of synthetic angle compar-
ison. I am focusing on the ≺ version of these properties: the � version
should be easy enough to figure out from these. There is nothing particu-
larly elegant about these proofs. They mainly rely upon the two theorems
listed above.

CB

A

B C

A

A

C

When comparing angles, it doesn’t matter which ray is used as the “base”.
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THM: TRANSITIVITY OF ≺

≺≺ If ∠A1B1C1 ≺ ∠A2B2C2 and ∠A2B2C2 ≺ ∠A3B3C3,
then ∠A1B1C1 ≺ ∠A3B3C3.

�≺ If ∠A1B1C1 � ∠A2B2C2 and ∠A2B2C2 ≺ ∠A3B3C3,
then ∠A1B1C1 ≺ ∠A3B3C3.

≺� If ∠A1B1C1 ≺ ∠A2B2C2 and ∠A2B2C2 � ∠A3B3C3,
then ∠A1B1C1 ≺ ∠A3B3C3.

Proof. Let me just take the first of these statements since the other two
are easier. Most of the proof is just getting points shifted into a useful
position.

1. Copy the first angle into the second: since ∠A1B1C1 ≺ ∠A2B2C2,
there is a point A′

1 in the interior of ∠A2B2C2 so that ∠A1B1C1 �
∠A′

1B2C2.

2. Copy the second angle in to the third: since ∠A2B2C2 ≺ ∠A3B3C3,
there is a point A′

2 in the interior of ∠A3B3C3 so that ∠A2B2C2 �
∠A′

2B3C3.

3. Copy the first angle to the third (although we don’t know quite as
much about this one): pick a point A′′

1 on the same side of B3C3 as
A1 so that A′′

1B3C3 � A1B1C1.

Now we can get down to business. “Congruence and Angle Interiors”:
since A′

1 is in the interior of ∠A2B2C2, A′′
1 has to be in the interior of

∠A′
2B3C3. “Ordering rays”: since B3A′′

1 � is in the interior of ∠A3B3A′
2,

and since B3A′
2� is in the interior of ∠A3B3C3, this means that B3A′′

1� has
to be in the interior of ∠A3B3C3. Therefore ∠A1B1C1 ≺ ∠A3B3C3.

The transitivity of ≺.

A1

A2

B3B1 B2

A3

C1 C2 C3

A
1 A

1

A
2
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THM: ORDERING FOUR RAYS
If A2 and C2 are in the interior of ∠A1BC1, then ∠A2BC2 ≺ ∠A1BC1.

Proof. Locate A�
2 on the same side of �BC1� as A1 so that

∠A�
2BC1 � ∠A2BC2.

Then the question is– is A�
2 in the interior of ∠A1BC1? Well, let’s suppose

that it isn’t. Then

∠A2BC2 ≺ ∠A�
2BC2 ≺ ∠A�

2BC1.

Since we have established that ≺ is transitive, that means ∠A2BC2 ≺
∠A�

2BC1. But this cannot be– those two angles are supposed to be con-
gruent. Hence A�

2 has to be in the interior of ∠A1BC1, and so ∠A2BC2 ≺
∠A1BC1.

THM: SYMMETRY BETWEEN ≺ AND �
For any two angles ∠A1B1C1 and ∠A2B2C2, ∠A1B1C1 ≺∠A2B2C2 if
and only if ∠A2B2C2 � ∠A1B1C1.

Proof. This is a direct consequence of the “Congruence and Angle Interi-
ors” theorem. Suppose that ∠A1B1C1 ≺ ∠A2B2C2. Then there is a point
A′

1 in the interior of ∠A2B2C2 so that ∠A1B1C1 �∠A′
1B2C2. Moving back

to the first angle, there is a point A�
2 on the opposite side of A1B1 from C1

so that ∠A1B1A�
2 � ∠A′

1B2A2. By angle addition, ∠A�
2B1C1 � ∠A2B2C2,

and since A�
2 is not in the interior of ∠A1B1C1, that means ∠A2B2C2 �

∠A1B1C1. The other direction in this proof works very similarly so I won’t
go through it.

A
2

A1 A2

B1 B2C1 C2

A
1

Relating
≺ and � ≺
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THM: ADDITIVITY OF ≺
Suppose that D1 lies in the interior of ∠A1B1C1 and that D2 lies in
the interior of ∠A2B2C2. If ∠A1B1D1 ≺ ∠A2B2D2 and ∠D1B1C1 ≺
∠D2B2C2, then ∠A1B1C1 ≺ ∠A2B2C2.

Proof. Find D′
1 in the interior of ∠A2B2D2 so that ∠A2B2D′

1 �∠A1B1D1.
Find C′

1 on the opposite side of � B2D′
1 � from A2 so that ∠D′

1B2C′
1 �

∠D1B1C1. By angle addition, ∠A2B2C′
1 � ∠A1B1C1, so the question is

whether or not C′
1 is in the interior of ∠A2B2C2. Well, if it was not, then

by the previous theorem

∠D2B2C2 ≺ ∠D′
1B2C′

1 =⇒ ∠D2B2C2 ≺ ∠D1B1C1.

That is a contradiction (the angles were constructed to be congruent),
so C′

1 will have to lie in the interior of ∠A2B2C2, and so ∠A1B1C1 ≺
∠A2B2C2.

Proof by contradiction of the “Ordering Four Rays” Theorem.

A2 A2

A1

B C1

A
2 A1

B C1

C2 C2

A1

C1

D1

B1

D2

D
1

C
1

The proof by contradiction of the additivity of 

A2

B2

C2

≺
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Right angles

Distance and segment length is based upon a completely arbitrary segment
to determine unit length. Angle measure is handled differently– a specific
angle is used as the baseline from which the rest is developed (although,
at least in the degree measurement system, that angle is then assigned a
pretty random measure). That angle is the right angle.

DEF: RIGHT ANGLE
A right angle is an angle which is congruent to its own supplement.

Now I didn’t mention it at the time, but we have already stumbled across
right angles once, in the proof of the S·S·S theorem. But it ought to be
stated again, that

THM: RIGHT ANGLES, EXISTENCE
Right angles do exist.

Proof. We will prove that right angles exist by constructing one. Start
with a segment AB. Now choose a point P which is not on the line �AB�.
If ∠PAB is congruent to its supplement, then it is a right angle, and that’s
it. If ∠PAB is not congruent to its supplement (which is really a lot more
likely), then there is a little more work to do. Thanks to the Segment and
Angle Construction Axioms, there is a point P′ on the opposite side of
�AB� from P so that ∠P′AB �∠PAB (angle construction) and AP′ � AP
(segment construction). Since P and P′ are on opposite sides of �AB�, the
segment PP′ has to intersect the line �AB�. Call that point of intersection
Q. With that construction,

PA � P′A ∠PAQ � ∠P′AQ AQ � AQ

so by S·A·S triangle congruence theorem, �PAQ ��P′AQ. Out of those
two triangles, the relevant congruence is between the two angles that share
the vertex Q: ∠AQP � ∠AQP′. These angles are supplements. They are
congruent. By definition, they are right angles.

Right angles

Distance and segment length is based upon a completely arbitrary segment
to determine unit length. Angle measure is handled differently– a specific
angle is used as the baseline from which the rest is developed (although,
at least in the degree measurement system, that angle is then assigned a
pretty random measure). That angle is the right angle.

DEF: RIGHT ANGLE
A right angle is an angle which is congruent to its own supplement.

Now I didn’t mention it at the time, but we have already stumbled across
right angles once, in the proof of the S·S·S theorem. But it ought to be
stated again, that

THM: RIGHT ANGLES, EXISTENCE
Right angles do exist.

Proof. We will prove that right angles exist by constructing one. Start
with a segment AB. Now choose a point P which is not on the line �AB�.
If ∠PAB is congruent to its supplement, then it is a right angle, and that’s
it. If ∠PAB is not congruent to its supplement (which is really a lot more
likely), then there is a little more work to do. Thanks to the Segment and
Angle Construction Axioms, there is a point P′ on the opposite side of
�AB� from P so that ∠P′AB �∠PAB (angle construction) and AP′ � AP
(segment construction). Since P and P′ are on opposite sides of �AB�, the
segment PP′ has to intersect the line �AB�. Call that point of intersection
Q. With that construction,

PA � P′A ∠PAQ � ∠P′AQ AQ � AQ

so by S·A·S triangle congruence theorem, �PAQ ��P′AQ. Out of those
two triangles, the relevant congruence is between the two angles that share
the vertex Q: ∠AQP � ∠AQP′. These angles are supplements. They are
congruent. By definition, they are right angles.

Right angles. In diagrams, squares angle markers are often used to indicate 
that an angle is right.
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Right angles

Distance and segment length is based upon a completely arbitrary segment
to determine unit length. Angle measure is handled differently– a specific
angle is used as the baseline from which the rest is developed (although,
at least in the degree measurement system, that angle is then assigned a
pretty random measure). That angle is the right angle.

DEF: RIGHT ANGLE
A right angle is an angle which is congruent to its own supplement.

Now I didn’t mention it at the time, but we have already stumbled across
right angles once, in the proof of the S·S·S theorem. But it ought to be
stated again, that

THM: RIGHT ANGLES, EXISTENCE
Right angles do exist.

Proof. We will prove that right angles exist by constructing one. Start
with a segment AB. Now choose a point P which is not on the line �AB�.
If ∠PAB is congruent to its supplement, then it is a right angle, and that’s
it. If ∠PAB is not congruent to its supplement (which is really a lot more
likely), then there is a little more work to do. Thanks to the Segment and
Angle Construction Axioms, there is a point P′ on the opposite side of
�AB� from P so that ∠P′AB �∠PAB (angle construction) and AP′ � AP
(segment construction). Since P and P′ are on opposite sides of �AB�, the
segment PP′ has to intersect the line �AB�. Call that point of intersection
Q. With that construction,

PA � P′A ∠PAQ � ∠P′AQ AQ � AQ

so by S·A·S triangle congruence theorem, �PAQ ��P′AQ. Out of those
two triangles, the relevant congruence is between the two angles that share
the vertex Q: ∠AQP � ∠AQP′. These angles are supplements. They are
congruent. By definition, they are right angles.

Okay, so they are out there. But how many are there? The next result is
something like a uniqueness statement– that there is really only one right
angle “modulo congruence”.

THM: RIGHT ANGLES AND CONGRUENCE
Suppose that ∠ABC is a right angle. Then ∠A′B′C′ is a right angle if
and only if it is congruent to ∠ABC.

Proof. This is an “if and only if” statement, and that means that there are
two directions to prove.

=⇒ If ∠A′B′C′ is a right angle, then ∠A′B′C′ � ∠ABC.

⇐= If ∠A′B′C′ � ∠ABC, then ∠A′B′C′ is a right angle.

A

B

P

Q

P

Proof of existence by construction.
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=⇒ To start, let’s go ahead and mark a few more points so that we can
refer to the supplements of these angles. Mark the points

D on �BC� so that D∗B∗C and

D′ on �B′C′� so that D′ ∗B′ ∗C′.

Therefore ∠ABC and ∠ABD are a supplementary pair, as are ∠A′B′C′

and ∠A′B′D′. Now suppose that both ∠ABC and ∠A′B′C′ are right an-
gles. Thanks to the Angle Construction Axiom, it is possible to build a
congruent copy of ∠A′B′C′ on top of ∠ABC: there is a ray BA� � on
the same side of BC as A so that ∠A�BC � ∠A′B′C′. Earlier we proved
that the supplements of congruent angles are congruent, so that means
∠A�BD � ∠A′B′D′. How, though, does ∠A�BC compare to ∠ABC? If
BA� � and BA � are the same ray, then the angles are equal, meaning
that ∠ABC and ∠A′B′C′ are congruent– which is what we want. But what
happens if the two rays are not equal? In that case one of two things can
happen: either BA� � is in the interior of ∠ABC, or it is in the interior
of ∠ABD. Both of these cases are going to leads to essentially the same
problem, so let me just focus on the first one. In that case, A� is in the in-
terior of ∠ABC, so ∠A�BC ≺∠ABC, but A� is in the exterior of ∠ABD, so
∠A�BD � ∠ABD. That leads to a string of congruences and inequalities:

∠A′B′C′ � ∠A�BC ≺ ∠ABC � ∠ABD ≺ ∠A�BD � ∠A′B′D′.

Because of the transitivity of ≺ then, ∠A′B′C′ ≺ ∠A′B′D′. This can’t be–
those two supplements are supposed to be congruent. The second scenario
plays out in the same way, with � in place of ≺. Therefore BA� � and
BA� have to be the same ray, and so ∠A′B′C � ∠ABC.

⇐= The other direction is easier. Suppose that ∠A′B′C′ �∠ABC and that
∠ABC is a right angle. Let’s recycle the points D and D′ from the first
part of the proof. The angles ∠A′B′D′ and ∠ABD are supplementary to
congruent angles, so they too must be congruent. Therefore

∠A′B′C′ � ∠ABC � ∠ABD � ∠A′B′D′.

and so we can see that ∠A′B′C′ is congruent to its supplement– it must be
a right angle.

A

BD
C

Any two right angles are congruent: if one right angle were larger or 
smaller than another, it could not be congruent to its complement.

D
B

C

AA
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Therefore ∠ABC and ∠ABD are a supplementary pair, as are ∠A′B′C′

and ∠A′B′D′. Now suppose that both ∠ABC and ∠A′B′C′ are right an-
gles. Thanks to the Angle Construction Axiom, it is possible to build a
congruent copy of ∠A′B′C′ on top of ∠ABC: there is a ray BA� � on
the same side of BC as A so that ∠A�BC � ∠A′B′C′. Earlier we proved
that the supplements of congruent angles are congruent, so that means
∠A�BD � ∠A′B′D′. How, though, does ∠A�BC compare to ∠ABC? If
BA� � and BA � are the same ray, then the angles are equal, meaning
that ∠ABC and ∠A′B′C′ are congruent– which is what we want. But what
happens if the two rays are not equal? In that case one of two things can
happen: either BA� � is in the interior of ∠ABC, or it is in the interior
of ∠ABD. Both of these cases are going to leads to essentially the same
problem, so let me just focus on the first one. In that case, A� is in the in-
terior of ∠ABC, so ∠A�BC ≺∠ABC, but A� is in the exterior of ∠ABD, so
∠A�BD � ∠ABD. That leads to a string of congruences and inequalities:

∠A′B′C′ � ∠A�BC ≺ ∠ABC � ∠ABD ≺ ∠A�BD � ∠A′B′D′.

Because of the transitivity of ≺ then, ∠A′B′C′ ≺ ∠A′B′D′. This can’t be–
those two supplements are supposed to be congruent. The second scenario
plays out in the same way, with � in place of ≺. Therefore BA� � and
BA� have to be the same ray, and so ∠A′B′C � ∠ABC.

⇐= The other direction is easier. Suppose that ∠A′B′C′ �∠ABC and that
∠ABC is a right angle. Let’s recycle the points D and D′ from the first
part of the proof. The angles ∠A′B′D′ and ∠ABD are supplementary to
congruent angles, so they too must be congruent. Therefore

∠A′B′C′ � ∠ABC � ∠ABD � ∠A′B′D′.

and so we can see that ∠A′B′C′ is congruent to its supplement– it must be
a right angle.

A

BD
C

If an angle is congruent to a right angle, it is a right angle too.

D
B

C

A

With ≺ and � and with right angles as a point of comparison, we have a
way to classify non-right angles.

DEF: ACUTE AND OBTUSE
An angle is acute if it is smaller than a right angle. An angle is obtuse
if it is larger than a right angle.

Rays that form an obtuse 
angle with r.

Rays that form an acute 
angle with r.

r
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Exercises

1. Verify that the supplement of an acute angle is an obtuse angle and that
the supplement of an obtuse angle is an acute angle.

2. Prove that an acute angle cannot be congruent to an obtuse angle (and
vice versa).

3. Two intersecting lines are perpendicular if the angles formed at their
intersection are right angles. For any line � and point P, prove that
there is a unique line through P which is perpendicular to �. Note that
there are two scenarios: P may or may not be on �.

4. Consider two isosceles triangles with a common side: �ABC and �A′BC
with AB � AC and A′B � A′C. Prove that �AA′ � is perpendicular to
�BC�.

5. Two angles are complementary if together they form a right angle. That
is, if D is in the interior of a right angle ∠ABC, then ∠ABD and ∠DBC
are complementary angles. Prove that every acute angle has a com-
plement. Prove that if ∠ABC and ∠A′B′C′ are congruent acute angles,
then their complements are also congruent.

6. Verify that if �1 is perpendicular to �2 and �2 is perpendicular to �3,
then either �1 = �3, or �1 and �3 are parallel.
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ANGLE MEASURE
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In this lesson I am going to outline what you need to do to construct the de-
gree measurement system for angles. First, let’s talk notation. I think the
most common way to indicate the measure of an angle ∠ABC is to write
m(∠ABC). The advantage of that notation is that it draws a clear distinc-
tion between an angle and its measure. Of course, the disadvantage is that
it is cumbersome, and that any equation with lots of angles measures in
it will be cluttered up with m’s. At the other extreme, I have noticed that
students tend to just write the angle ∠ABC to indicate its measure. Sure, it
is just laziness, but I suppose you could pass it off as notational efficiency
as well. The obvious disadvantage of this approach is that it completely
blurs the distinction between an angle and its measure. I have tried to find
the middle ground between these two approaches and I write (∠ABC) to
denote the measure of ∠ABC. This notation is not perfect either. I think
the biggest problem is that it puts even more pressure on two of the most
overused symbols in mathematics, the parentheses.

Now lets talk about what you are going to want in a system of angle
measurement. Of course these expectations are going to closely mirror
expectations for measures of distance. They are

(1) The measure of an angle should be a positive real number.

(2) Congruent angles should have the same measure. That allows us to
focus our investigation on just the angles which are built off of one
fixed ray.

(3) If D is in the interior of ∠ABC, then

(∠ABC) = (∠ABD)+(∠DBC).

Therefore, since the measure of an angle has to be positive,

∠ABC ≺ ∠A′B′C′ =⇒ (∠ABC)< (∠A′B′C′)

∠ABC � ∠A′B′C′ =⇒ (∠ABC)> (∠A′B′C′).

It is your turn to develop a system of angle measure that will meet those
requirements. The first step is to establish the measurement of dyadic
angles. To do that, you will have to prove that it is possible to divide an
angle in half.
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DEF: ANGLE BISECTOR
For any angle ∠ABC, there is a unique ray BD � in the interior of
∠ABC so that ∠ABD � ∠DBC. This ray is called the angle bisector
of ∠ABC.

With segment length, everything begins with an arbitrary segment which
is assigned a length of one. With angle measure, everything begins with a
right angle which, in the degree measurement system, is assigned a mea-
sure of 90◦. From that, your next step is to describe the process of con-
structing angles with measures 90◦ · m/2n. Here you are going to run
into one fundamental difference between angles and segments– segments
can be extended arbitrarily, but angles cannot be put together to exceed a
straight angle. Therefore segments can be arbitrarily long, but all angles
must measure less than 180◦ (since a straight angle is made up of two
right angles). It is true that the unit circle in trigonometry shows how you
can loop back around to define angles with any real measure, positive or
negative, and that is a useful extension in some contexts, but it also cre-
ates some problems (the measure of an angle is not uniquely defined, for
instance).

Once you have figured out the dyadic angles, you need to fill in the
rest. You will want to use a limiting process just like I did in the segment
length chapter: this time the key word “interior” will replace the key word
“between.” Then you will want to turn the question around: for any real
number in the interval (0◦,180◦) is there an angle with that as its measure?
This is where I used the Dedekind Axiom before, by taking a limit of ap-
proximating dyadics, and then using the axiom to say that there is a point
at that limit. The problem for you is that the Dedekind Axiom applies only
to points on a line– it is not about angles (or at least not directly). Never-
theless, you need to find a way to set up approximating dyadic angles, and
then you need to find some way to make Dedekind’s Axiom apply in this
situation.

Finally, with angles measured in this way, you will need to verify the
additivity of angle measure:

THM: ANGLE ADDITION, THE MEASURED VERSION
If D is in the interior of ∠ABC, then (∠ABC) = (∠ABD)+(∠DBC).
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In this lesson we are going to take our newly created measurement sys-
tems, our rulers and our protractors, and see what we can tell us about
triangles. We will derive three of the most fundamental results of neutral
geometry: the Saccheri-Legendre Theorem, the Scalene Triangle Theo-
rem, and the Triangle Inequality.

The Saccheri-Legendre Theorem

The Saccheri-Legendre Theorem is a theorem about the measures of the
interior angles of a triangle. For the duration of this lesson, if �ABC is
any triangle, I will call

s(�ABC) = (∠A)+(∠B)+(∠C)

the angle sum of the triangle. As you probably know, in Euclidean ge-
ometry the angle sum of any triangle is 180◦. That is not necessarily the
case in neutral geometry, though, so we will have to be content with a less
restrictive (and less useful) condition.

THE SACCHERI LEGENDRE THEOREM
For any triangle �ABC, s(�ABC)≤ 180◦.

I will prove this result in three parts– two preparatory lemmas followed
by the proof of the main theorem.

Euclidean triangle non-Euclidean triangle not a neutral triangle
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Exterior Angle Th.
(∠ABC) < (∠BAD)

Supplements
∠BAC and ∠BAD

(∠BAC)+(∠ABC) < (∠BAC)+(∠BAD) = 180◦.

A

B

C
D

In this lesson we are going to take our newly created measurement sys-
tems, our rulers and our protractors, and see what we can tell us about
triangles. We will derive three of the most fundamental results of neutral
geometry: the Saccheri-Legendre Theorem, the Scalene Triangle Theo-
rem, and the Triangle Inequality.

The Saccheri-Legendre Theorem

The Saccheri-Legendre Theorem is a theorem about the measures of the
interior angles of a triangle. For the duration of this lesson, if �ABC is
any triangle, I will call

s(�ABC) = (∠A)+(∠B)+(∠C)

the angle sum of the triangle. As you probably know, in Euclidean ge-
ometry the angle sum of any triangle is 180◦. That is not necessarily the
case in neutral geometry, though, so we will have to be content with a less
restrictive (and less useful) condition.

THE SACCHERI LEGENDRE THEOREM
For any triangle �ABC, s(�ABC)≤ 180◦.

I will prove this result in three parts– two preparatory lemmas followed
by the proof of the main theorem.

LEMMA ONE
The sum of the measures of any two angles in a triangle is less than
180◦.

Proof. Let’s suppose that we are given a triangle �ABC and we want to
show that (∠A) + (∠B) < 180◦. First I need to label one more point:
choose D so that D∗A∗C. Then

(∠BAC)+(∠ABC)< (∠BAC)+(∠BAD) = 180◦.

Note that this means that a triangle cannot support more than one right or
obtuse angle– if a triangle has a right angle, or an obtuse angle, then the
other two angles have to be acute. That leads to some more terminology.

DEF: ACUTE, RIGHT, AND OBTUSE TRIANGLES
A triangle is acute if all three of its angles are acute. A triangle is
right if it has a right angle. A triangle is obtuse if it has an obtuse
angle.

Acute Right Obtuse

LEMMA ONE
The sum of the measures of any two angles in a triangle is less than
180◦.

Proof. Let’s suppose that we are given a triangle �ABC and we want to
show that (∠A) + (∠B) < 180◦. First I need to label one more point:
choose D so that D∗A∗C. Then

(∠BAC)+(∠ABC)< (∠BAC)+(∠BAD) = 180◦.

Note that this means that a triangle cannot support more than one right or
obtuse angle– if a triangle has a right angle, or an obtuse angle, then the
other two angles have to be acute. That leads to some more terminology.

DEF: ACUTE, RIGHT, AND OBTUSE TRIANGLES
A triangle is acute if all three of its angles are acute. A triangle is
right if it has a right angle. A triangle is obtuse if it has an obtuse
angle.
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The real key to this proof of the Saccheri-Legendre Theorem, the mecha-
nism that makes it work, is the second lemma.

LEMMA TWO
For any triangle �ABC, there is another triangle �A′B′C′ so that
1. s(�ABC) = s(�A′B′C′), and
2. (∠A′)≤ (∠A)/2.

Proof. This is a constructive proof: I am going to describe how to build
a triangle from �ABC that meets both of the requirements listed in the
theorem. First we are going to need to label a few more points:

D: the midpoint of BC,
E: on AD�, so that A∗D∗E and AD � DE.

My claim is that �ACE satisfies both of the conditions (1) and (2). Show-
ing that it does involves comparing angle measures, and with that in mind
I think it is helpful to abbreviate some of the angles:

∠1 for ∠BAD, ∠2 for ∠DAC, ∠3 for ∠DCE, and ∠4 for ∠ACD.

The key to showing that �ACE meets requirements (1) and (2) is the pair
of congruent triangles formed by carving away the overlap of �ABC and
�ACE. Notice that by S·A·S

BD �CD ∠BDA � ∠CDE DA � DE

so by S·A·S, �BDA � �CDE. Matching up the two remaining pairs of
angles in those triangles ∠1 � ∠E and ∠B � ∠3. Now let’s check those
two conditions.

The real key to this proof of the Saccheri-Legendre Theorem, the mecha-
nism that makes it work, is the second lemma.

LEMMA TWO
For any triangle �ABC, there is another triangle �A′B′C′ so that
1. s(�ABC) = s(�A′B′C′), and
2. (∠A′)≤ (∠A)/2.

Proof. This is a constructive proof: I am going to describe how to build
a triangle from �ABC that meets both of the requirements listed in the
theorem. First we are going to need to label a few more points:

D: the midpoint of BC,
E: on AD�, so that A∗D∗E and AD � DE.

My claim is that �ACE satisfies both of the conditions (1) and (2). Show-
ing that it does involves comparing angle measures, and with that in mind
I think it is helpful to abbreviate some of the angles:

∠1 for ∠BAD, ∠2 for ∠DAC, ∠3 for ∠DCE, and ∠4 for ∠ACD.

The key to showing that �ACE meets requirements (1) and (2) is the pair
of congruent triangles formed by carving away the overlap of �ABC and
�ACE. Notice that by S·A·S

BD �CD ∠BDA � ∠CDE DA � DE

so by S·A·S, �BDA � �CDE. Matching up the two remaining pairs of
angles in those triangles ∠1 � ∠E and ∠B � ∠3. Now let’s check those
two conditions.

A

B

1

2 3
4C

D

E

BD CD
∠BDA  ∠CDE

DA  DE BDA CDE
∠1  ∠E
∠B  ∠3
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Condition 1. For the first, all you have to do is compare the two angle
sums:

s(�ABC) = (∠A)+(∠B)+(∠4) = (∠1)+(∠2)+(∠B)+(∠4)
s(�ACE) = (∠2)+(∠ACE)+(∠E) = (∠2)+(∠3)+(∠4)+(∠E).

Sure enough, they are the same.

Condition 2. The second part is a little devious, because I can’t tell you
which angle of �ACE will end up being ∠A′. What I can say, though, is
that

(∠BAC) = (∠1)+(∠2) = (∠E)+(∠2).

Therefore it isn’t possible for both ∠E and ∠2 to measure more than
(∠BAC)/2. Let ∠A′ be the smaller of the two (or just choose one if they
are both the same size).

Now we can combine those two lemmas into a proof of the Saccheri-
Legendre Theorem itself.

Proof. Suppose that there is a triangle �ABC whose angle sum is more
than 180◦. In order to keep track of that excess, write

s(�ABC) = (180+ x)◦.

Now let’s iterate! According to Lemma 2, there is a triangle

�A1B1C1 with the same angle sum but (∠A1)≤ 1
2(∠A);

�A2B2C2 with the same angle sum but (∠A2)≤ 1
2(∠A1)≤ 1

4(∠A);

�A3B3C3 with the same angle sum but (∠A3)≤ 1
2(∠A2)≤ 1

8(∠A);

s(ABC) = (∠A)+(∠B)+(∠4) = (∠1)+(∠2)+(∠B)+(∠4)

s(ACE) = (∠2)+(∠ACE)+(∠E) = (∠2)+(∠3)+(∠4)+(∠E).

Condition 1. For the first, all you have to do is compare the two angle
sums:

s(�ABC) = (∠A)+(∠B)+(∠4) = (∠1)+(∠2)+(∠B)+(∠4)
s(�ACE) = (∠2)+(∠ACE)+(∠E) = (∠2)+(∠3)+(∠4)+(∠E).

Sure enough, they are the same.

Condition 2. The second part is a little devious, because I can’t tell you
which angle of �ACE will end up being ∠A′. What I can say, though, is
that

(∠BAC) = (∠1)+(∠2) = (∠E)+(∠2).

Therefore it isn’t possible for both ∠E and ∠2 to measure more than
(∠BAC)/2. Let ∠A′ be the smaller of the two (or just choose one if they
are both the same size).

Now we can combine those two lemmas into a proof of the Saccheri-
Legendre Theorem itself.

Proof. Suppose that there is a triangle �ABC whose angle sum is more
than 180◦. In order to keep track of that excess, write

s(�ABC) = (180+ x)◦.

Now let’s iterate! According to Lemma 2, there is a triangle

�A1B1C1 with the same angle sum but (∠A1)≤ 1
2(∠A);

�A2B2C2 with the same angle sum but (∠A2)≤ 1
2(∠A1)≤ 1

4(∠A);

�A3B3C3 with the same angle sum but (∠A3)≤ 1
2(∠A2)≤ 1

8(∠A);

Starting from an equilateral triangle, the first three iterations.

1 2 3
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After going through this procedure n times, we will end up with a tri-
angle �AnBnCn whose angle sum is still (180+x)◦ but with one very tiny
angle– (∠An)≤ 1

2n (∠A). No matter how big ∠A is or how small x is, there
is a large enough value of n so that 1

2n (∠A)< x. In that case, the remaining
two angles of the triangle ∠Bn and ∠Cn have to add up to more than 180◦.
According to Lemma 1, this cannot happen. Therefore there cannot be a
triangle with an angle sum over 180◦.

The Scalene Triangle Theorem

The Scalene Triangle Theorem relates the measures of the angles of trian-
gle to the measures of its sides. Essentially, it guarantees that the largest
angle is opposite the longest side and that the smallest angle is opposite
the shortest side. More precisely

THM: SCALENE TRIANGLE THEOREM
In �ABC suppose that |BC|> |AC|. Then (∠BAC)> (∠ABC).

Proof. With the results we have established so far, this is an easy one.
We need to draw an isosceles triangle into �ABC and that requires one
additional point. Since |BC| > |AC|, there is a point D between B and C
so that CA �CD. Then

(∠BAC)> (∠DAC) = (∠ADC)> (∠ABC).

Isosceles Triangle Th. Exterior Angle Th.

A

B CD

(∠BAC) > (∠DAC) = (∠ADC) > (∠ABC).

D is in the interior
of ∠BAC.

After going through this procedure n times, we will end up with a tri-
angle �AnBnCn whose angle sum is still (180+x)◦ but with one very tiny
angle– (∠An)≤ 1

2n (∠A). No matter how big ∠A is or how small x is, there
is a large enough value of n so that 1

2n (∠A)< x. In that case, the remaining
two angles of the triangle ∠Bn and ∠Cn have to add up to more than 180◦.
According to Lemma 1, this cannot happen. Therefore there cannot be a
triangle with an angle sum over 180◦.

The Scalene Triangle Theorem

The Scalene Triangle Theorem relates the measures of the angles of trian-
gle to the measures of its sides. Essentially, it guarantees that the largest
angle is opposite the longest side and that the smallest angle is opposite
the shortest side. More precisely

THM: SCALENE TRIANGLE THEOREM
In �ABC suppose that |BC|> |AC|. Then (∠BAC)> (∠ABC).

Proof. With the results we have established so far, this is an easy one.
We need to draw an isosceles triangle into �ABC and that requires one
additional point. Since |BC| > |AC|, there is a point D between B and C
so that CA �CD. Then

(∠BAC)> (∠DAC) = (∠ADC)> (∠ABC).

After going through this procedure n times, we will end up with a tri-
angle �AnBnCn whose angle sum is still (180+x)◦ but with one very tiny
angle– (∠An)≤ 1

2n (∠A). No matter how big ∠A is or how small x is, there
is a large enough value of n so that 1

2n (∠A)< x. In that case, the remaining
two angles of the triangle ∠Bn and ∠Cn have to add up to more than 180◦.
According to Lemma 1, this cannot happen. Therefore there cannot be a
triangle with an angle sum over 180◦.

The Scalene Triangle Theorem

The Scalene Triangle Theorem relates the measures of the angles of trian-
gle to the measures of its sides. Essentially, it guarantees that the largest
angle is opposite the longest side and that the smallest angle is opposite
the shortest side. More precisely

THM: SCALENE TRIANGLE THEOREM
In �ABC suppose that |BC|> |AC|. Then (∠BAC)> (∠ABC).

Proof. With the results we have established so far, this is an easy one.
We need to draw an isosceles triangle into �ABC and that requires one
additional point. Since |BC| > |AC|, there is a point D between B and C
so that CA �CD. Then

(∠BAC)> (∠DAC) = (∠ADC)> (∠ABC).
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The Triangle Inequality

The Triangle Inequality deals with the lengths of the three sides of a trian-
gle, providing upper and lower bounds for one side in terms of the other
two. This is one of the results that has escaped the confines of neutral ge-
ometry, though, and you will see triangle inequalities in various disguises
is many different areas of math.

THM: THE TRIANGLE INEQUALITY
In any triangle �ABC, the length of side AC is bounded above and
below by the lengths of AB and BC:

||AB|− |BC||< |AC|< |AB|+ |BC|.

Proof. The second inequality is usually what people think of when they
think of the Triangle Inequality, and that’s the one that I am going to prove.
I will leave the proof of the first inequality to you. The second inequal-
ity is obviously true if AC isn’t the longest side of the triangle, so let’s
focus our attention on the only really interesting case– when AC is the
longest side. As in the proof of the Scalene Triangle Theorem, we are
going to build an isosceles triangle inside �ABC. To do that, label D
between A and C so that AD � AB. According to the Isosceles Triangle
Theorem, ∠ADB � ∠ABD. Thanks to the Saccheri-Legendre Theorem,
we now know that these angles can’t both be right or obtuse, so they have
to be acute. Therefore, ∠BDC, which is supplementary to ∠ADB, is ob-
tuse. Again, the Saccheri-Legendre Theorem: the triangle �BDC will
only support one obtuse angle, so ∠BDC has to be the largest angle in that
triangle. According to the Scalene Triangle Theorem, BC has to be the
longest side of �BDC. Hence |DC|< |BC|. Now let’s put it together

|AC|= |AD|+ |DC|< |AB|+ |BC|.

B

A CD In ABD, ∠B and ∠D are congruent,
so they must be acute.
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For proper triangles, the Triangle Inequality promises strict inequalities–
< instead of ≤. When the three points A, B and C collapse into a straight
line, they no longer form a proper triangle, and that is when the inequali-
ties become equalities:

if C ∗A∗B, then |AC|= |BC|− |AB|;
if A∗C ∗B, then |AC|= |AB|− |BC|;
if A∗B∗C, then |AC|= |AB|+ |BC|.

The Triangle Inequality

The Triangle Inequality deals with the lengths of the three sides of a trian-
gle, providing upper and lower bounds for one side in terms of the other
two. This is one of the results that has escaped the confines of neutral ge-
ometry, though, and you will see triangle inequalities in various disguises
is many different areas of math.

THM: THE TRIANGLE INEQUALITY
In any triangle �ABC, the length of side AC is bounded above and
below by the lengths of AB and BC:

||AB|− |BC||< |AC|< |AB|+ |BC|.

Proof. The second inequality is usually what people think of when they
think of the Triangle Inequality, and that’s the one that I am going to prove.
I will leave the proof of the first inequality to you. The second inequal-
ity is obviously true if AC isn’t the longest side of the triangle, so let’s
focus our attention on the only really interesting case– when AC is the
longest side. As in the proof of the Scalene Triangle Theorem, we are
going to build an isosceles triangle inside �ABC. To do that, label D
between A and C so that AD � AB. According to the Isosceles Triangle
Theorem, ∠ADB � ∠ABD. Thanks to the Saccheri-Legendre Theorem,
we now know that these angles can’t both be right or obtuse, so they have
to be acute. Therefore, ∠BDC, which is supplementary to ∠ADB, is ob-
tuse. Again, the Saccheri-Legendre Theorem: the triangle �BDC will
only support one obtuse angle, so ∠BDC has to be the largest angle in that
triangle. According to the Scalene Triangle Theorem, BC has to be the
longest side of �BDC. Hence |DC|< |BC|. Now let’s put it together

|AC|= |AD|+ |DC|< |AB|+ |BC|.

B

A CD In BCD, ∠D is obtuse, so it is the largest
angle. Opposite it, BC is the longest side.
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Exercises

1. Prove the converse of the Scalene Triangle Theorem: in �ABC, if
(∠BAC)> (∠ABC) then |BC|> |AC|.

2. Prove the other half of the triangle inequality.

3. Given a triangle �ABC, consider the interior and exterior angles at a
vertex, say vertex A. Prove that the bisectors of those two angles are
perpendicular.

4. Prove that for any point P and line �, there are points on � which are
arbitrarily far away from �.

5. Prove that equilateral triangles exist in neutral geometry (that is, de-
scribe a construction that will yield an equilateral triangle). Note that
all the interior angles of an equilateral triangle will be congruent, but
you don’t know that the measures of those interior angles is 60◦.

6. Prove a strengthened form of the Exterior Angle Theorem: for any
triangle, the measure of an exterior angle is greater than or equal to the
sum of the measures of the two nonadjacent interior angles.

7. Prove that if a triangle is acute, then the line which passes through a
vertex and is perpendicular to the opposite side will intersect that side
(the segment, that is, not just the line containing the segment).

Recall that SSA is not a valid triangle congruence theorem. If you
know just a little bit more about the triangles in question, though, SSA
can be enough to prove triangles congruent. The next questions look at
some of those situations.

8. In a right triangle, the side opposite the right angle is called the hy-
potenuse. By the Scalene Triangle Theorem, it is the longest side of
the triangle. The other two sides are called the legs of the triangle.
Consider two right triangles �ABC and �A′B′C′ with right angles at
C and C′, respectively. Suppose in addition that

AB � A′B′ & AC � A′C′
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(the hypotenuses are congruent, as are one set of legs). Prove that
�ABC � �A′B′C′. This is the H·L congruence theorem for right tri-
angles.

9. Suppose that �ABC and �A′B′C′ are acute triangles and that

AB � A′B′ BC � B′C′ ∠C � ∠C′.

Prove that �ABC ��A′B′C′.

10. Consider triangles �ABC and �A′B′C′ with

AB � A′B′ BC � B′C′ ∠C � ∠C′.

Suppose further that |AB|> |BC|. Prove that �ABC ��A′B′C′.

References

The proof that I give for the Saccheri-Legendre Theorem is the one I
learned from Wallace and West’s book [1].

[1] Edward C. Wallace and Stephen F. West. Roads to Geometry. Pearson
Education, Inc., Upper Saddle River, New Jersey, 3rd edition, 2004.
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We have spent a lot of time talking about triangles, and I certainly do not
want to give the impression that we are done with them, but in this lesson
I would like to broaden the focus a little bit, and to look at polygons with
more than three sides.

Definitions

Of course the first step is to get a working definition for the term polygon.
This may not be as straightforward as you think. Remember the definition
of a triangle? Three non-colinear points P1, P2, and P3 defined a triangle.
The triangle itself consisted of all the points on the segments P1P2, P2P3,
and P3P1. At the very least, a definition of a polygon (as we think of them)
involves a list of points and segments connecting each point to the next in
the list, and then the last point back to the first:

The Vertices: P1, P2, P3, . . . , Pn

The Sides: P1P2, P2P3, P3P4, . . . , Pn−1Pn, PnP1.

Now the one problem is this– what condition do you want to put on those
points? With triangles, we insisted that the three points be non-colinear.
What is the appropriate way to extend that beyond n = 3? This is not an
easy question to answer. To give you an idea of some of the potential
issues, let me draw a few configurations of points.

Which of these do you think should be considered octagons (polygons
with eight sides and eight vertices)?
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While you are mulling over that question, let me distract you by talking
about notation. No matter what definition of polygon you end up using,
your vertices will cycle around: P1, P2, . . . , Pn and then back to the start P1.
Because polygons do loop back around like this, sometimes you end up
crossing from Pn back to P1. For example, look at the listing of the sides of
the polygon– all but one of them can be written in the form PiPi+1, but the
last side, PnP1, doesn’t fit that pattern. A proof involving the sides would
have to go out of its way to be sure to mention that last side, and that is
just not going to be very elegant. After all, other than the notation, the last
side is not any different from the previous sides– it really should not need
its own case. Fortunately, there is an easy way to sidestep this issue. What
we can do is make our subscripts cycle just like the points do. Rather than
using integer subscripts for the vertices, use integers modulo n (where n
is the number of vertices). That way, for instance, in a polygon with eight
vertices, P9 and P1 would stand for the same point since 9 ∼= 1 mod 8, and
the sides of the polygon would be PiPi+1 for 1 ≤ i ≤ 8.

Now let’s get back to the question of a definition. As I said at the start of
the lesson, I think that there is still a spectrum of opinion on how a poly-
gon should be defined. Some geometers (such as Grünbaum in Are your
polyhedra the same as my polyhedra [2]) will tell you that any ordered list-
ing of n points should define a polygon with n vertices and n sides. This
includes listings where some or even all points are colinear or coinciding
and can therefore can lead to some unexpected configurations: a six-sided
polygon that appears to have only three sides, a triangle that looks like a
line segment, a four-sided polygon that looks like a point. If you can get
past the initial strangeness, though, there is definitely something to be said
for this all-inclusive approach: for one thing, you never have to worry that
moving points around would cause (for instance) your four-sided polygon
to no longer be a four-sided polygon. This liberal definition would go
something like this:
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DEF: POLYGON (INCLUSIVE VERSION)
Any ordered list of points {Pi|1 ≤ i ≤ n} defines a polygon, written
P1P2 · · ·Pn, with vertices Pi, 1 ≤ i ≤ n, and sides PiPi+1, 1 ≤ i ≤ n.

Other geometers like to put a few more restrictions on their polygons. I
suspect that the most common objections to this all-inclusive definition
would be:

(1) This collapsing of the vertices down to a single point or a single line
as shown in illustrations (vii) and (viii) is unacceptable– polygons
should have a two-dimensionality to them.

(2) The edges of a polygon should not trace back over one another
as shown in illustrations (v) and (vi)– at most two edges should
intersect each other once.

(3) On the topic of intersecting edges, only consecutive edges should
meet at a vertex. Configurations such as the one shown in illustra-
tion (iv) do not define a single polygon, but rather several polygons
joined together.

I don’t know to what extent these added restrictions are historical con-
ventions and to what extent they are truly fundamental to proving results
on polygons. Let me point out though, that this all-inclusive definition
doesn’t quite work with our previous definition of a triangle: three colinear
points would define a three-sided polygon, but not a triangle. Somehow,
that just does not seem right. Were we to now to go back and liberalize
our definition of a triangle to include these remaining three-sided poly-
gons, it would cost us some theorems. For instance, neither A·S·A nor
A·A·S would work in the case when all three vertices are colinear. So for
that reason, let me also give a more restrictive definition of polygon that
addresses the three concerns listed above.

i ii iii iv v vi vii viii

exclusivesimple
inclusive
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DEF: POLYGON (EXCLUSIVE VERSION)
Any ordered list of points {Pi|1 ≤ i ≤ n} which satisfies the condi-
tions

(1) no three consecutive points Pi, Pi+1, and Pi+2 are colinear;
(2) if i �= j, then PiPi+1 and PjPj+1 share at most one point;
(3) if Pi = Pj, then i = j;

defines a polygon, written P1P2 · · ·Pn, with vertices Pi, 1 ≤ i ≤ n, and
sides PiPi+1, 1 ≤ i ≤ n.

The crux of it is this: too liberal a definition and you are going to have to
make exceptions and exclude degenerate cases; too conservative a defini-
tion and you end up short-changing your results by not expressing them at
their fullest generality. After all of that, though, I have to say that I’m just
not that worried about it, because for the most part, the polygons that we
usually study are more specialized than either of those definitions– they
are what are called simple polygons. You see, even in the more “exclu-
sive” definition, the segments of a polygon are permitted to criss-cross
one another. In a simple polygon, that type of behavior is not tolerated.

DEF: SIMPLE POLYGON
Any ordered list of points {Pi|1 ≤ i ≤ n} which satisfies the condi-
tions

(1) no three consecutive points Pi, Pi+1, and Pi+2 are colinear;
(2) if i �= j and PiPi+1 intersects PjPj+1 then either i = j + 1 and
the intersection is at Pi = Pj+1 or j = i+ 1 and the intersection is at
Pi+1 = Pj;

defines a simple polygon, written P1P2 · · ·Pn, with vertices Pi, 1 ≤ i ≤
n, and sides PiPi+1, 1 ≤ i ≤ n.

i ii iii iv v vi vii viii

exclusivesimple
inclusive
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No matter how you choose to define a polygon, the definition of one im-
portant invariant of a polygon does not change:

DEF: PERIMETER
The perimeter P of a polygon is the sum of the lengths of its sides:

P =
n

∑
i=1

|PiPi+1|.

Counting polygons

Two polygons are the same if they have the same vertices and the same
edges. That means that the order that you list the vertices generally does
matter– different orders can lead to different sets of sides. Not all rear-
rangements of the list lead to new polygons though. For instance, the
listings P1P2P3P4 and P3P4P1P2 and P4P3P2P1 all define the same polygon:
one with sides P1P2, P2P3, P3P4 and P4P1. More generally, any two listings
which differ either by a cycling of the vertices or by a reversal of the order
of one of those cyclings will describe the same polygon.

Names of polygons based upon the number of sides (and vertices).

6 hexagon

pentagonenneagon

octagon

heptagon

triangle

quadrilateraldecagon

8

4

3

7

59

10
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So how many possible polygons are there on n points? That depends
upon what definition of polygon you are using. The most inclusive def-
inition of polygon leads to the easiest calculation, for in that case, any
configuration on n points results in a polygon. As you probably know
from either probability or group theory, there are n! possible orderings
of n distinct elements. However for each such list there are n cyclings
of the entries and n reversals of those cyclings, leading to a total of 2n
listings which all correspond to the same polygon. Therefore, there are
n!/(2n) = (n− 1)!/2 possible polygons that can be built on n vertices.
Notice that when n = 3, there is only one possibility, and that is why none
of this was an issue when we were dealing with triangles.

The 24 permutations of 1, 2, 3, 4 and the corresponding polygons on four points.

4321
1432
2143
3214

1234
2341
3412
4123

3421
1342
4213
2134

1243
2431
3124
4312

4231
3142
1423
2314

1324
2413
3241
4132

1

3

2 4

1

3

2 4

1

3

2 4

The 12 polygons on a configuration of five points. In this illustration, segments 
connect two polygons which differ by a swap of two adjacent vertices.
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If instead you are using the more exclusive definition of a polygon, then
things are a bit more complicated. If the vertices are in “general position”
so that any combination of segments PiPj satisfies the requirements out-
lined in that definition, then there are just as many exclusive polygons as
inclusive polygons: (n−1)!/2. Probabilistically, it is most likely that any
n points will be in such a general position, but it is also true that as n
grows, the number of conditions required to attain this general position
increases quite rapidly. Even less understood is the situation for simple
polygons. The condition of simplicity throws the problem from the rela-
tively comfortable world of combinatorics into a much murkier geometric
realm.

Interiors and exteriors

One characteristic of the triangle is that it chops the rest of the plane into
two sets, an interior and an exterior. It isn’t so clear how to do that with
a polygon (this is particularly true if you are using the inclusive definition
of the tem, but to a lesser extent is still true with the exclusive definition).
Simple polygons, though, do separate the plane into interior and exterior.
This is in fact a special case of the celebrated Jordan Curve Theorem,
which states that every simple closed curve in the plane separates the plane
into an interior and an exterior. The Jordan Curve Theorem is one of those
notorious results that seems like you could knock out in an afternoon, but
is actually brutally difficult. In the special case of simple polygons, our
case, there are simpler proofs. I am going to describe the idea behind one
such proof from What is Mathematics? by Courant and Robbins [1].

Thirteen of the sixty polygons on this configuration of six points are simple.
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THM: POLYGONAL PLANE SEPARATION
Every simple polygon separates the remaining points of the plane
into two connected regions.

Proof. Let P be a simple polygon, and let p be a point which is not on
P . Now let’s look at a ray Rp whose endpoint is p. As long as Rp does not
run exactly along an edge, it will intersect the edges of P a finite number
of times (perhaps none). You want to think of each such intersection as a
crossing of Rp into or out of P .

Since there are only finitely many intersections, they are all within a
finite distance of P. That means that eventually Rp will pass beyond all
the points of P . This is the essence of this argument: eventually the ray
is outside of the polygon, so by counting back the intersections crossing
into and out of the polygon, we can figure out whether the beginning of
the ray, P is inside or outside of P . The one situation where we have to
be a little careful is when Rp intersects a vertex of P . Here is the way to
count those intersections:

{
once if Rp separates the two neighboring edges;
twice if Rp does not separate them.

5 1

3

3

Rays from a point. The 
number of intersections 
with a polygon (in black) 
depends upon which ray is 
chosen, but the parity 
(even or odd) does not.

2 4

2
4

Procedure for counting 
intersections at a vertex.

+1 +2
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Now when you count intesections this way, the number of intersections
depends not just upon the point p, but also upon the of direction of Rp.
The key, though, is that there is one thing which does not depend upon the
direction– whether the number of intersections is odd or even, the “par-
ity” of p. To see why, you have to look at what happens as you move
the ray Rp around, and in particular what causes the number of intersec-
tions to change. Without giving overly detailed explanation, changes can
only happen when Rp crosses one of the vertices of P . Each such vertex
crossing corresponds to either an increase in 2 in the number of crossings,
a decrease by 2 in the number of crossings, or no change in the number of
crossings. In each case, the parity is not changed. Therefore P separates
the remaining points of the plane into two sets– those with even parity and
those with odd parity. Furthermore, each of those sets is connected in the
sense that by tracing just to one side of the edges of P , it is possible to lay
out a path of line segments connecting any two points with even parity, or
any two points with odd parity.

DEF: POLYGON INTERIOR AND EXTERIOR
For any simple polygon P , the set of points with odd parity (as de-
scribed in the last proof) is called the interior of P . The set of points
with even parity is called the exterior of P .

I will leave it to you to prove the intuitively clear result: that a polygon’s
interior is always a bounded region and that its exterior is always an un-
bounded region.

Now when you count intesections this way, the number of intersections
depends not just upon the point p, but also upon the of direction of Rp.
The key, though, is that there is one thing which does not depend upon the
direction– whether the number of intersections is odd or even, the “par-
ity” of p. To see why, you have to look at what happens as you move
the ray Rp around, and in particular what causes the number of intersec-
tions to change. Without giving overly detailed explanation, changes can
only happen when Rp crosses one of the vertices of P . Each such vertex
crossing corresponds to either an increase in 2 in the number of crossings,
a decrease by 2 in the number of crossings, or no change in the number of
crossings. In each case, the parity is not changed. Therefore P separates
the remaining points of the plane into two sets– those with even parity and
those with odd parity. Furthermore, each of those sets is connected in the
sense that by tracing just to one side of the edges of P , it is possible to lay
out a path of line segments connecting any two points with even parity, or
any two points with odd parity.

DEF: POLYGON INTERIOR AND EXTERIOR
For any simple polygon P , the set of points with odd parity (as de-
scribed in the last proof) is called the interior of P . The set of points
with even parity is called the exterior of P .

I will leave it to you to prove the intuitively clear result: that a polygon’s
interior is always a bounded region and that its exterior is always an un-
bounded region.

As the ray shifts across a vertex, the intersection count changes by +2, -2, or 0, 
all even numbers.

+2 –2 +0
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Interior angles: two dilemmas

Now I want to talk a little bit about the interior angles of a simple poly-
gon. If you would, please look at the three marked angles in the polygons
above. The first, ∠1 is the interior angle of a triangle. You can see that the
entire interior of the triangle is contained in the interior of the angle, and
that seems proper, that close connection between the interiors of the inte-
rior angles and the interior of the triangle. Now look at ∠2, and you can
see that for a general simple polygon, things do not work quite as well:
the entire polygon does not lie in the interior of this angle. But at least the
part of the polygon interior which is closest to that vertex is in the interior
of that angle. Finally look at ∠3: the interior of ∠3 encompasses exactly
none of the interior of the polygon– it is actually pointing away from the
polygon.

Let me address the issue surrounding ∠3 first. We have said that two
non-opposite rays define a single angle, and later established a measure for
that angle– some number between 0 and 180◦. But really, two rays like this
divide the plane into two regions, and correspondingly, they should form
two angles. One is the proper angle which we have already dealt with. The
other angle is what is called a reflex angle. Together, the measures of the
proper angle and the reflex angle formed by any two rays should add up to
360◦. There does not seem to be a standard bit of terminology to describe
this relationship between angles; I have seen the term “conjugate” as well
as the term “explementary”. So the problem with ∠3 is that the interior
angle isn’t the proper angle, but instead, that it is its explement.

Now as long as the polygon is fairly simple (no pun intended) this is all
fairly clear, but suppose that we were looking at an angle ∠Pi in a much
more elaborate polygon. Should the interior angle at Pi be the proper angle
∠Pi−1PiPi+1 or its conjugate? Well, to answer that question, you need to
look at the segment Pi−1Pi+1. It may cross into and out of the interior of
the polygon, but if the interior angle is the proper angle, then the first and
last points of Pi−1Pi+1 (the ones closest to Pi−1 and Pi+1) will be in the
interior of the polygon. If the interior angle is the reflex angle, then the
first and last points of Pi−1Pi+1 won’t be in the interior of the polygon.

With the interior angles of a polygon now properly accounted for, we
can define what it means for two polygons to be congruent.

Angle interiors and polygon interiors.

1 2 3

(proper) angleReflex angle

A pair of explementary angles.
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DEF: POLYGON CONGRUENCE
Two polygons P = P1P2 · · ·Pn and Q = Q1Q2 · · ·Qn are congruent,
written P �Q if all corresponding sides and interior angles are con-
gruent:

PiPi+1 � QiQi+1 & ∠Pi � ∠Qi, for all i.

Now let’s take a look at ∠2, where not all of the interior of the polygon lies
in the interior of the angle. The problem here is a little bit more intrinsic–
I don’t think you are going to be able to get around this one by fiddling
with definitions (well, not at least without making a lot of questionable
compromises). There is, though, a class of simple polygon for which the
polygon interior always lies in the interior of each interior angle. These
are the convex polygons.

Interior angles: two dilemmas

Now I want to talk a little bit about the interior angles of a simple poly-
gon. If you would, please look at the three marked angles in the polygons
above. The first, ∠1 is the interior angle of a triangle. You can see that the
entire interior of the triangle is contained in the interior of the angle, and
that seems proper, that close connection between the interiors of the inte-
rior angles and the interior of the triangle. Now look at ∠2, and you can
see that for a general simple polygon, things do not work quite as well:
the entire polygon does not lie in the interior of this angle. But at least the
part of the polygon interior which is closest to that vertex is in the interior
of that angle. Finally look at ∠3: the interior of ∠3 encompasses exactly
none of the interior of the polygon– it is actually pointing away from the
polygon.

Let me address the issue surrounding ∠3 first. We have said that two
non-opposite rays define a single angle, and later established a measure for
that angle– some number between 0 and 180◦. But really, two rays like this
divide the plane into two regions, and correspondingly, they should form
two angles. One is the proper angle which we have already dealt with. The
other angle is what is called a reflex angle. Together, the measures of the
proper angle and the reflex angle formed by any two rays should add up to
360◦. There does not seem to be a standard bit of terminology to describe
this relationship between angles; I have seen the term “conjugate” as well
as the term “explementary”. So the problem with ∠3 is that the interior
angle isn’t the proper angle, but instead, that it is its explement.

Now as long as the polygon is fairly simple (no pun intended) this is all
fairly clear, but suppose that we were looking at an angle ∠Pi in a much
more elaborate polygon. Should the interior angle at Pi be the proper angle
∠Pi−1PiPi+1 or its conjugate? Well, to answer that question, you need to
look at the segment Pi−1Pi+1. It may cross into and out of the interior of
the polygon, but if the interior angle is the proper angle, then the first and
last points of Pi−1Pi+1 (the ones closest to Pi−1 and Pi+1) will be in the
interior of the polygon. If the interior angle is the reflex angle, then the
first and last points of Pi−1Pi+1 won’t be in the interior of the polygon.

With the interior angles of a polygon now properly accounted for, we
can define what it means for two polygons to be congruent.

The dark region shows the 
polygon interior around a 
vertex. In (1), the connecting 
segment begins in the interior, 
so the interior angle is the 
proper angle. In (2), the 
connecting segment begins in 
the exterior, so the interior 
angle is the reflex angle.(1) (2)
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DEF: CONVEX POLYGON
A polygon P is convex if, for any two points p and q in the interior
of P , the entire line segment pq is in the interior of P .

Convexity is a big word in geometry and it comes up in a wide variety of
contexts. Our treatment here will be very elementary, and just touch on
the most basic properties of a convex polygon.

THM: CONVEXITY 1
If P = P1P2 · · ·Pn is a convex polygon, then all the points of the
interior of P lie on the same side of each of the lines PiPi+1.

Proof. The fundamental mechanism that makes this proof work is the way
that we defined the interior and exterior of a polygon by drawing a ray out
and counting how many times it intersects the sides of P . Suppose that
P and Q lie on opposite sides of a segment PiPi+1, so that PQ intersects
PiPi+1. Suppose further that PQ intersects no other sides of the polygon.
Then the ray PQ� will intersect P one more time than the ray (QP�)op.
Therefore P and Q will have different parities, and so one of P and Q will
be an interior point and the other an exterior point.

A (1) convex and (2) a non- 
convex polygon. In the second, 
a segment joins two points in 
the interior, but passes outside 
of the polygon.

(1) (2)

A single side of the polygon comes between P and Q– one must be outside and 
one must be inside.

QP
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Now on to the proof, a proof by contradiction. Suppose that both P and
Q are in the interior of a convex polygon, but that they are on the opposite
sides of �PiPi+1�. After the previous discussion, it is tempting to draw a
picture that looks like

In that case, only one of R1, R2 can be in the interior of P and so
P can’t be convex and we have our contradiction. But that misses an
important (and indeed likely) scenario– the one in which PQ intersects
the line �PiPi+1 � but not the segment PiPi+1. To deal with that scenario,
we are going to have to maneuver the intersection so that it does occur on
the segment, which requires a bit more delicate argument.

Choose a point X which is between Pi and Pi+1. We will relay the
interior/exterior information from P and Q back to points which are in
close proximity to X . Choose points R1, R2, S1 and S2 so that

P∗R1 ∗X ∗R2 Q∗S1 ∗X ∗S2.

In addition, we want to make sure that these points are so close together
that none of the other sides of P get in the way, so we will require (1)
R1S1 does intersect the side PiPi+1, but that (2) none of the edges other
than PiPi+1 comes between any two of these points. A polygon only has
finitely many edges, so yes, it is possible to do this. Then R1 and R2 lie
on different sides of the segment PiPi+1, so one is in the interior and one
is in the exterior. Suppose that R2 is the interior point. Then, since P is
convex, and R1 is between two interior points P and R2, R1 must also be an
interior point. Since R1 and R2 cannot both be interior points, that means
that R1 is the interior point. Applying a similar argument to Q, S1 and S2,
you can show that S1 must also be an interior point. But now R1 and S1 are
on opposite sides of PiPi+1, so they cannot both be interior points. This is
the contradiction.

There are a couple immediate corollaries of this– I am going to leave the
proofs of both of these to you.

THM: CONVEXITY 2
If P is a convex polygon, then the interior of P lies in the interior
of each interior angle ∠Pi.

THM: CONVEXITY 3
If P is a convex polygon, then each of its interior angles is a proper
angle, not a reflex angle.

QP R1 R2

Pi

Pi+1

Q
Q

P P

Pi

Pi+1

X
R1

R2S2

S1
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In that case, only one of R1, R2 can be in the interior of P and so
P can’t be convex and we have our contradiction. But that misses an
important (and indeed likely) scenario– the one in which PQ intersects
the line �PiPi+1 � but not the segment PiPi+1. To deal with that scenario,
we are going to have to maneuver the intersection so that it does occur on
the segment, which requires a bit more delicate argument.

Choose a point X which is between Pi and Pi+1. We will relay the
interior/exterior information from P and Q back to points which are in
close proximity to X . Choose points R1, R2, S1 and S2 so that

P∗R1 ∗X ∗R2 Q∗S1 ∗X ∗S2.

In addition, we want to make sure that these points are so close together
that none of the other sides of P get in the way, so we will require (1)
R1S1 does intersect the side PiPi+1, but that (2) none of the edges other
than PiPi+1 comes between any two of these points. A polygon only has
finitely many edges, so yes, it is possible to do this. Then R1 and R2 lie
on different sides of the segment PiPi+1, so one is in the interior and one
is in the exterior. Suppose that R2 is the interior point. Then, since P is
convex, and R1 is between two interior points P and R2, R1 must also be an
interior point. Since R1 and R2 cannot both be interior points, that means
that R1 is the interior point. Applying a similar argument to Q, S1 and S2,
you can show that S1 must also be an interior point. But now R1 and S1 are
on opposite sides of PiPi+1, so they cannot both be interior points. This is
the contradiction.

There are a couple immediate corollaries of this– I am going to leave the
proofs of both of these to you.

THM: CONVEXITY 2
If P is a convex polygon, then the interior of P lies in the interior
of each interior angle ∠Pi.

THM: CONVEXITY 3
If P is a convex polygon, then each of its interior angles is a proper
angle, not a reflex angle.

Polygons of note

To finish this chapter, I want to mention a few particularly well-behaved
types of polygons.

TYPES OF POLYGONS
An equilateral polygon is one in which all sides are congruent. A
cyclic polygon is one in which all vertices are equidistant from a
fixed point (hence, all vertices lie on a circle, to be discussed later).
A regular polygon is one in which all sides are congruent and all
angles are congruent.

E: equilateral  
C: cyclic  
R: regular

E C R
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The third of these types is actually a combination of the previous two types
as the next theorem shows.

THM: EQUILATERAL + CYCLIC
A polygon P which is both equilateral and cyclic is regular.

Proof. We need to show that the interior angles of P are all congruent.
Let C be the point which is equidistant from all points of P . Divide
P into a set of triangles by constructing segments from each vertex to
C. For any of these triangles, we wish to distinguish the angle at C, the
central angle, from the other two angles in the triangle. Note that the
two constructed sides of these triangles are congruent. By the Isosceles
Triangle Theorem, the two non-central angles are congruent. As well, by
S·S·S, all of these triangles are congruent to each other. In particular, all
non-central angles of all the triangles are congruent. Since adjacent pairs
of such angles comprise an interior angle of P , the interior angles of P
are congruent.

While we normally think of regular polygons as I have shown them
above, there is nothing in the definition that requires a regular polygon to
be simple. In fact, there are non-simple regular polygons– such a polygon
is called a star polygon.

Because of S-S-S and the 
Isosceles Triangle 
Theorem, polygons 
which  are equilateral 
and cyclic are regular.

C

There is a regular star n-gon for each integer p between 1 and n/2 that is 
relatively prime to n. Shown here: n=15. The {n/p} notation is called the 
Schläfli symbol.

{15/1} {15/2} {15/4} {15/7}
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Exercises

1. Verify that a triangle is a convex polygon.

2. A diagonal of a polygon is a segment connecting nonadjacent vertices.
How many diagonals does an n-gon have?

3. Prove theorems 2 and 3 on convexity.

4. Prove that a regular convex polygon is cyclic (to find that equidistant
point, you may have to consider the odd and even cases separately).

5. Prove that if a polygon is convex, then all of its diagonals lie entirely
in the interior of the polygon (except for the endpoints).

6. Prove that if a polygon is not convex, then at least one of its diagonals
does not lie entirely in the interior of the polygon.

7. Verify that the perimeter of any polygon is more than twice the length
of its longest side.

8. Prove that the sum of the interior angles of a convex n-gon is at most
180◦(n−2).

9. Prove that if a polygon P is convex, then there are no other simple
polygons on that configuration of vertices.
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This is the last lesson in neutral geometry. After this, we will allow our-
selves one more axiom dealing with parallel lines, and that is the axiom
which turns neutral geometry into Euclidean geometry. Before turning
down the Euclidean path, let’s spend just a little time looking at quadri-
laterals. The primary goal of this section will be to develop quadrilat-
eral congruence theorems similar to the triangle congruence theorems we
picked up in earlier lessons.

Terminology

Before I start working on congruence theorems, though, let me quickly
run through the definitions of a few particular types of quadrilaterals.

One of the risks that you run when you define an object by requiring
it to have certain properties, as I have done above, is that you may define
something that cannot be– something like an equation with no solution.
The objects I have defined above are all such common shapes in everyday
life that we usually don’t question their existence. Here’s the interesting
thing though– in neutral geometry, there is no construction which guaran-
tees you can make a quadrilateral with four right angles– that is, neutral
geometry does not guarantee the existence of rectangles or squares. At
the same time, it does nothing to prohibit the existence of squares or rect-
angles either. You can make a quadrilateral with three right angles pretty
easily, but once you have done that, you have no control over the fourth
angle, and the axioms of neutral geometry are just not sufficient to prove
definitively whether or not that fourth angle is a right angle. This is one
of the fundamental differences that separates Euclidean geometry from
non-Euclidean geometry. In Euclidean geometry, the fourth angle is a
right angle, so there are rectangles. In non-Euclidean geometry, the fourth
angle cannot be a right angle, so there are no rectangles. When we eventu-
ally turn our attention to non-Euclidean geometry, I want to come back to
this– I would like to begin that study with a more thorough investigation
of these quadrilaterals that try to be like rectangles, but fail.

Tr
Pa Rh

Re Sq

Sq

Trapezoid
Parallelogram
Rhombus
Rectangle
Square

Rhombuses and rectangles 
are parallelograms. A 
square is both a rhombus 
and a rectangle.

a pair of parallel sides
two pairs of parallel sides
four congruent sides
four right angles
four congruent sides and four right angles

Rh

Re

Pa

Tr
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This is the last lesson in neutral geometry. After this, we will allow our-
selves one more axiom dealing with parallel lines, and that is the axiom
which turns neutral geometry into Euclidean geometry. Before turning
down the Euclidean path, let’s spend just a little time looking at quadri-
laterals. The primary goal of this section will be to develop quadrilat-
eral congruence theorems similar to the triangle congruence theorems we
picked up in earlier lessons.

Terminology

Before I start working on congruence theorems, though, let me quickly
run through the definitions of a few particular types of quadrilaterals.

One of the risks that you run when you define an object by requiring
it to have certain properties, as I have done above, is that you may define
something that cannot be– something like an equation with no solution.
The objects I have defined above are all such common shapes in everyday
life that we usually don’t question their existence. Here’s the interesting
thing though– in neutral geometry, there is no construction which guaran-
tees you can make a quadrilateral with four right angles– that is, neutral
geometry does not guarantee the existence of rectangles or squares. At
the same time, it does nothing to prohibit the existence of squares or rect-
angles either. You can make a quadrilateral with three right angles pretty
easily, but once you have done that, you have no control over the fourth
angle, and the axioms of neutral geometry are just not sufficient to prove
definitively whether or not that fourth angle is a right angle. This is one
of the fundamental differences that separates Euclidean geometry from
non-Euclidean geometry. In Euclidean geometry, the fourth angle is a
right angle, so there are rectangles. In non-Euclidean geometry, the fourth
angle cannot be a right angle, so there are no rectangles. When we eventu-
ally turn our attention to non-Euclidean geometry, I want to come back to
this– I would like to begin that study with a more thorough investigation
of these quadrilaterals that try to be like rectangles, but fail.

Quadrilaterals with three right angles. On the left, in Euclidean geometry, the 
fourth angle is a right angle. On the right, in non-Euclidean geometry, the 
fourth angle is acute.
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Quadrilateral Congruence

I feel that many authors view the quadrilateral congruences as a means to
an end, and as such, tend to take a somewhat ad hoc approach to them. I
think I understand this approach– the quadrilateral congruence theorems
themselves are a bit bland compared to their application. Still, I want to
be a bit more systematic in my presentation of them. In the last chapter
we looked at several classes of polygons. To recap:

{convex polygons} ⊂ {simple polygons} ⊂ {polygons}.

For what we are going to be doing in this book, we really only need
the congruence results for convex quadrilaterals, but I am going to try
to tackle the slightly broader question of congruence for simple quadri-
laterals. While the even broader question of congruence for non-simple
quadrilaterals would be interesting, I think it is just too far of a detour.

By definition, two quadrilaterals are congruent if four corresponding
sides and four corresponding interior angles are congruent– that’s a total
of eight congruences. Each congruence theorem says that you can guar-
antee congruence with some subset of that list. If you recall, for triangles
you generally needed to know three of the six pieces of information. For
quadrilaterals, it seems that the magic number is five. So what I would
like to do in this lesson is to look at all the different possible combinations
of five pieces (sides and angles) of a quadrilateral and determine which
lead to valid congruence theorems. I won’t give all the proofs or all the
counterexamples (that way you can tackle some of them on your own),
but I will provide the framework for a complete classification.

The first step is some basic combinatorics. Each of these theorems has
a five letter name consisting of some mix of Ss and As. When forming this
name, there are two choices, S and A for each of the five letters, and so
there are a total of 25 = 32 possible names. Two of these, S·S·S·S·S and
A·A·A·A·A, don’t make any sense in the context of quadrilateral congru-
ences, though, since a quadrilateral doesn’t have five sides or five angles.
That leaves thirty different words. Now it is important to notice that not
all of these words represent fundamentally different information about the
quadrilaterals themselves. For instance, S·S·A·S·A and A·S·A·S·S both
represent the same information, just listed in reverse order. Similarly,
S·S·A·S·S and S·S·S·S·A both represent the same information– four sides
and one angle. Once those equivalences are taken into consideration, we
are left with ten potential quadrilateral congruences.
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S·A·S·A·S yes

A·S·A·S·A yes

A·A·S·A·S SASAA yes

S·S·S·S·A SSSAS SSASS no(∗)

SASSS ASSSS

A·S·A·A·S SAASA no

A·S·A·S·S SSASA no

A·S·S·A·S SASSA no

A·A·A·A·S AAASA AASAA no
ASAAA SAAAA

S·S·S·A·A AASSS ASSSA no
SAASS SSAAS

A·A·A·S·S SAAAS SSAAA yes
ASSAA AASSA

(∗) a valid congruence theorem for convex quadrilaterals

Table 1. Quadrilateral congruence theorems.

Word Variations
Valid 
congruence?
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S·A·S·A·S, A·S·A·S·A, and A·A·S·A·S

Each of these is a valid congruence theorem for simple quadrilaterals.
The basic strategy for their proofs is to use a diagonal of the quadrilateral
to separate it into two triangles, and then to use the triangle congruence
theorems. Now the fact that I am allowing both convex and non-convex
quadrilaterals in this discussion complicates things a little bit, so let’s start
by examining the nature of the diagonals of a quadrilateral. Yes, I will be
leaving out a few details here (more than a few to be honest) so you should
feel free to work out any tricky details for yourself.

Consider a quadrilateral �ABCD (I am going to use a square symbol
to denote a simple quadrilateral). What I want to do is to look at the posi-
tion of the point D relative to the triangle �ABC. Each of the three lines
�AB�, �BC�, and �AC� separate the plane into two pieces. It is not
possible, though, for any point of the plane to simultaneously be

(1) on the opposite side of AB from C
(2) on the opposite side of AC from B, and
(3) on the opposite side of BC from A.

Therefore the lines of �ABC divide the plane into seven (23 −1) distinct
regions.

Now for each of these seven regions, we can determine whether the
diagonals AC and BD are in the interior of �ABCD. Let me point out
that this is always an all-or-nothing proposition– either the entire diagonal
lies in the interior (excepting of course the endpoints) or none of it does.
Additionally, in each case, a diagonal lies in the interior of a quadrilateral
if and only if it lies in the interior of both the angles formed by �ABCD
at its endpoints. What I mean is that if, for example, AC is in the interior
of �ABCD, then AC will be in the interior of both ∠DAB and ∠BCD. If
AC isn’t in the interior of �ABCD, then AC will not be in the interior of
either ∠DAB or ∠BCD.

With the diagonals now properly sorted, we can address the congruence
theorems directly. Perhaps the most useful of them all is S·A·S·A·S.

S·A·S·A·S QUADRILATERAL CONGRUENCE
If �ABCD and �A′B′C′D′ are simple quadrilaterals and

AB � A′B′ ∠B � ∠B′ BC � B′C′ ∠C � ∠C′ CD �C′D′

then �ABCD ��A′B′C′D′.The seven “sides” of a triangle.

A

B

C

I

II

IV

V

VI

VII

III
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S·A·S·A·S, A·S·A·S·A, and A·A·S·A·S

Each of these is a valid congruence theorem for simple quadrilaterals.
The basic strategy for their proofs is to use a diagonal of the quadrilateral
to separate it into two triangles, and then to use the triangle congruence
theorems. Now the fact that I am allowing both convex and non-convex
quadrilaterals in this discussion complicates things a little bit, so let’s start
by examining the nature of the diagonals of a quadrilateral. Yes, I will be
leaving out a few details here (more than a few to be honest) so you should
feel free to work out any tricky details for yourself.

Consider a quadrilateral �ABCD (I am going to use a square symbol
to denote a simple quadrilateral). What I want to do is to look at the posi-
tion of the point D relative to the triangle �ABC. Each of the three lines
�AB�, �BC�, and �AC� separate the plane into two pieces. It is not
possible, though, for any point of the plane to simultaneously be

(1) on the opposite side of AB from C
(2) on the opposite side of AC from B, and
(3) on the opposite side of BC from A.

Therefore the lines of �ABC divide the plane into seven (23 −1) distinct
regions.

Now for each of these seven regions, we can determine whether the
diagonals AC and BD are in the interior of �ABCD. Let me point out
that this is always an all-or-nothing proposition– either the entire diagonal
lies in the interior (excepting of course the endpoints) or none of it does.
Additionally, in each case, a diagonal lies in the interior of a quadrilateral
if and only if it lies in the interior of both the angles formed by �ABCD
at its endpoints. What I mean is that if, for example, AC is in the interior
of �ABCD, then AC will be in the interior of both ∠DAB and ∠BCD. If
AC isn’t in the interior of �ABCD, then AC will not be in the interior of
either ∠DAB or ∠BCD.

With the diagonals now properly sorted, we can address the congruence
theorems directly. Perhaps the most useful of them all is S·A·S·A·S.

S·A·S·A·S QUADRILATERAL CONGRUENCE
If �ABCD and �A′B′C′D′ are simple quadrilaterals and

AB � A′B′ ∠B � ∠B′ BC � B′C′ ∠C � ∠C′ CD �C′D′

then �ABCD ��A′B′C′D′.

D is in is �ABCD D is on the reflex interior
region simple? same side of : angle diagonal:

BC as A AC as B AB as C AC BD

I � � A �

II � � B �

III � � C �

IV � � – – –

V � � � none � �

VI � � – – –

VII � � � � D �

Table 2. The diagonals of a quadrilateral
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Proof. The diagonals AC and A′C′ are the keys to turning this into a prob-
lem of triangle congruence. Unfortunately, we do not know whether or not
those diagonals are in the interiors of their respective quadrilaterals. That
means we have to tread somewhat carefully at first. Because of S·A·S,
�ABC ��A′B′C′. You need to pay attention to what is happening at ver-
tex C. If AC is in the interior of the quadrilateral, then it is in the interior of
∠BCD and that means (∠BCA)< (∠BCD). Then, since ∠B′C′A′ �∠BCA
and ∠B′C′D′ � ∠BCD, (∠B′C′A′) < (∠B′C′D′). Therefore A′C′ must be
in the interior of ∠B′C′D′ and in the interior of �A′B′C′D′. With the same
reasoning, we can argue that if AC is not in the interior of �ABCD, then
A′C′ cannot be in the interior of �A′B′C′D′. So there are two cases, and
the assembly of the quadrilateral from the triangles depends upon the case.
My diagram of the chase through the congruences is below. I have split it,
when necessary, to address the differences in the two cases.

Using essentially this same approach, you should be able to verify both
the A·S·A·S·A and A·A·S·A·S quadrilateral congruences.
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AC s
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CD s
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S·S·S·S·A

The S·S·S·S·A condition is almost enough to guarantee quadrilateral con-
gruence. Suppose that you know the lengths of all four sides of �ABCD,
and you also know ∠A. Then �BAD is completely determined (S·A·S)
and from that �BCD is completely determined (S·S·S). That still does
not mean that �ABCD is completely determined, though, because there
are potentially two ways to assemble �BAD and �BCD (as illustrated).
One assembly creates a convex quadrilateral, the other a non-convex one.
Now, there will be times when you know the quadrilaterals in question
are all convex, and in those situations, S·S·S·S·A can be used to show that
convex quadrilaterals are congruent.

A·S·A·A·S, A·S·A·S·S, A·S·S·A·S, A·A·A·A·S, and S·S·S·A·A

None of these provide sufficient information to guarantee congruence and
counterexamples can be found in Euclidean geometry. I will just do one
of them– S·S·S·A·A, and leave the rest for you to puzzle out. In the illus-
tration below �ABCD and �ABC′D′ have correponding S·S·S·A·A but
are not congruent.
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A·A·A·S·S

This is the intriguing one. The idea of splitting the quadrilateral into tri-
angles along the diagonal just doesn’t work. You fail to get enough infor-
mation about either triangle. Yet, (as we will see) in Euclidean geometry,
the angle sum of a quadrilateral has to be 360◦. Since three of the an-
gles are given, that means that in the Euclidean realm the fourth angle
is determined as well. In that case, this set of congruences is essentially
equivalent to the A·S·A·S·A (which is a valid congruence theorem). The
problem is that in neutral geometry the angle sum of a quadrilateral does
not have to be 360◦. Because of the Saccheri-Legendre Theorem, the an-
gle sum of a quadrilateral cannot be more than 360◦, but that is all we can
say. It turns out that this is a valid congruence theorem in neutral geom-
etry. The proof is a little difficult though. The argument that I want to
use requires us to “drop a perpendicular”. I have described this process in
some of the previous exercises, but let me reiterate here.

LEM 1
For any line � and point P not on �, there is a unique line through P
which is perpendicular to �.

The intersection of � and the perpendicular line is often called the foot
of the perpendicular. The process of finding this foot is called dropping
a perpendicular. I have already proven the existence part of this– the
phrasing was a little different then, but my proof of the existence of right
angles (in the lesson on angle comparison) constructs this perpendicular
line. As for uniqueness part, I will leave that to you.

LEM 2
Let � be a line, P a point not on �, and Q the foot of the perpendicular
to � through P. Then P is closer to Q than it is to any other point on
�.

Again, I am going to pass off the proof to you. I would suggest, though,
that you think about the Scalene Triangle Theorem. Now on to the main
theorem.
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The setup for the proof of AAASS for convex quadrilaterals.

A·A·A·S·S QUADRILATERAL CONGRUENCE
If �ABCD and �A′B′C′D′ are simple quadrilaterals, and

∠A � ∠A′ ∠B � ∠B′ ∠C � ∠C′ CD �C′D′ DA � D′A′

then �ABCD ��A′B′C′D′.

Proof. I will use a proof by contradiction of this somewhat tricky theo-
rem. Suppose that �ABCD and �A′B′C′D′ have the corresponding con-
gruent pieces as described in the statement of the theorem, but suppose
that �ABCD and �A′B′C′D′ are not themselves congruent.

Part One, in which we establish parallel lines.
I want to construct a new quadrilateral: �A�B�CD will overlap �ABCD
as much as possible, but will be congruent to �A′B′C′D′. Here is the con-
struction. Locate B� on CB� so that CB� �C′B′. Note that BC and B′C′

cannot be congruent– if they were the two quadrilaterals would be con-
gruent by A·A·S·A·S. As a result, in the construction, B �= B�. The other
point to place is A�. It needs to be positioned so that:

1. it is on the same side of �BC� as A,
2. ∠AB�C� � ∠A′B′C′, and
3. A�B� � A′B′.

The angle and segment construction axioms guarantee that there is one and
only one point that satisfies these conditions. That finishes the copying–
by S·A·S·A·S, �A�B�CD and �A′B′C′D′ are congruent. There is one
important thing to note about this construction. Since

∠A�B�C � ∠A′B′C′ � ∠ABC,

the Alternate Interior Angle Theorem guarantees that �A�B�� and �AB�
will be parallel.
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Part two, in which we determine the position of D relative to those lines.
The two parallel lines � AB � and � A�B� � carve the plane into three
regions as shown in the illustration below. The reason I mention this is
that my proof will not work if D is in region 2, the region between the
two parallel lines. Now it is pretty easy to show that D will not fall in
region 2 if we know the two quadrilaterals are convex. If we don’t know
that, though, the situation gets a little more delicate, and we will have to
look for possible reflex angles in the two quadrilaterals. The key thing to
keep in mind is that the angle sum of a simple quadrilateral is at most 360◦
(a consequence of the Saccheri-Legendre Theorem), and the measure of
a reflex angle is more than 180◦– therefore, a simple quadrilateral will
support at most one reflex angle.

Suppose that D did lie in region 2. Note that, based upon our construc-
tion, either C∗B∗B� or C∗B� ∗B, and so that means that C is not in region
2. Therefore, one of the two lines (either �AB� or �A�B��) comes be-
tween C and D while the other does not. The two cases are equivalent, so
in the interest of keeping the notation reasonable, let’s assume for the rest
of this proof that �A�B� � separates C and D, but that �AB� does not.
What are the implications of this? Let me refer you back to Table 2 which
characterizes the possible positions of a fourth vertex of a quadrilateral in
relation to the previous three.

A·A·A·S·S QUADRILATERAL CONGRUENCE
If �ABCD and �A′B′C′D′ are simple quadrilaterals, and
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of this proof that �A�B� � separates C and D, but that �AB� does not.
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Part two, in which we determine the position of D relative to those lines.
The two parallel lines � AB � and � A�B� � carve the plane into three
regions as shown in the illustration below. The reason I mention this is
that my proof will not work if D is in region 2, the region between the
two parallel lines. Now it is pretty easy to show that D will not fall in
region 2 if we know the two quadrilaterals are convex. If we don’t know
that, though, the situation gets a little more delicate, and we will have to
look for possible reflex angles in the two quadrilaterals. The key thing to
keep in mind is that the angle sum of a simple quadrilateral is at most 360◦
(a consequence of the Saccheri-Legendre Theorem), and the measure of
a reflex angle is more than 180◦– therefore, a simple quadrilateral will
support at most one reflex angle.

Suppose that D did lie in region 2. Note that, based upon our construc-
tion, either C∗B∗B� or C∗B� ∗B, and so that means that C is not in region
2. Therefore, one of the two lines (either �AB� or �A�B��) comes be-
tween C and D while the other does not. The two cases are equivalent, so
in the interest of keeping the notation reasonable, let’s assume for the rest
of this proof that �A�B� � separates C and D, but that �AB� does not.
What are the implications of this? Let me refer you back to Table 2 which
characterizes the possible positions of a fourth vertex of a quadrilateral in
relation to the previous three.

Since C and D are on the same side
of � AB �, D has to be in region
III, IV, or V with respect to �ABC
(note that if D is in region VI, then
�ABCD is not simple). If D is in
region III, then �ABCD has a re-
flex angle at C. If D is in region V,
then �ABCD is convex and does
not have a reflex angle. And if D
is in region VII, then �ABCD has
a reflex angle at D.

Since C and D are on opposite sides
� A�B� �, D has to be in region
I or II (if D is in region IV, then
�A�B�CD is not simple. If D is in
region I, then �A�B�CD has a re-
flex angle at A�. If D is in region
II, then �A�B�CD has a reflex an-
gle at B�.

A quadrilateral can only have one reflex angle, so in �ABCD neither ∠A
nor ∠B is reflex. In �A�B�CD one of ∠A� or ∠B� is reflex. Remember
though that ∠A� �∠A and ∠B� �∠B. This is a contradiction– obviously
two angles cannot be congruent if one has a measure over 180◦ while the
other has a measure less than that. So now we know that D cannot lie
between �AB� and �A�B�� and so all the points of �AB� are on the
opposite side of �A�B�� from D.

Part Three, in which we measure the distance from D to those lines.
I would like to divide the rest of the proof into two cases. The first case
deals with the situation when ∠A and ∠A� (which are congruent) are right
angles. The second deals with the situation where they are not.

Case 1. (∠A) = (∠A�) = 90◦.
Since D and A are on opposite sides of �A�B��, there is a point P between
A and D which is on �A�B��. Then

|DP|< |DA|= |DA�|.

But that can’t happen, since A� is the closest point on �A�B�� to D.
Case 2. (∠A) = (∠A�) �= 90◦.
The approach here is quite similar to the one in Case 1. The difference is
that we are going to have to make the right angles first. Locate E and E�,
the feet of the perpendiculars from D to �AB� and �A�B��, respectively.
Please turn your attention to triangles �DAE and �DA�E�. In them,

AD � A�D ∠A � ∠A� ∠E � ∠E�.

By A·A·S, they are congruent, and that means that DE � DE�. But that
creates essentially the same problem that we saw in the first case. Since D
and E are on opposite sides of �A�B��, there is a point P between D and
E which is on �A�E��. Then

|DP|< |DE|= |DE�|.

Again, this cannot happen, as E� should be the closest point to D on
�A�E��.

In either case, we have reached a contradiction. The initial assumption,
that �ABCD and �A′B′C′D′ are not congruent, must be false.
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Case 1: the angle at A is a right angle.

Part Three, in which we measure the distance from D to those lines.
I would like to divide the rest of the proof into two cases. The first case
deals with the situation when ∠A and ∠A� (which are congruent) are right
angles. The second deals with the situation where they are not.

Case 1. (∠A) = (∠A�) = 90◦.
Since D and A are on opposite sides of �A�B��, there is a point P between
A and D which is on �A�B��. Then

|DP|< |DA|= |DA�|.

But that can’t happen, since A� is the closest point on �A�B�� to D.
Case 2. (∠A) = (∠A�) �= 90◦.
The approach here is quite similar to the one in Case 1. The difference is
that we are going to have to make the right angles first. Locate E and E�,
the feet of the perpendiculars from D to �AB� and �A�B��, respectively.
Please turn your attention to triangles �DAE and �DA�E�. In them,

AD � A�D ∠A � ∠A� ∠E � ∠E�.

By A·A·S, they are congruent, and that means that DE � DE�. But that
creates essentially the same problem that we saw in the first case. Since D
and E are on opposite sides of �A�B��, there is a point P between D and
E which is on �A�E��. Then

|DP|< |DE|= |DE�|.

Again, this cannot happen, as E� should be the closest point to D on
�A�E��.

In either case, we have reached a contradiction. The initial assumption,
that �ABCD and �A′B′C′D′ are not congruent, must be false.

Part Three, in which we measure the distance from D to those lines.
I would like to divide the rest of the proof into two cases. The first case
deals with the situation when ∠A and ∠A� (which are congruent) are right
angles. The second deals with the situation where they are not.

Case 1. (∠A) = (∠A�) = 90◦.
Since D and A are on opposite sides of �A�B��, there is a point P between
A and D which is on �A�B��. Then

|DP|< |DA|= |DA�|.

But that can’t happen, since A� is the closest point on �A�B�� to D.
Case 2. (∠A) = (∠A�) �= 90◦.
The approach here is quite similar to the one in Case 1. The difference is
that we are going to have to make the right angles first. Locate E and E�,
the feet of the perpendiculars from D to �AB� and �A�B��, respectively.
Please turn your attention to triangles �DAE and �DA�E�. In them,

AD � A�D ∠A � ∠A� ∠E � ∠E�.

By A·A·S, they are congruent, and that means that DE � DE�. But that
creates essentially the same problem that we saw in the first case. Since D
and E are on opposite sides of �A�B��, there is a point P between D and
E which is on �A�E��. Then

|DP|< |DE|= |DE�|.

Again, this cannot happen, as E� should be the closest point to D on
�A�E��.

In either case, we have reached a contradiction. The initial assumption,
that �ABCD and �A′B′C′D′ are not congruent, must be false.



148 LESSON 12

Part Three, in which we measure the distance from D to those lines.
I would like to divide the rest of the proof into two cases. The first case
deals with the situation when ∠A and ∠A� (which are congruent) are right
angles. The second deals with the situation where they are not.

Case 1. (∠A) = (∠A�) = 90◦.
Since D and A are on opposite sides of �A�B��, there is a point P between
A and D which is on �A�B��. Then

|DP|< |DA|= |DA�|.

But that can’t happen, since A� is the closest point on �A�B�� to D.
Case 2. (∠A) = (∠A�) �= 90◦.
The approach here is quite similar to the one in Case 1. The difference is
that we are going to have to make the right angles first. Locate E and E�,
the feet of the perpendiculars from D to �AB� and �A�B��, respectively.
Please turn your attention to triangles �DAE and �DA�E�. In them,

AD � A�D ∠A � ∠A� ∠E � ∠E�.

By A·A·S, they are congruent, and that means that DE � DE�. But that
creates essentially the same problem that we saw in the first case. Since D
and E are on opposite sides of �A�B��, there is a point P between D and
E which is on �A�E��. Then

|DP|< |DE|= |DE�|.

Again, this cannot happen, as E� should be the closest point to D on
�A�E��.

In either case, we have reached a contradiction. The initial assumption,
that �ABCD and �A′B′C′D′ are not congruent, must be false.



149QUADRILATERALS

Exercises

1. A convex quadrilateral with two pairs of congruent adjacent sides is
called a kite. Prove that the diagonals of a kite are perpendicular to one
another.

2. Prove the A·S·A·S·A, and A·A·S·A·S quadrilateral congruence theo-
rems.

3. Prove the S·S·S·S·A quadrilateral congruence theorem for convex quadri-
laterals.

4. Provide Euclidean counterexamples for each of A·S·A·A·S, A·S·A·S·S,
A·S·S·A·S, and A·A·A·A·S.

5. Here is another way that you could count words: there are four angles
and four sides, a total of eight pieces of information, and you need to
choose five of them. That means there are

(
8
5

)
=

8!
5!(8−5)!

= 56

possibilities. That’s quite a few more than the 25 = 32 possibilities
that I discussed. Resolve this discrepancy and make sure that I haven’t
missed any congruence theorems.




